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ABSTRACT

This documents serves to explain the functionality of the Toolkit for Adaptive Stochastic Modeling And
Non-Intrusive Approximation (TASMANIAN). The document covers the mathematical background, instal-
lation, and the three software components: C/C++ libraries, Python and MATLAB interfaces. Currently
TASMANIAN includes two modules: sparse grids surrogate modeling and multidimensional integration,
and Bayesian inference using Markov Chain Monte Carlo sampling.
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1 Quick Overview

1.1 Sparse grids

Sparse Grids refers to a family of algorithms for approximation of multidimensional functions and inte-
grals, where the approximation operator is constructed as a linear combination of tensors of multiple one
dimensional operators[27, 16, 24, 25, 23, 19, 22, 1, 3, 18, 11, 4, 15, 31, 29, 35, 36, 14]. The Tasmanian sparse
grids library implements a wide variety of sparse grids methods with different one dimensional operators
and different ways of constructing the linear combination of tensors.

Let Γak,bk = [ak, bk] ⊂ R, for k = 1, 2, . . . , d, indicate a set of one dimensional intervals and let Γa,b =⊗d
k=1 Γak,bk ⊂ Rd be a d-dimensional sparse grids domain. A sparse grid consists of a set of points

{xi}Ni=1 ∈ Γa,b and associated numerical quadrature weights {xi}Ni=1 ∈ R or interpolation basis functions
{φi(x)}Ni=1 ∈ C0(Γa,b). Usually, ak and bk are finite, however, Gauss-Hermite and Gauss-Laguerre rules
allow for the use of unbounded domain. Note that Tasmanian constructs grids using the canonical interval
[−1, 1] and the result is then translated (via a linear transformation) to the specific [ak, bk]; also Gauss-
Hermite and Gauss-Laguerre rules use canonical intervals (−∞,+∞) and [0,∞) respectively.

Let f(x) : Γ→ R indicate a d-dimensional function, where w.l.o.g. we assume Γ is the canonical domain.
We consider two types of approximations, point-wise approximations f̃(x) where f̃(x) ≈ f(x) for all
x ∈ Γ and numerical integration Q(f) where Q(f) ≈

∫
Γ f(x)ρ(x)dx. The weight ρ(x) is specific to the

one dimensional rule that induces the grid; most rules assume uniform weight ρ(x) = 1, however, Gauss-
Chebyshev, Gegenbauer, Jacobi, Hermite, and Laguerre, rules use different weights (see Table 2). Note:
Tasmanian can handle functions with multiple outputs (e.g., vector valued functions), then f̃(x) and Q(f)
have a corresponding number of outputs.

Point-wise approximations can be implemented in two different ways, since both ways result in identical
f̃(x) there is no official language to distinguish between the two method, hence we’ll use the terms internal
and adjoint. The internal form is

f̃(x) =

N∑
i=1

ciφi(x), (1)

where φi(x) are basis functions determined by the one dimensional rule and the chosen set of tensors, and
the weights ci are computed from the values of f(xi). The term internal refers to the fact that the software
library needs direct access to the values f(xi) in order to compute the coefficients ci. In contrast, the adjoint
form is given by

f̃(x) =

N∑
i=1

ψi(x)f(xi), (2)

where ψi(x) depend on the 1-D rule and tensors and can be computed independent from f(xi). Using the
adjoint approach, Tasmanian can approximate functions with arbitrary output and arbitrary data-structures,
i.e., the library can generate the ψi(x) weights and the sum can be computed by user written or third party
code. Note that (1) and (2) result in point-wise identical approximation, however, in general, the adjoint
approach is usually significantly more expensive (computationally). When φi(x) are Lagrange polynomials,
then ci = f(xi) and ψi(x) = φi(x) and both approximation methods are computationally equivalent.
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In general, sparse grids approximations are not interpolatory, however, when the underlying one dimensional
rule is nested (i.e., the nodes at level l are a subset of the nodes at level l + 1), then f̃(xi) = f(xi)
at all grid points {xi}Ni=1. The Gauss rules implemented in Tasmanian (except Gauss-Patterson) and the
Chebyshev rule are non-nested, all other rules are nested. In general, nested grids have fewer points which
leads to fewer evaluations of f(xi) and nesting allows the employment of various refinement strategies.
Tasmanian implements two types of refinement based on hierarchical surpluses[29] and anisotropic quasi-
optimal polynomial spaces[31].

Employing numerical quadrature, the integral of f(x) is approximated as

∫
Γ
f(x)ρ(x)dx ≈ Q[f ] =

N∑
i=1

wif(xi), (3)

where the points {xi}Ni=1 and the weights {wi}Ni=1 depend on the one dimensional rule and the selec-
tion of tensors. In general, Q(f) can be constructed from f̃(x) by integrating the approximation (i.e.,
wi =

∫
Γ ψi(x)dx), however, Gauss rules allow for better accuracy by selecting the points xi at the roots

of polynomials that are orthogonal with respect to ρ(x) (see table 2). Gauss-Patterson and Gauss-Legendre
rules use the same uniform ρ(x), however, Gauss-Patterson points have the additional constraint of being
nested. In one dimension, Gauss-Legendre rule is more accurate than Gauss-Patterson, however, in a mul-
tidimensional setting the nested property of Gauss-Patterson leads to better accuracy per number of points.
Unlike Gauss-Legendre, the Gauss-Patterson points and weights are very difficult to compute and this library
provides only the first 9 levels as hard-coded constants.

Tasmanian implements a variety of different grids and those are grouped into 4 categories:

• Global Grids: f̃(x) is constructed using Lagrange polynomials and the grids are suitable for approx-
imating smooth and analytic functions. All Gauss integration rules fall in this category. See §2.1.

• Sequence Grids: for a class of rules (namely Leja, R-Leja, R-Leja-Shifted, min/max-Lebesgue and
min-Delta, see Table 3) the sequence grids offer an alternative implementation based on Newton
polynomials. Sequence grids can evaluate f̃(x) (for a given x) much faster, however, speed comes
with higher storage overhead as well as higher computational cost for most other operations, especially
loading the values and using ajoint interpolation. Note that the difference between global and sequence
grids is only in implementation, otherwise a sequence and a global grid with the same rule and points
would result in identical f̃(x). See §2.1.

• Local Polynomial Grids: suitable for non-smooth functions with locally sharp behavior. Interpola-
tion is based on hierarchical piece-wise polynomials with local support and varying order. See §2.7.

• Wavelet Grids: are similar to the local polynomials, however, using wavelet basis. Coupled with
local refinement, often times wavelet grids provide the same accuracy with fewer abscissas. See §2.7.

The code consists of three main components:

• libtasmaniansparsegrids.a/so: the main component of Tasmanian is the C++ sparse grids library that
implements the TasmanianSparseGrid class that encapsulates all of the available capabilities. See §5.

• tasgrid: an executable that provides a command line interface to the library. The executable reads
and writes data to text files and every command generally reads an instance of TasmanianSparseGrid
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class from a text file, calls a function from the class, and writes the modified class back to a text file,
see §7.

• MATLAB Interface: which is a series of MATLAB functions that call the executable tasgrid and
read the result into MATLAB matrices. Note: the MATLAB interface does not use .mex files, thus the
library can be compiled with a wider range of compilers than those supported by MATLAB, however,
the usage of the interface is somewhat different than regular mex files, see §8.

• Python Interface: which is a single Python module that implements a Python sparse grids class that
mimics closely the behavior of the C++ library. The interface is based on ctypes, where a C++
instance of the Tasmanian class is held by a void pointer, accessed via a C interface, and encapsulated
by the Python module, see §9.

1.2 DREAM

Starting with version 5.0, Tasmanian includes a module for random sampling based on the DiffeRential
Evolution Adaptive Metropolis (DREAM) algorithm. Suppose ρ(x) be a non-negative function defined
over a domain Γ ⊂ Rd where we make no assumptions regarding compactness or structure of Γ. We assume
that ∫

Γ
ρ(x)dx <∞,

in which case normalizing ρ(x) will give us a probability density function (PDF). It is not necessary to
explicitly compute the normalizing constant and the random sampling algorithm works with unscaled ρ(x).
The goal of the random sampling procedure is to generate a number of samples {xi}Ni=1 that are distributed
according to the ρ(x) PDF. This is done by iteratively evolving a series of chains and the update algorithm
depends on the current distribution of the chains and a random correction factor[6, 13, 33, 34, 37].

