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After generating candidate haplotypes, the GATK tools HaplotypeCaller and Mutect realign
reads against these haplotypes to obtain a matrix of likelihoods for each read to be derived from
each haplotype. Here we describe the probabilistic model specifying this likelihood as well as its
computational implementation. We do not describe the translation of this implementation into
native code optimized for vectorized architectures.

I. THE PAIR HMM MODEL

We want to calculate the probability P (R|H) of read R to be sequenced from haplotype H, where the haplotypes
are sufficiently long that reads are contained within them. This likelihood is the sum of likelihoods of all possible
alignments A of R to H:

P (R|H) =
∑
A
P (R,A|H) (1)

We represent alignments as sequences

alignment = {(i1, j1, s1), (i2, j2, s2) . . . (iN , jN , sN )}, (2)

where i and j represent positions within the read and haplotype, respectively, and sn ∈ {M, I,D} repre-
sents the states of match, insertion, and deletion of the read relative to the haplotype. For example, an
alignment {(1, 10,M), (2, 11,M), (3, 12,M), (4, 13,M), (4, 14, D), (4, 15, D), (5, 16,M), (6, 17,M), (7, 17, I), (8, 18,M)}
means that positions 1 - 4 of the read match positions 10 - 13 of the haplotype, followed by a two-base deletion (ad-
vancing from 13 to 15 in the haplotype without advancing in the read), followed by a match of read positions 5 -
6 with haplotype positions 16 - 17, followed by an insertion at read position 7, followed by a match. The allowable
transitions (in, jn)→ (in+1, jn+1) are

• (i, j,M/D/I)→ (i+ 1, j + 1,M): match of read position i+ 1 with haplotype position j + 1

• (i, j,M/D)→ (i, j + 1, D): deletion after read position i – haplotype position j + 1 is deleted

• (i, j,M/I)→ (i+ 1, j, I): insertion at read position i+ 1

Note that the state label s seems redundant because it can be reconstructed from the sequence of i an j. While this
is true, our model treats indel starts differently from indel continuations, and by including the state label we can
distinguish these conveniently1. These transitions are illustrated as a finite state machine in Figure 1.

The read-alignment likelihood has two components. First is the probability of the sequence of match, insertion,
and deletion states, which is

P (A) =
∏

k

Tsk,sk+1 , (3)

∗ The author took no part in development of the methods described below – credit belongs to several others on the GATK team.
†Electronic address: davidben@broadinstitute.org
1 That is, we can tell which type of transition it is by looking back one unit instead of two. Thus we have a first-order Markov model

instead of a second-order Markov model.
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FIG. 1: Finite state machine of transitions among match, insertion, and deletion alignment states. In the absence of per-base
BQSR indel qualities transition probabilities are parametrized by two constants, the indel start probability δ and the indel
continuation probability ε, such that TMI = TMD = δ, TMM = 1−2δ, TII = TDD = ε, TIM = TDM = 1−ε, and TID = TDI = 0.

where T is a matrix of state transition probabilities23. The index k runs from 1 to the number of states in the
alignment, that is, the read length plus the number of deleted reference bases. Next is the emission probability of the
read bases given the haplotype bases they align to and the base qualities:

P (R|A,H) =
∏

k

P (rik
|hjk

, qik
)I[sk=M ], (4)

where rm and hn are the mth read bases and nth haplotype base and qm is the quality of the read’s mth base. Note
that this only includes alignments in the match state. The per-base emission is given directly from the definition of
base quality:

P (b2|b1, q) =
{

ε(q)/3 (b1 6= b2)
1− ε(q) (b1 = b2) (5)

where ε(q) = 10−q/10 is the error rate implied by the phred-scaled quality q.

II. DYNAMIC PROGRAMMING

Define the matrices M , I and D by Mij = the total likelihood of all paths from the beginning of the read to position
i that end in a match state, and likewise for D and I. Then the recursions

Mij =P (ri|hj , qi) (Mi−1,j−1TMM + Ii−1,j−1TIM +Di−1,j−1TDM ) (6)
Iij =Mi−1,jTMI + Ii−1,jTII (7)
Dij =Mi,j−1TMD +Di,j−1TDD (8)

define the entire pair HMM algorithm:

2 The gap continuation probability corresponds to a phred-scaled quality that is set by the gcpHMM argument, which is 10 by default,
implying that TDD = TII = 10−10/10 = 1/10 and TDM = TIM = 1 − TII . The indel start transitions are derived from the read’s
BQSR base insertion and base deletion qualities, if they exist, or a phred-scaled indel start quality of 45 if they do not. In production
at the Broad Institute bams do not have BQSR indel qualities, hence the constant default is used. That is, TMD = TMI = 10−4.5 and
TMM = 1− 2× 10−4.5.

3 The elements of T are either empirical or, (sometimes) in the case of indel start transitions, derived from BQSR. However in principle
all elemnts of T could be learned by applying the Baum-Welch algorithm to some known training data. For example, one could use a
haploid cell line, for which any assembly region has a single haplotype.
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Algorithm 1 Pair HMM algorithm
1: Initialize M0,j = I0,j = 0 and D0,j = 21020/|H| for 1 ≤ j ≤ |H|.
2: for 1 ≤ i ≤ |R| do
3: for 1 ≤ j ≤ |H| do
4: Calculate Mij via Equation 6.
5: Calculate Iij via Equation 7.
6: Calculate Dij via Equation 8.
7: end for
8: end for
9: Total likelihood P (R|H) is

∑
j

(MR,j + IR,j).

That the i = 0 rows of M and I are initialized to zero corresponds to starting at an imaginary position one base
before the read start in a deletion state4. The factor of 1/|H| corresponds to a flat prior on which j an alignment
starts at. This is important for a local alignment because we don’t want to penalize reads that start in the middle
of the haplotype. The curious factor of 21020 is a huge number to prevent underflow – all multiplications are by
numbers less than 1, so we needn’t worry about overflow – which is a much more efficient approach than performing
the computation in log space. The omission of D from the returned value recognizes the fact that a terminal deletion
is meaningless.

Finally, we note a shortcut that the GATK exploits: when two consecutive haplotypes of the same length5 agree
up to the kth position, the first k columns of M , D and I are recycled and the inner loop is over k < j ≤ H.

4 Since TDI = 0 this means that an alignment may not start with an insertion, though it may begin with one. This limitation is
unnecessary and could be fixed by initializing the i = 0 row of I to a non-zero value as well.

5 The condition on the same length could easily be relaxed simply by accounting for the constant 1/|H| initialization.