Bayesian inference is a common application area for this type of sampling algorithms [6]. In the inference
paradigm, we have a model f : Γ → Rµ and (potentially noisy) observation data d ∈ Rµ, the objective
is to assign “belief” to the values of x that correspond to the data. The “belief” is defined by a posterior
probability distribution ρ(x) defined by Bayes’ rule

ρ(x) = L(d, f(x))ρp(x), (4)

where L(d, f(x)) is the likelihood function indicating the probability that the discrepancy between d and
f(x) is due entirely to noise, and ρp(x) is a probability distribution indicating our prior “belief” regarding
the values of x. The scaling factor in (4) is omitted. The statistics of ρ(x) can be computed from a
sufficiently large number of random samples collected by the DREAM algorithm

Accurate statistical analysis requires a huge number of random samples, which is prohibitive when the
f(x) is expensive to compute. A common practice is to replace the expensive f(x) by a cheap to evaluate
sparse grid surrogate. The Tasmanian DREAM module can collect samples from an arbitrary user defined
ρ(x) (not necessarily associated with an inference problem), a sparse grid approximation of the likelihood
function or model. The user can provide a custom defined model as well. Currently, Tasmanian includes
implementation of Gaussian likelihood, i.e.,

L(d, f(x)) = exp
(
−(d− f(x))Tσ−1(d− f(x))

)
, (5)
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where σ ∈ Rµ×µ is user defined covariance. Tasmanian also includes priors based on Uniform, Gaussian,
truncated Gaussian, Beta, Gamma, and Exponential pdfs. The C++ library makes extensive use of poly-
morphism and can be easily extended with additional custom prior distributions, likelihood functions, and
custom models.

Note: until Tasmanian version 5.0, the main focus of development has been on the sparse grids module.
Thus, the DREAM module is less mature than the sparse grid one. There are significant gaps in capability
and there is high potential for bugs leading to errors and poor stability. Most notably, the random sampling
module lacks Python, MATLAB, and command line interfaces, which are particularly challenging due to the
extensive use of polymorphism in the C++ library.

1.3 Document organization

In the rest of this document, we first present basic Mathematical background of Sparse Grids and random
sampling, followed by detailed description of the libraries, classes and interfaces. In §2.1 and §2.7 we
provide a brief description of the construction of sparse grids from global and local rules. In §3.1 we
describe in details the random sampling algorithm. In §4 we give a guide to compiling the C++ library and
in §5 we describe the TasmanianSparseGrid class. In §7 we list the functions of the command line wrapper,
and in §8 and §9 we describe the usage of the MATLAB and Python interfaces respectively. Appendix 11
shows the format of a file with a user specified integration or interpolation rule.
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2 Sparse Grids

2.1 Global Grids: General construction

Let {xj}∞j=1 ∈ R denote a sequence of distinct points (in either a canonical or transformed interval Γa,b),
and let m : N → N be a strictly increasing growth function. We define a one dimensional nested family of
interpolants {Um(l)}∞l=0, where Um(l) is associated with the first m(l) points {xj}m(l)

j=1 and Lagrange basis

functions {φlj(x)}m(l)
j=1 defined by φlj(x) =

∏m(l)
i=1,i 6=j

x−xi
xj−xi , i.e.,

f̃ (l)(x) = Um(l)[f ](x) =

m(l)∑
j=1

f(xj)φ
l
j(x). (6)

The corresponding numerical quadrature is given by∫
f(x)ρ(x)dx ≈ Q[f ] =

m(l)∑
j=1

wljf(xj), (7)

where wlj =
∫
φlj(x)ρ(x)dx. In a non-nested case, different nodes are associated with each level, i.e.,

{{xlj}
m(l)
j=1 }∞l=0 and the basis function and operators are defined accordingly. Examples of nested and non-

nested one dimensional rules are listed in Tables 1, 2, and 3.

The point-wise approximation and quadrature construction can be expressed in the same operator notation,
hence, we define the surplus operators as

∆m(l) = Um(l) − Um(l−1), or ∆m(l) = Qm(l) −Qm(l−1) (8)

depending on whether we are interested in constructing f̃(x) or Q[f ]. We also use the convention that
∆m(0) = Um(0) or ∆m(0) = Qm(0).

The d-dimensional tenor operators are given by

∆m(i) =
d⊗

k=1

∆m(ik), Um(i) =
d⊗

k=1

Um(ik), Qm(i) =
d⊗

k=1

Qm(ik)

where we assume standard multi-index notation∗. A sparse grid operator is defined as

GΘ[f ] =
∑
i∈Θ

∆m(i), (9)

where Θ is a lower set†. An explicit form of the points associated with the sparse grid can be obtained by
first defining the tensors

m(i) =
d⊗

k=1

m(ik), xj =
d⊗

k=1

xjk ,

∗For the remainder of this document we let N be the set of natural numbers including zero, and Λ,Θ ⊂ Nd will denote set of
multi-indexes. For any two vectors, we define xν =

∏d
k=1 x

νk
k with the usual convention 00 = 1.

†A set Λ is caller lower or admissible if ν ∈ Λ implies {i ∈ Nd : i ≤ ν} ⊂ Λ, where i ≤ ν if and only if ik ≤ νk for all
1 ≤ k ≤ d.
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then the points associated with (9) are given by

{xj}j∈X(Θ), where X(Θ) =
⋃
i∈Θ

{1 ≤ j ≤m(i)}. (10)

In the non-nested case, X(Θ) consists of pairs of multi-indexes X(Θ) =
⋃
i∈Θ

⋃
1≤j≤m(i){(i, j)}, and the

points are {xij}(i,j)∈X(Θ) where xij =
⊗d

k=1 x
ik
jk

.

For every lower set Θ, there is a set of (integer) weights {tj}j∈Θ(L) that satisfy
∑
i≤j,j∈Θ(L) tj = 1 for

every i ∈ Θ(L), i.e., ti solve a linear system of equations. Then,

GΘ[f ] =
∑
i∈Θ

∆m(i) =
∑
i∈Θ

tiUm(i), (11)

or in the context of integration GΘ[f ] =
∑
i∈Θ tiQm(i). Thus, we explicitly write the Lagrange basis

functions and quadrature weights as

φj(x) =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

φikjk , (12)

where each φikjk is evaluated at the corresponding k-th component of x and we note that in the nested case
φj(x) = ψj(x) where ψj(x) are defined in (2). Similarly, the quadrature weights are given by

wj =
∑

i∈Θ,m(i)≥j

ti

d∏
k=1

wikjk . (13)

Therefore, the explicit form of the sparse grids approximation is given by

f̃Θ(x) =
∑

j∈X(Θ)

f(xj)φj(x), QΘ[f ] =
∑

j∈X(Θ)

f(xj)wj . (14)

For the non-nested case, we have

f̃Θ(x) =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

φikjk , QΘ[f ] =
∑

(i,j)∈X(Θ)

f(xij)ti

d∏
k=1

wikjk . (15)

Note, that some non-nested rules may share points, e.g., all one dimensional Gauss-Legendre rules with
odd number of points include 0, thus, it is possible to have the same point for different index pairs (i, j).
Tasmanian automatically groups the functions and weights associated with those points and the library uses
only unique points.

2.2 Global Grids: Approximation error

First we consider the polynomial space∗ for which the approximation is exact (i.e., no error). For interpola-
tion Um(l)[p] = p for all p ∈ Pm(l)−1 and for quadrature rules there is a non-decreasing function q : N→ N

∗P l = span{xν : ν ≤ l} and for a lower multi-index set define PΛ = span{xν : ν ≤ i}i∈Λ.
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so that Qm(l)[p] = p for all p ∈ Pq(l). For Gauss rules q(l) = 2m(l) − 1, except Gauss-Patterson where
q(l) = 3

2m(l) − 1
2 . For other rules generally q(l) = m(l) − 1 except for rules with symmetric and odd

number of points (e.g., Clenshaw-Curtis), where q(l) = m(l) since any symmetric rule integrates exactly
all odd power monomials.

For a general sparse grid point-wise approximation

GΘ[p] = p, for all p ∈ PΛm(Θ), where Λm(Θ) =
⋃
i∈Θ

{j : j ≤m(i)− 1}. (16)

And for numerical quadrature

GΘ[p] = p, for all p ∈ PΛq(Θ), where Λq(Θ) =
⋃
i∈Θ

{j : j ≤ q(i)}∗. (17)

Thus, Λm(Θ) and Λq(Θ) define the polynomial spaces associated with GΘ.

Let C0(Γ) be the space of all continuous functions f : Γ→ R imbued with sup (or L∞) norm ‖f‖C0(Γ) =
maxx∈Γ |f(x)|. The point-wise approximation error of a sparse grid is bounded by

‖f −GΘ[f ]‖C0(Γ) ≤
(
1 + ‖GΘ‖C0(Γ)

)
inf

p∈PΛm(Θ)

‖f − p‖C0(Γ), (18)

where ‖GΘ‖C0(Γ) is the operator norm of GΘ (also called the Lebesgue constant)

‖GΘ‖C0(Γ) = sup
g∈C0(Γ)

‖GΘ[g]‖C0(Γ)

‖g‖C0(Γ)
= max

x∈Γ

∑
j∈X(Θ)

|ψj(x)|.

For the nested case ψj(x) are defined in (12) and (14), and for the non-nested case ψij(x) are defined in
(15) with the repeated points grouped together. The error in quadrature approximation is bounded as∣∣∣∣∫

Γ
f(x)ρ(x)dx−GΘ[f ]

∣∣∣∣ ≤
∫

Γ
ρ(x)dx+

∑
j∈X(Θ)

|wj |

 inf
p∈PΛq(Θ)

‖f − p‖C0(Γ), (19)

and for the non-nested case the sum becomes
∑

(i,j)∈X(Θ) |tiwij | where weights corresponding to the same
points are grouped together before taking the absolute value. Note, even if the one dimensional rule inducing
the sparse grid has positive quadrature weights, since ti can be negative, some of wj can be negative.

The classical approach for sparse grids construction is to pre-define Θ according to some formula. Let
ξ,η ∈ Rd be anisotropic weight vectors such that ξk > 0 for all 1 ≤ k ≤ d, and let L indicate the “level”
of the sparse grid approximation (the word “level” here is used loosely as the value of L has meaning only
relative to ξ). The classical anisotropic case takes

Θξ(L) = {i ∈ Nd : ξ · i ≤ L}†, (20)

log-corrected or curved selection[31]

Θξ,η(L) = {i ∈ Nd : ξ · i+ η · log(i+ 1) ≤ L}‡, (21)

∗as withm(i) we take q(i) =
⊗d

k=1 q(ik)
†Here · indicates the standard vector dot product i · j =

∑d
k=1 ikjk.

‡Here log(i) =
⊗d

k=1 log(ik)
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hyperbolic cross section
Θξ(L) = {i ∈ Nd : (i+ 1)ξ ≤ L}. (22)

Alternatively, the multi-index set Θ can be selected as the smallest lower set that results in a Λm(Θ) (or
Λq(Θ)) that includes a desired polynomial space (see [31] for details). Total degree space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ ·m(i− 1) ≤ L}∗, (23)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λm(Θ), ⇒
Θξ,η,m(L) = {i ∈ Nd : ξ ·m(i− 1) + η · log(m(i− 1) + 1) ≤ L}, (24)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λm(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (m(i− 1) + 1)ξ ≤ L}. (25)

Tensor selection types (23), (24) and (25) target corresponding polynomial spaces associated with point-wise
approximation, the corresponding quadrature formulas use q in place of m, i.e., for total degree space

{j ∈ Nd : ξ · j ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : ξ · q(i− 1) + 1 ≤ L}†, (26)

or using a log-correction

{j ∈ Nd : ξ · j + η · log(j + 1) ≤ L} ⊂ Λq(Θ), ⇒
Θξ,η,q(L) = {i ∈ Nd : ξ · (q(i− 1) + 1) + η · log(q(i− 1) + 2) ≤ L}, (27)

or hyperbolic cross section space

{j ∈ Nd : (j + 1)ξ ≤ L} ⊂ Λq(Θ), ⇒ Θξ,m(L) = {i ∈ Nd : (q(i− 1) + 1)ξ ≤ L}. (28)

For example, Θ1,q(L) constructed according to (26) will result in GΘ1,q(L) that integrates exactly all poly-

nomials of total degree up to and including L. Similarly, Θ1,−1
2
,m(L) will result in the dominant polynomial

space defined in Proposition 8 and equation (8) in [5]. For more information about optimal and quasi-optimal
polynomial approximation see [31] and references therein.

2.3 Global Grids: Sequence Grid

A sequence grid is constructed from a one dimensional nested rule with m(l) = l + 1. The theoretical
properties, i.e., (18) and (19), are identical to the global grid, however, the sequence grid uses representation
in terms of Newton (as opposed to Lagrange) polynomials. Let

φ1(x) = 1, for j > 1, φj(x) =

j−1∏
i=1

x− xi
xj − xi

, and for j ∈ Nd, φj(x) =

d∏
k=1

φjk ,

∗Here for notational convenience we assume that m(−1) = 0.
†Here for notational convenience we assume that q(−1) = −1.
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where each φjk is evaluated at the corresponding k-th component of x. Then GΘ[f ] can be written as

G[f ](x) =
∑

j∈X(Θ)

sjφj(x), (29)

where the surplus coefficients sj satisfy the linear system of equation∑
1≤j≤i

sjφj(xi) = f(xi), for every i ∈ X(Θ). (30)

Note that all sparse grids induced by nested one dimensional rules can be written in the Newton form above,
but Tasmanian implements sequence grids only for the case when m(l) = l + 1.

Computing and storing the coefficients sj is more expensive then the weights ti, especially when f(x)
is a vector valued function where each output dimension of f(x) requires a separate set of coefficients.
However, computing the surpluses is a one time cost, followup evaluations of a sequence approximation are
much cheaper since Newton polynomials are easier to construct. Thus, sequence grids are faster when a
large number of evaluations of GΘ[f ] are desired.

2.4 Global Grids: Refinement

Global and sequence grids implemented in Tasmanian support two types of refinement based on surpluses
and anisotropic coefficient decay. Given GΘ[f ] for some index set Θ, the goal of a refinement procedure is
to produce an updated Θ̂ (with Θ ⊂ Θ̂) such thatGΘ̂[f ] is more accurate and the additional indexes included
in Θ̂ are “optimal” with respect to properties of f(x) that are “inferred” from GΘ[f ]. Note that refinement
is supported only for grids induced by nested rules.

The surplus refinement is implemented only for grids induced by rules with m(l) = l + 1 (sequence and
global grids alike). In that case X(Θ) = Θ + 1 and the refinement strategy considers the hierarchical
surpluses (30). The set Θ is then expanded with indexes that are “close” to the indexes associated with large
relative surpluses. Specifically:

Θ̂ = Θ
⋃ ⋃

j∈X(Θ),|sj |>ε·fmax

{
i ∈ Nd :

d∑
k=1

|ik − jk − 1| = 1

} , (31)

where fmax = maxj∈X(Θ) |f(xj)| and ε > 0 is user specified tolerance. In the case when f(x) has multiple
outputs, if using a global grids (i.e., with Lagrange representation) then the user must specify one output to
be used by the refinement criteria. The surpluses and fmax will be computed only for that one output. In
contrast, a sequence grid computes and stores the surpluses for all outputs, thus, refinement can be easily
done with either one output or all outputs simultaneously, in which case we refine for those j ∈ X(Θ) such
that |sj | > ε · fmax for any of the outputs. Here the purpose of the fmax is used to normalize the surpluses
in case a vector valued function has outputs with significantly different scaling.

The second type of refinement is labeled anisotropic, and it is a two stage process. First, GΘ[f ] is expresses
in terms of orthogonal multivariate Legendre polynomials, then anisotropic weights ξ and η are inferred
from the decay rate of the coefficients. The refinement set Θ̂ is constructed according to (23) or (24) so
that GΘ̂ includes a desired minimum number of new points, where the minimum number of new points
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exploits parallelism in computing the values of f(xj). Legendre expansion is computationally expensive,
hence grids induced by rules with growth m(l) = l + 1 use hierarchical surpluses in place of the Legendre
coefficients. As before, when f(x) has multiple outputs, sequence and global grids can focus on a single
output, and sequence grids can considers the largest normalized surplus, i.e., largest |sj |/fmax among all
outputs. For more details on this type of refinement, see [31].

2.5 Global Grids: One dimensional rules

2.5.1 Chebyshev rules

Roots and extrema of Chebyshev polynomials are a common choice of one dimensional interpolation and
integration rules and Tasmanian implements several Chebyshev based rules. The non-nested Chebyshev
points are placed at the roots of the polynomials and the growth is eitherm(l) = l+1 orm(l) = 2l+1. The
Clenshaw-Curtis[9] and Clenshaw-Curtis-zero (latter assumes the f(x) is zero at ∂Γ) use only the nested
Chebyshev points and m(l) grows exponentially. The nested Fejer type 2[12] points use the extrema of the
Chebyshev polynomials and also have exponential m(l).

In addition, the library includes the more recently developedR-Leja points[7]. Define {θj}∞j=1 as

θ1 = 0, θ2 = π, θ3 =
π

2
, for j > 3, θj =

{
θj−1 + π, j is odd
1
2θ j

2
+1, j is even (32)

then the R-Leja points are given by xj = cos(θj) and the centered R-Leja points start at x1 = 0, x2 = 1,
x3 = −1, and xj = cos(θj) for j > 3. The growth of theR-Leja rule is m(l) = l + 1 and the centered rule
allows for multiple definitions, namely odd rules m(l) = 2l + 1, theR-Leja double-2 growth defined by

m(0) = 1, m(1) = 3, for l > 1, m(l) = 2b
l
2
c+1

(
1 +

l

2
−
⌊ l

2

⌋)
+ 1, (33)

and theR-Leja double-4 rule defined by

m(l) = 1, m(l) = 3, for l > 1, m(l) = 2b
l−2
4
c+2

(
1 +

l − 2

4
−
⌊ l − 2

4

⌋)
+ 1, (34)

where bxc = max{z ∈ Z : z ≤ x} is the floor function, see [31] for more details.

Tasmanian also includes a shiftedR-Leja sequence defined by

x1 = −1

2
, x2 =

1

2
, for j > 2, xj =

{ √
1+x(j+1)/2

2 , j is odd
−xj−1, j is even

(35)

which comes with growth m(l) = l + 1 or m(l) = 2(l + 1). Table 1, summarizes all Chebyshev rules.

2.5.2 Gauss rules

The roots of orthogonal polynomials are a common choice for points for numerical integration due to the
high level of precision. Orthogonality is defined with respect to a specific integration weight that often
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Points m(l) q(l) Note:
Chebyshev:

m(l) = l + 1 q(l) = l − 1 + (l mod 2)
very low

Non-nested Chebyshev roots Lebesgue constant
Clenshaw-Curtis:

m(0) = 1, m(l) = 2l + 1 q(l) = m(l)
very low

Nested Chebyshev roots Lebesgue constant
Clenshaw-Curtis-Zero:

m(l) = 2l+1 − 1 q(l) = 2l
assumes

Nested Chebyshev roots f(x) = 0 at ∂Γ

Fejer type 2:
m(l) = 2l+1 − 1 q(l) = 2l no points at ∂ΓNested Chebyshev extrema

R-Leja:
m(l) = l + 1 q(l) = l − 1 + (l mod 2) see [7, 31]See (32)

R-Leja odd:
m(l) = 2l + 1 q(l) = m(l) see [7, 31]CenteredR-Leja

R-Leja double 2: see (33) q(l) = m(l) see [7, 31]CenteredR-Leja
R-Leja double 4: see (34) q(l) = m(l) see [7, 31]CenteredR-Leja
R-Leja shifted:

m(l) = l + 1 q(l) = m(l)− 1 see [8]See (35)
R-Leja shifted even:

m(l) = 2(l + 1) q(l) = 2l + 1 see [8]See (35)

Table 1. Summary of the available Chebyshev rules.

times requires additional parameters α and/or β. The Gauss rules also include the Hermite and Laguerre
polynomials that assume unbounded domain. Gauss rules are usually non-nested, have growthm(l) = l+1,
and precision q(l) = 2l + 1. Odd versions of the rules use growth m(l) = 2l + 1 and q(l) = 4l + 1, and
when coupled with qpcurved or qptotal tensor selection the odd versions of the Gauss rules usually result in
sparse grids with fewer points.

Gauss-Patterson[26] points are a notable exception in most ways. The Patterson construction uses the Leg-
endre orthogonal polynomials and imposes the additional requirement that the points are nested, which
leads to a rule with growth m(l) = 2l+1 − 1 and precision q(l) = 3

2m(l) − 1
2 = 3 · 2l − 2. Note that the

construction of the Gauss-Patterson points and weights is a computationally expensive and ill-conditioned
problem, Tasmanian does not include code that computes the point and weight, instead the first 9 levels are
hard-coded into the library. The 9 levels should give sufficient precision for most applications, while the
custom rule capabilities of the library can be used to extend beyond that limit, assuming the user provides
Gauss-Patterson points and weights for higher levels. Summary of all Gauss rules is listed in Table 2.

2.5.3 Greedy rules

Tasmanian implements a number of rules using sequences of points that are based on greedy optimization.
The most well known rule uses the Leja points[10], where

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∏
i=1

∣∣x− xi∣∣. (36)
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Name Generalized NotesIntegral

Gauss-Patterson:
∫ b
a
f(x)dx

The only nested rule
Canonical: a = −1, b = 1

Gauss-Legendre:
∫ b
a
f(x)dx

Highest 1-D exactness
Canonical: a = −1, b = 1

Gauss-Chebyshev type 1:
∫ b
a
f(x)(b− x)−0.5(x− a)−0.5dx Canonical: a = −1, b = 1

Gauss-Chebyshev type 2:
∫ b
a
f(x)(b− x)0.5(x− a)0.5dx Canonical: a = −1, b = 1

Gauss-Gegenbauer:
∫ b
a
f(x)(b− x)α(x− a)αdx

Must specify α
Canonical: a = −1, b = 1

Gauss-Jacobi:
∫ b
a
f(x)(b− x)α(x− a)βdx

Must specify α, β
Canonical: a = −1, b = 1

Gauss-Laguerre:
∫∞
a
f(x)(x− a)αe−b(x−a)dx

Must specify α
Canonical: a = 0, b = 1

Gauss-Hermite:
∫∞
−∞ f(x)(x− a)αe−b(x−a)

2

dx
Must specify α

Canonical: a = 0, b = 1

Table 2. Summary of the available Gauss rules.

Similar construction can be done using the extrema of the Lebesgue function

x1 = 0, for j > 1 xj+1 = argmax
x∈[−1,1]

j∑
j′=1

j∏
i=1,i 6=j′

∣∣∣ x− xi
xj′ − xi

∣∣∣. (37)

We can greedily minimize the norm of Um(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

j∏
i=1

∣∣∣y − xi
x− xi

∣∣∣+

j∑
j′=1

∣∣∣ y − x
xj′ − x

∣∣∣ j∏
i=1,i 6=j′

∣∣∣ y − xi
xj′ − xi

∣∣∣ (38)

or minimizing the norm of the surplus operator ∆m(j+1), where x1 = 0 and for j > 1

xj+1 = argmin
x∈[−1,1]

max
y∈[−1,1]

1 +

j∑
i=1

j∏
j′=1,j′ 6=i

∣∣∣ x− xj′
xi − xj′

∣∣∣
 j∏

j′=1

∣∣∣y − xj′
x− xj′

∣∣∣. (39)

In all cases the growth can be set to m(l) = l+ 1 or m(l) = 2l+ 1. However, unlike theR-Leja points, the
odd rules here do not result in symmetric distribution of the points, hence q(l) = m(l)− 1 (and q(0) = 1).
For a numerical survey of the properties of interpolants constructed from the above sequences, see [31].
Note that quadrature rules using the above sequences can potentially result in zero weights (i.e., wj = 0 for
some j), Tasmanian does NOT automatically check if the weights are zero. The greedy rules are intended
for interpolation purposes and are not the best rules to use for numerical integration. A list of the greedy
rules is given in Table 3.
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Name Points m(l)

Leja:
See (36)

m(l) = l + 1
Leja odd: m(l) = 2l + 1

Max-Lebesgue:
See (37)

m(l) = l + 1
Max-Lebesgue odd: m(l) = 2l + 1

Min-Lebesgue:
See (38)

m(l) = l + 1
Min-Lebesgue odd: m(l) = 2l + 1

Min-Delta:
See (39)

m(l) = l + 1
Min-Delta odd: m(l) = 2l + 1

Table 3. Summary of the available greedy sequence rules.

2.6 Fourier Grids

For cases where the interpolant of f(x) must be periodic in derivatives as well as function values, Tasmanian
implements sparse interpolation with a Fourier basis, for more details see [17, 20, 28]. The one-dimensional
(nested) rule assumes a canonical domain of [0, 1] with the nodes

x1 = 0, xj =

⌊
3
2

(
j − 1− 3blog3(j−1)c)⌋

3blog3(j−1)+1c , for j > 1.

Note that each level contains 3l nodes, which allows us to preserve the nested structure, have levels with
complete exponent (see below) and use radix-3 Fast-Fourier-Transform (FFT) algorithm. We define the
exponential functions

φj(x) = exp
(
2πIx(−1)j+1bj/2c

)
,

where I is the unit complex number, i.e., I2 = −1. The interpolant is real values, which means that the
effective basis functions at level l are{

cos(2πωx), sin(2πωx) : ω ∈ Z, |ω| ≤ 3l − 1

2

}
,

and the coefficients of the basis functions are computed using FFT.

Let f : [0, 1]→ R and consider the 1-D Fourier interpolant at level l, i.e., the interpolant U3l [f ](x) matching
f(x) at nodes xs for s ≤ 3l. The interpolant is given by

U3l [f ](x) =
3l∑
j=1

<
(
f̂jφj(x)

)
where < indicates the real part of a number and f̂j is a special reordering of the discrete Fourier coefficients
of reordered sequence f(xj) (i.e., the index has to be reordered twice). First, we define fi = f(xs) such
that for i = 1, 2, · · · , 3l the corresponding xs values are in ascending order, i.e., we fi are the function
values reordered in domain space according to xs. Second, we take the discrete Fourier transform (using
FFT algorithm) and obtain Fourier coefficients f̂i. Finally, the Fourier coefficients are reordered again to
match the basis, i.e.,

f̂j = f̂i, where i =

{
bj/2c, (−1)j < 0,
3l − bj/2c, (−1)j > 0.
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Internally, Tasmanian implements the re-indexing inline with negligible overhead, but it is noteworthy that
there is no strong connection between the coefficient associated with φj(x) and the spacial node xj , i.e.,
unlike other types of grids, the coefficient cannot be interpreted as hierarchical surplus.

Extending the one dimensional interpolant to multidimensional context is done analogously to the sparse
grids construction with Global rules. We define

xj =
d⊗

k=1

xjk , φj(x) =
d∏

k=1

φjk , U i =
d⊗

k=1

U3ik ,

and a sparse interpolant
GΘ[f ](x) =

∑
i∈Θ

tiU i[f ](x),

where Θ is some lower set and the weights ti are the same as in (11).

At this point, the construction of a Fourier grid uses the same Θ as in the Global case using the same
nomenclature as if the indexes correspond to a polynomial space. Rigorous study of the proper optimal
power selection is underway, which will also allow for a proper refinement strategy.

2.7 Local Polynomial Grids: Hierarchical interpolation rule

Local polynomial grids are constructed from equidistant points and use functions with support restricted to
a neighborhood of each point. The local support of the functions allow the employment of locally adaptive
strategies and thus local grids are suitable for approximating functions with sharp behavior, e.g., large fluc-
tuation of the gradient. Similar to the global grids, local grids are constructed from tensors of points and
functions in one dimension. In contrast to global grids, local grids use functions with local support and very
strict hierarchy. For in depth analysis of the properties of the local grids see [16, 23, 22, 29].

Let {xj}∞j=0 ∈ [−1, 1] be a sequence of nodes (w.l.o.g., we assume that we are working on the canonical
domain [−1, 1]) and let {∆xj}∞j=0 indicate the “resolution” of our approximation at point xj , i.e., the support
of the associated function. In addition, we have the hierarchy defined by the parents and children sets

Pj = {i ∈ N : xi is a parent of xj},
Oj = {i ∈ N : xi is a child (offspring) of xj},

where Pj can have more than one element. For a particular example of such hierarchies, see Section 2.9.
We assume that Pj and Oj define a partial order of the points and let h : N → N map each point to a place
in the hierarchy also called level, i.e.,

h(j) =

{
0, Pj = ∅
h(i) + 1, for any i ∈ Pj

We define the ancestry set Aj

Aj = {i ∈ N : h(i) ≤ h(j) and (xi −∆xi, xi + ∆xi) ∩ (xj −∆xj , xj + ∆xj) 6= ∅}

In order to construct the basis functions, for each xj we consider the set of p nearest ancestors

F
(p)
j = argmin

F⊂Aj ,#F=p

∑
i∈F
|xi − xj |,
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where #F indicates the number of elements of F . Note that F (p)
j is defined only for p ≤ #Aj .

The functions associated with a hierarchy can have various polynomial order p ≥ 0. For constant functions

φ
(0)
j (x) =

{
1, x ∈ (xj −∆xj , xj + ∆xj)
0, x 6∈ (xj −∆xj , xj + ∆xj)

For linear functions

φ
(1)
j (x) =

{
1− |x−xj |∆xj

x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

and functions of arbitrary order p > 1

φ
(p)
j (x) =

{ ∏
i∈F (p)

j

x−xi
xj−xi , x ∈ (xj −∆xj , xj + ∆xj)

0, x 6∈ (xj −∆xj , xj + ∆xj)

Note that a function can have order p only if the corresponding F
(p)
j exists, i.e., h(j) is large enough.

Tasmanian constructs local polynomial grids by automatically using the largest p available for each φ(p)
j (x),

optionally the library can be restricted p to a maximum user defined value. In the rest of this discussion, we
would omit p.

We extend the one dimensional hierarchy to a d-dimensional context using multi-index notation∗

xj =

d⊗
k=1

xjk , φj(x) =
∏

φjk , supp{φj(x)} =

d⊗
k=1

(xjk −∆xjk , xjk + ∆xjk),

where each
∏
φjk is evaluated at the corresponding k-th entry of x and supp{φj(x)} indicate the support

of φj(x). Parents and children are associated with different directions

P
(k)
j = {i ∈ Nd : i =

k
j† and ik ∈ Pjk} O

(k)
j = {i ∈ Nd : i =

k
j and ik ∈ Ojk}

and the level of a multi-index is h(j) =
∑d

k=1 h(jk). The multidimensional ancestry set is

Aj =
{
i ∈ Nd : h(i) ≤ h(j) and supp{φi(x)}

⋂
supp{φj(x)} 6= ∅

}
For f : Γ→ R, a multi-dimensional interpolant of f(x) is defined by a set of points X so that

GX [f ] =
∑
j∈X

sjφj(x),

where the surplus coefficients sj are chosen such that GX [f ](xi) = f(xi) for all i ∈ X , specifically, by
definition of φj(x)

sj = f(xj)−
∑
i∈Aj

siφi(xj). (40)

In the case when f(x) is a vector valued function, a separate set of surplus coefficients is computed for each
output. When Tasmanian first creates a local polynomial grid, the set of points is chosen so that

X = {j ∈ Nd : h(j) ≤ L}, (41)

for some use specified L.
∗Similar to the global grids, N indicates the set of non-negative integers, and W,F,A, P,O,B,X ⊂ Nd denote sets of multi-

indexes.
†Here by i =

k
j we mean that i and j have the same components in all but the k-th direction
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2.8 Local Polynomial Grids: Adaptive refinement

Locally adaptive grids are best utilized with an appropriate refinement strategy. Suppose we have con-
structed GX [f ] for some X and consider an updated X̂ so that new points are added only in the region of
Γ where GX [f ] sharply deviates from f(x). The surpluses sj are a good local error indicator, and thus we
define X̂ that contains only indexes that are parents or children of indexes j associated with large sj .

First, we define the set of large surpluses

B =

{
j ∈ X :

|sj |
fmax

> ε

}
,

where ε > 0 is desired tolerance and fmax = maxi∈X |f(xi)|. When f(x) is a vector valued function, an
index j is included in B if any of the outputs has normalized surpluses larger than ε. Tasmanian implements
4 different refinement strategies, where X̂ is selected by including parents and/or children of j ∈ B in
different directions. This is done based on consideration of “orphan” directions and directional surpluses.

For each index in j, we define the “orphan” directions

Tj =
{
k ∈ {1, 2, . . . , d} : P

(k)
j 6⊂ X

}
,

thus, Tj contains the directions where we have missing parents. We also consider directional surpluses, let

W
(k)
j =

{
i ∈ X : i =

k
j

}
, G

W
(k)
j

[f ] =
∑
i∈W (k)

j

c
(k)
i φi(x),

where we have a set of the one directional surpluses c(k)
i associated with each index j, however, we focus

our attention only to c(k)
j . The set of large one directional surpluses is

Cj =

k ∈ {1, 2, . . . , d} :

∣∣∣c(k)
j

∣∣∣
fmax

> ε

 .

The classical refinement strategy constructs X̂ by adding the children of j ∈ B, i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈{1,2,...,d}

O
(k)
j

 . (42)

However, the classical strategy can lead to instability around orphan points, hence, the parents-first approach
adds parents before the children

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Tj

P
(k)
j

⋃ ⋃
k 6∈Tj

O
(k)
j

 . (43)
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Large surplus signifies large local error, however, refinement doesn’t have to be done in all directions, thus,
the directional refinement uses k ∈ Cj , i.e.,

X̂ = X
⋃⋃

j∈B

⋃
k∈Cj

O
(k)
j

 . (44)

Combining the parents-first and directional approach leads to the family-direction-selective (FDS) method

X̂ = X
⋃⋃

j∈B

 ⋃
k∈Cj∩Tj

P
(k)
j

⋃ ⋃
k∈Cj\Tj

O
(k)
j

 . (45)

For more details about the four refinement strategies see [29].

2.9 Local Polynomial Grids: One dimensional rules

Tasmanian implements three specific one dimensional hierarchical rules: standard rule with ∆xj decreasing
by 2 at each level, a semi-local rule where global basis is used for levels 0 and 1, and a modified rule that
assumes f(x) = 0 at ∂Γ.

The standard local rule is given by

x0 = 0, x1 = −1, x2 = 1, for j > 2 xj = (2j − 1)× 2−blog2(j−1)c − 3, (46)

where bxc = max{z ∈ Z : z ≤ x} is the floor function. The parent sets are

P0 = ∅, P1 = {0}, P2 = {0}, P3 = {1}, for j > 3 Pj =

{⌊
j + 1

2

⌋}
,

and the offspring sets are

O0 = {1, 2}, O1 = {3}, O2 = {4}, for j > 2 Oj = {2j − 1, 2j} .

The level function is

h(j) =


0, j = 0,
1, j = 1,
blog2(j − 1)c+ 1, j > 1,

and the resolution ∆xj is given by ∆x0 = 1 and for j > 0 we have ∆xj = 2−h(j)+1. Figure 1 shows the
first four levels of the linear, quadratic, and cubic functions.

A modification to the standard rule uses the same points, however, functions at level l = 1 with degree
higher than linear will have global support, i.e., if p > 1 then ∆x1 = ∆x2 = 2. In addition, for the purpose
of parents refinement (43) and (45) we use P3 = P4 = {1, 2}. The modified rule sacrifices resolution and
gains higher polynomial order, thus, the semi-local approach is better suited for functions with “smoother”
behavior. Figure 2 shows the linear, quadratic, and cubic semi-local functions. Note: there is no difference
between the linear versions of the local and semi-local rules.
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X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X3 X4 X3 X4

X5 X6 X7 X8 X5 X6 X7 X8 X5 X6 X7 X8

Figure 1. Local polynomial points (rule localp) and functions, left to right: linear, quadratic, and
cubic functions.
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X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X3 X4 X3 X4

X5 X6 X7 X8 X5 X6 X7 X8 X5 X6 X7 X8

Figure 2. Semi-local polynomial points (rule semilocalp) and functions, left to right: linear, quadratic,
and cubic functions.
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X0 X0 X0

X1 X2 X1 X2 X1 X2

X3 X4 X5 X6 X3 X4 X5 X6 X3 X4 X5 X6

Figure 3. Semi-local polynomial points (rule localp0) and functions, left to right: linear, quadratic,
and cubic functions.

An alternative local rule does not put points on the boundary and implicitly assumes that f(x) = 0 at ∂Γ.
The hierarchy is defined as

x0 = 0, for j > 0 xj = (2j + 3)× 2−blog2(j+1)c − 3, (47)

The parent sets are

P0 = ∅, for j > 0 Pj =

{⌊
j − 1

2

⌋}
,

and the offspring sets are Oj = {2j + 1, 2j + 2}. The level function is h(j) = blog2(j + 1)c and the
resolution ∆xj is given by ∆x0 = 2−h(j). Figure 3 shows the first three levels of the linear, quadratic, and
cubic functions.

A rule with piece-wise constant (and discontinuous) basis is also provided within Tasmanian. Figure 4
shows the first four levels and the associated parents-offspring relations, see [30] for details.
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X0

X1 X2

X3 X4 X5 X6 X7 X8

X9 X10X11 X12X13 X14X15 X16X17 X18X19 X20X21 X22X23 X24X25 X26

Figure 4. Semi-local polynomial points (rule localp) rule with order 0.

2.10 Wavelets

Tasmanian, in addition to the local polynomial rules, also implements wavelet rules with order 1 and 3. The
hierarchy followed by the wavelets as well as the refinement strategies are very similar to the local grids.
The differences are as follows:

• The zeroth levels of wavelet rules of order 1 and 3, have 3 and 5 points respectively. This is a sharp
contrast to the single point of of the polynomial rules, since level 0 wavelet grid has 3d (or 5d) points
in d-dimensions (as opposed to a single point). See Figure 5.

• Wavelet rules have larger Lebesgue constant, which is due to the large magnitude of the boundary
wavelet functions. This can lead to instability of the wavelet interpolant around the boundary of the
domain.

• The linear system of equations associated with the wavelet surpluses is not triangular, hence a sparse
matrix has to be inverted every time values are loaded into the interpolant. This leads to a signifi-
cantly higher computational cost in manipulating the wavelet grids, especially in loading values and
performing direction selective refinement.

• Wavelets form a Riesz basis, which over-simplistically means that the wavelet surpluses are much
sharper indicators of the local error and hence wavelet based refinement strategy “could” generate a
grid that is more accurate and has fewer points. The quotations around the word “could” relate to the
point about the Lebesgue constant.

• For more details about wavelets, see [16, 19, 32].
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Figure 5. The first three levels for wavelets of order 1 (left) and 3 (right). The functions associated
with x13, x14, x15, and x16 are purposely omitted to reduce the clutter on the plot, since the funcitons
are mirror images of the those associated with x12, x11, x10, and x9 respectively.
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2.11 Domain Transformation

Sparse grids are build on canonical 1D domain [−1, 1], with the exception of Gauss-Laguerre and Gauss-
Hermite rules that use [0,∞) and (−∞,∞) respectively. Linear transformation can be applied to translate
[−1, 1] to an arbitrary interval [a, b], for unbounded domain we can apply shift a and scaling b. This simple
linear transformation will not affect the properties of the grid, i.e., function space spanned by the basis or
the Lebesgue constant. Thus, the a and b parameters are used to simplify implementation and generate a
grid on a domain consistent with the range of the input of an arbitrary function f(x). However, non-linear
transformation can also be used with the goal of accelerating convergence.

2.11.1 Conformal Map

For simplicity, assume that f(x) is a one dimensional function defined on [−1, 1]. Then a conformal map is
any monotonic strictly increasing g(x) such that

g : [−1, 1]→ [−1, 1], g(−1) = −1, and g(1) = 1,

Then, instead of constructing a sparse grids rule that integrates or interpolates f(x), we construct a rule for
f(g(x)), with the hope that the composed function will be easier to approximate, e.g., have larger region of
analyticity[21, 2].

In case of a quadrature rule, we note that∫
f(x)dx =

∫
f(g(x))g′(x)dx,

thus if we have a quadrature rule
∫
f(g(x))dx ≈

∑
i∈X(θ) ωif(g(xi)), then∫

f(x)dx ≈
∑
i∈X(θ)

ωig
′(xi)f(g(xi)) =

∑
i∈X(θ)

ω̂if(x̂i).

The transformed quadrature nodes are x̂i = g(xi) and the corresponding quadrature weights are ω̂i =
ωig
′(xi). Similarly, if Gθ[f ◦ g](x) ≈ f(g(x)), then

f(x) = f(g(g−1(x))) ≈ Gθ[f ◦ g](g−1(x)),

and the sparse grids nodes associated with f(x) are again x̂i = g(xi). Note, in the interpolation case
the function basis used to approximate f(x) is a composition between the standard basis (polynomials or
wavelets) and g−1(x).

Appropriate choice of g(x) can significantly accelerate convergence, but a wrong choice can severely dete-
riorate accuracy. As an experimental feature, Tasmanian allows for non-linear transformation of the integra-
tion/interpolation domain with g(x) based on the truncated Maclaurin series of arcsin(x). Different degree
of truncation can be chosen in each direction and conformal mapping can be composed with standard linear
a-b transformation to obtain optimal rule over any arbitrary domain. Note: this feature will not work with
unbounded rules, such as Gauss-Laguerre and Gauss-Hermite.
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2.12 Alternative coefficient construction

The sparse grids approximation can be generalized as

GΘ[f ](x) =
n∑
i=j

cjφj(x),

where cj is a set of scalar or vector coefficients depending whether f(x) has scalar or vector output, and
φj is a set basis functions. The approximation is related to the best fit of f(x) in the span of φj(x) with a
penalty constant (e.g., Lebesgue constant). Here, for simplicity, we suppress the multi-index notation and
assume linear ordering of the nodes and basis functions. In the standard SG algorithms, the n coefficients cj
are derived from n samples of f(xj) collected at specially chosen nodes xj . The choice of xj is performed
in a way that minimizes the penalty, but it also leads to a significant drawback, i.e., the target function f(x)
must be evaluated at exactly the selected set of nodes. In some applications, this is either impractical or even
infeasible, e.g., the domain of f(x) is not a hypercube but rather a blob of some shape contained within a
hypercube. In order to utilize the flexible function spaces associated with sparse grids and in order to take
advantage of the advanced adaptive approximation algorithms, a different approach is needed to construct
cj from an arbitrary set of realizations of f(x).

Let {f(si)}mi=1 indicate m samples of f(x) for an arbitrary set of sample points si, where for simplicity we
assume that f(x) is scalar valued. Define the basis matrix A and data vector f

A = {ai,j} ∈ Rm×n, where ai,j = φj(si), f = {fi}, where fi = f(si).

Similarly, we can arrange the coefficients cj in a vector c, and we seek c such that

Ac = f . (48)

In the case of standard sparse grids construction with a nested rule, (48) has exact solution, i.e., either c = f
for global grids or c are the hierarchical coefficients of the sequence or local grids. In the case of non-nested
grids, the coefficients c have a more complex nature and (48) is not satisfied for all rows, but the “solution”
c is found according to the direct sum of tensors formula. In the general case, when the samples come from
an arbitrary set, an exact solution cannot be found and since m 6= n the system of equations is either under
or over determined.

25



3 Random Sampling

3.1 DREAM: General algorithm

Let Γ ⊂ Rd and ρ : Γ→ R+ be a non-negative function with∫
Γ
ρ(x)dx <∞,

then scaling ρ(x) gives us a probability density function and the goal of the random sampling algorithm is
to generate points {xi} with the said distributions.

Standard Metropolis-Hastings algorithm creates a chain of samples, by iteratively proposing a new sample
followed by an accept/reject test. In short, given xi, we obtain a random perturbation gi (with distribution
symmetric around 0) and we set

xi+1 =

{
xi + gi,

ρ(xi+gi)
ρ(xi)

≥ ui,
xi othwerwise,

where ui is a random sample from uniform distribution over [0, 1]. Regardless of the initial x0, in the limit
as i → ∞, the distribution of xi matches the one defined by the pdf ρ(x). In practice, a finite set of xi are
computed and an initial batch of samples is discarded (a process called the burn-up).

The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm simultaneously evolves a number of
chains and the probability distribution for the correction is informed by all samples in the chain. Specifically,
the chain state is

{x1,i, x2,i, . . . , xC,i},

where C is the total number of chains. Each chain is updated according to the accept/reject criteria

xc,i+1 =

{
xc,i + gc,i,

ρ(xi+gc,i)
ρ(xi)

≥ ui,
xc,i othwerwise.

(49)

The updates are chosen as
gc,i = γ(xc1,i − xc2,i) + rc,i, (50)

where c1 and c2 are random integers in the range [1, C], γ is a jump scale constant (usually in [0, 1]), and
rc,i is a small correction sampled from a distribution that is symmetric around 0.

Compared to the standard Metropolis-Hastings method, the DREAM algorithm has several practical advan-
tages

• Using a large number of chains allows better initial coverage of Γ, which limits the dependence on
the initial guess.

• The proposal is constantly updated based on the current chain state, which accelerates convergence.

• In the single chain algorithm, once the state reaches a high-probability regions, it is very unlikely that
the chain would jump out of that region and reach a second one. Thus, Metropolis-Hastings struggles
when dealing with multi-modal distributions. In contrast, when DREAM uses a sufficiently large
number of chains some chains will reach every high probability region.
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Distribution Domain Density Defining parameters

Uniform [a, b] 1
b−a a, b

Gaussian (−∞,∞) 1√
2πσ

exp
(
− 1

2σ (x− µ)2
)

σ, µ

Truncated Gaussian [a, b] exp(− 1
2σ

(x−µ)2)
C̃

σ, µ, a, b

Exponential [a,∞) λ exp (−λ(x− a)) λ, a

Beta [a, b] Γ(α+β)
Γ(α)Γ(β)

(x−a)α−1(b−x)β−1

(b−a)α+β−2 a, b, α, β

Gamma [a,∞) βα

Γ(α)x
α−1 exp (−β(x− a)) a, α, β

Table 4. Probability distributions included in Tasmanian. The normalization constant for the Trun-
cated Gaussian distribution is C̃ =

(√
2πσ −

∫
(−∞,a)∪(b,∞) exp

(
− 1

2σ (ξ − µ)2
)
dξ
)

, and Γ(α) us the
gamma funciton.

• Metropolis-Hastings can handle multiple modes if the high probability region of the update distribu-
tion is sufficiently large; however, this is seldom practical as wide spread of the updates leads to very
low acceptance rate, which in turn leads to poor mixing.∗ DREAM largely circumvents this limitation
and can handle multiple modes without sacrificing acceptance rate.

• Evolving multiple chains simultaneously allows the use of batched evaluations of ρ(x), which can be
performed much more efficiently than sequential evaluations.

Note that setting γ = 0 reduces the DREAM algorithm to multiple independent chains of standard Metropolis-
Hastings.

3.2 Supported probability distributions

Tasmanian includes 6 probability distributions that can be used as priors in a context of Bayesian inference
(e.g., see 1.2). The pdfs and the associated parameters are listed in Table 4. In addition, Tasmanian imple-
ments Gaussian likelihood of form (5), where the covariance could be diagonal with constant or non-constant
diagonal entries, or a general dense matrix.

∗Mixing is a numerical phenomena where multiple iterates of the same chain have identical values, which is not desirable when
the chains are used for statistical analysis.
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Feature Tested Recommended
gcc 5, 6, 7, 8 any
clang 4.0, 5.0, 6.0 4.0 or 5.0
intel 18.0 18.0
cmake 3.5.1, 3.6.3, 3.7.2, 3.8.2, 3.9.6, 3.10.2, 3.11.4, 3.12 3.10.2
python 2.7, 3.5, 3.6 3.5 or 3.6
OpenBlas 0.2.18, 0.2.20 0.2.18 or 0.2.20
CUDA 7.5, 9.0, 9.1, 9.2 9.1 or 9.2
libiomp 5.0 5.0
MAGMA 2.3, 2.4 2.4

Table 5. Tested and recommended features.

4 Installation

The recommended way to install Tasmanian is to use cmake, which is supported for Linux, MacOSX and
MS Windows. Under UNIX platforms (e.g., Linux and MacOSX), Tasmanian also comes with a convenient
install script that wraps around cmake. If only basic Tasmanian install is desired, then simple GNU
make script is also available, but note that acceleration features such as BLAS and CUDA are not supported
through simple make. For more details regarding MS Windows install see §4.8.

Note: the install tree structure has changed in version 6.0. The content of bin, lib and include remain
the same, but all Python and MATLAB files, environment setup scripts, and log files are now installed in
share/Tasmanian. Thus, it is possible (albeit not recommended) to install Tasmanian directly into /usr
or /usr/local.

4.1 Required and supported software

At the bare minimum, Tasmanian requires a C/C++ compiler (e.g., gcc or clang) and either cmake or GNU
Make engines. Additionally, we recommend Python with NumPy and CTypes package, BAsic Linear Al-
gebra Subroutine (BLAS) implementation, and OpenMP implementation (libgomp is included with gcc and
libiomp can be installed and used with clang). Optionally, Tasmanian provided acceleration using Nvidia
CUDA libraries with custom kernels, as well as basic python matplotlib support. The gfortran and ifort
compilers are also supported for the Fortran module. Still in experimental phase are the MPI capabilities of
the DREAM module. See Table 5 for a list of supported compilers and interpreters.

4.2 Quick Build: install with cmake backend

Unzip or untar the archive which will create the TASMANIAN-X.Y folder, i.e., the root folder of all source
code. From a terminal, run the included install script:

Executing the script manually:

cd TASMANIAN-6.0 (assuming TASMANIAN-6.0 is the folder with source code)
./install <install-path> <matlab-work-folder> <options>
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If the install root folder is omitted, i.e., the script is called with no parameters, then the installer will ask for
the installation and MATLAB work folders.

• The script must be executed from the Tasmanian source folder.

• Using absolute paths for the install and MATLAB paths is strongly recommended.

• If the MATLAB work folder is not provided, the MATLAB interface is disabled, for more details on
the MATLAB interface see §8.

• The script will create the Build sub-folder, invoke cmake, and call the make, make test, make
install and make test install commands.

• A summary of all options is stored in <install-path>/share/Tasmanian/Tasmanian.log.

• The install script supports additional options, use the “-help” switch or see §4.2.1.

The install script will attempt to build the library with OpenMP, BLAS and Python support, in addition
CUDA, Fortran, MAGMA and MPI capabilities can be enabled with the appropriate options (see below).
Both static and shared libraries will be created and the -O3 optimization flag will be used. Tasmanian
supports both Python 2 and 3, and cmake will attempt to detect installed versions automatically (usually
defaults to Python 2), to manually specify python interpreter use the -python=<interpreter>. If cmake
fails to find any of the libraries needed by OpenMP, BLAS, or Python, the corresponding option will be
automatically disabled. At the end of the configure stage, cmake writes out a list of the options.

4.2.1 Additional install options

A list of options will be displayed by

./install -help

Options are included to enable/disable OpenMP, BLAS, CUDA, MAGMA, Python, shared and static li-
braries. Note that Python requires shared libraries. In addition:

• -notest disables the included automatic test, which may be useful if the tests fail for a reason other
than a problem with the build, e.g., non-standard implementation of Python;

• -debug enables the debug build flag, as opposed to the default Release;

• -verbose forces a large amount of output;

• -make-j passes the -j options to make to enable parallel compilation;

• -noinstall do not call make install or the post install test;

• -nobashrc skips the .bashrc setup at the end.

More fine grained control can be gained by invoking a more advanced cmake command, see §4.5 for details.

29



4.3 Installation folder structure

<install-path>/bin/ (tagrid and tasdream executables)
<install-path>/lib/ (shared and static libraries)
<install-path>/lib/Tasmanian/ (cmake package-config files)
<install-path>/lib/pythonX.Y/ (python module)
<install-path>/include/ (headers .h and hpp, and Fortran .mod)
<install-path>/share/Tasmanian (bash env scripts, install log, table)
<install-path>/share/Tasmanian/examples/ (reference examples)
<install-path>/share/Tasmanian/matlab/ (matlab scripts)
<install-path>/share/Tasmanian/python/ (sym-link to <install-path>/lib/pythonX.Y)

Additional notes:

• The Python module is version independent, i.e., the same file works with all tested versions, hence the
version independent sym-link share/Tasmanian/python which allows to use the Python interface
regardless of which version of Python was used during install.

• The default location of the MATLAB scripts has changed since version 5.1.

• Under MS Windows the shared library (e.g., the .dll files) are installed in bin.

4.4 Quick Build: make

cd TASMANIAN-6.0 (assuming TASMANIAN-6.0 is the folder with source code)
make
make test
make matlab (optional: sets work folder Tasmanian/tsgMatlabWorkFolder/)
make python3 (optional: sets #!/usr/bin/env python3)
make fortran (optional: compile libtasmanianfortran.a/so)
make examples
./example_sparse_grids
./example_sparse_grids.py (optional: if python is enabled)
./fortester
./example_dream
make clean (optional: restart the build process)

Additional notes:

• Unzip/untar the archive from github will create folder TASMANIAN-X.Y where X.Y is the version
number. Folder name is not important, it can be renames for convenience.

• The make command will install the libraries, executables, and Python module in TASMANIAN-6.0,
and the headers in TASMANIAN-6.0/include.

• OpenMP is enabled by default under Linux, BLAS, CUDA and MPI could be enabled by editing
Config/Makefile.in, but this is neither tested nor recommended. The correct way to enable BLAS,
CUDA, and MPI is to use cmake or the install script.

• OpenMP is disabled by default under MacOSX, it can be enabled by editing Config/Makefile.in
or using cmake.
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• If Python is missing, then make test will fail. The manual C++ tests can be run with commands
./gridtest and ./tasdream -test.

• The MATLAB interface is set in TASMANIAN-6.0/InterfaceMATLAB, the MATLAB work folder will be
set to TASMANIAN-6.0/tsgMatlabWorkFolder/, another folder can be used by manually editing
the tsgGetPaths.m script, see §8.

• Fortran is currently tested with gfortran only, the .mod file will be installed alongside the headers.

• Multi-threaded build is supported, make -j is the command used in all Tasmanian testing.

4.5 Advanced build options: cmake

In this section, we present a list of all cmake compile options that allow selecting of individual features and
specifying third-party libraries. Note that we strongly recommend using out-of-source build as in-source
call to cmake will interfere with the basic make engine and potentially fail. The default build command is
given below, i.e., the primary user options and the corresponding default values:

cmake \
-D CMAKE_BUILD_TYPE:STRING=Debug \
-D CMAKE_INSTALL_PREFIX:PATH=<install-prefix-with-full-path> \
-D Tasmanian_ENABLE_RECOMMENDED:BOOL=OFF \
-D Tasmanian_ENABLE_OPENMP:BOOL=OFF \
-D Tasmanian_ENABLE_BLAS:BOOL=OFF \
-D Tasmanian_ENABLE_PYTHON:BOOL=OFF \
-D Tasmanian_ENABLE_CUDA:BOOL=OFF \
-D Tasmanian_ENABLE_MAGMA:BOOL=OFF \
-D Tasmanian_MATLAB_WORK_FOLDER:PATH=<matlab-work-folder-path> \
-D Tasmanian_ENABLE_FORTRAN:BOOL=OFF \
-D Tasmanian_ENABLE_MPI:BOOL=OFF \
<path-to>/TASMANIAN-6.0/

Standard cmake commands are accepted to select specific compiler and/or flags. By default both static and
shared libraries are created, BUILD SHARED LIBS can be used to specify only shared or only static libraries.

-D BUILD_SHARED_LIBS:BOOL=ON

Recommended features are OpenMP, BLAS, and Python. If using Tasmanian ENABLE RECOMMENDED=ON,
Tasmanian will automatically search for available OpenMP, BLAS and Python, and enable the correspond-
ing options. If any of those cannot be found, the build process will continue without the corresponding
options. In addition, the -O3 flag will be set for both C++ and Fortran.

The OpenMP option will enable multi-threading which is ubiquitous through Tasmanian and thus strongly
recommended. However, if using cmake prior to version 3.9.6, the library dependence for OpenMP is not
properly recorded in the cmake package-config (due to cmake limitations). See the installed example build
script share/Tasmanian/examples/CMakeLists.txt for a work-around.

The Python option uses the cmake included command find package(PythonInterp) and will also
check for available numpy and ctypes modules. If multiple versions of Python are present, specific exe-
cutable can be selected with
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-D PYTHON_EXECUTABLE:PATH=<path-to-python>

The BLAS option will use find package(BLAS) to find suitable BLAS implementation. Specific libraries
can be selected with

-D BLAS_LIBRARIES:PATH=<path-to-blas>

The CUDA option will search for available installation of Nvidia CUDA with find package(CUDA).
Additional CUDA kernels will be compiled and Tasmanian will link to Nvidia cuBlas and cuSparse. Specific
CUDA installation can be selected with

-D CUDA_TOOLKIT_ROOT_DIR:PATH=<path-to-cuda>

The MAGMA option will search for available installation of UTK MAGMA. Search will be performed for
both shared and static libraries for both dense and sparse linear algebra. Using MAGMA within Tasmanian
requires also enabling CUDA. Specific installation of MAGMA can be given with

-D Tasmanian_MAGMA_ROOT_DIR:PATH=<path-to-magma>

Alternatively, variable MAGMA ROOT DIR is accepted without the Tasmanian prefix.

The MATLAB installation is enabled with Tasmanian MATLAB WORK FOLDER (unlike version 5.1 there is
no explicit enable matlab option). Note that if static libraries are not compiled, then the dynamic library will
have to be in the system LD LIBRARY PATH in order for the MATLAB interface to work. See §8 for more
information.

The Fortran option will search for a suitable Fortran 90/95 compiler and build a module interface to the
C++ library. Currently, gfortran and ifort are tested for the corresponding versions of gcc and icc.
Compiler can be manually specified with

-D CMAKE_Fortran_COMPILER=<path-to-Fortran-compiler>

The MPI option will automatically search for an MPI implementation, which is used only by the DREAM
module and likewise is still in an experimental stage. Manually specifying MPI CXX LIBRARIES will bypass
the automatic find package(MPI) and other options may also be needed depending on the system

-D MPI_CXX_LIBRARIES:STRING=<mpi-libraries>
-D MPI_CXX_INCLUDE_PATH:PATH=<path-to-mpi-headers>
-D MPI_COMPILE_FLAGS:STRING=<mpi-compile-flags>
-D MPI_LINK_FLAGS:STRING=<mpi-link-flags>

Testing (by default) will use all available OpenMP threads and all available GPUs (if OpenMP and CUDA
are enabled). Testing can be restricted to a specific number of threads or specific GPU with the options:

-D Tasmanian_TESTS_OMP_NUM_THREADS=<number-of-threads-for-testing>
-D Tasmanian_TESTS_GPU_ID=<cuda-id-for-the-gpu-to-use>

The C++ 2011 support is required, there is no option to enable/disable C++ 2011 since version 6.0.
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Additional options are also available for special situations to ease the build process on exotic environments:

• Tasmanian EXTRA INCLUDE DIRS:STRING option will specify additional include directories;

• Tasmanian EXTRA LIBRARIES:STRING option will append additional libraries to the default se-
lected by Tasmanian;

• Tasmanian EXTRA LINK DIRS:STRING option will append additional link folders to the default se-
lected by Tasmanian.

The extra options allow for find grained control of the build environment similar to the Makefile.in
capability, where almost anything can be written without concern of some automated system overwriting
the commands. For example:

cmake ... \
-D Tasmanian_ENABLE_OPENMP:BOOL=OFF \
-D Tasmanian_ENABLE_BLAS:BOOL=ON \
-D BLAS_LIBRARIES:PATH=/opt/acml/gfortran64_mp/lib/acml_mp.a \
-D Tasmanian_EXTRA_LIBRARIES:STRING="gfortran\;gomp\;pthread" \
<path-to>/Tasmanian/

will disable OpenMP within the Tasmanian library, but will link to OpenMP implementation of ACML (i.e.,
AMD BLAS) which cannot be found automatically and requires the libgomp and libgfortran. Note: the
extra options should not be needed under most circumstances.

4.6 Testing

The testing commands used by Tasmanian are

./SparseGrids/gridtest

./DREAM/tasdream -test

./Python/testTSG.py (optional: only if python is enabled)

./Fortran/fortester (optional: only if Fortran is enabled)

./test_post_install.sh

The first four commands will be called from make test. The last command will be called from make
test install which will make sure the executable, libraries, Python, Fortran, and CMake modules are
properly installed.

Both tasgream and gridtest tests rely on random number generation for error checking (especially the
DREAM module). Thus, the outcome of many tests depends on the random seed. Currently, the executables
(not the libraries) have a hard-coded random seed, which is used for testing, but this may fail depending on
the random number generator used by the compiler. Tests can be manually invoked with the system time as
a random seed:

./SparseGrids/gridtest random

./DREAM/tasdream -test random

to reset the random seed based on time().
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4.7 Package Config: Link to Tasmanian using cmake

Tasmanian version 6.0 comes with a cmake package-config file, which will be installed in lib/Tasmanian.
The package-config will extract from the build process all the information needed by cmake to correctly
link to the installed Tasmanian libraries. An external project can import Tasmanian cmake targets with the
command:

find_package(Tasmanian 6.0.0 PATHS "<Tasmanian-install-path>")

The imported targets will be called:

Tasmanian_libsparsegrid_shared Tasmanian_libsparsegrid_static
Tasmanian_libdream_shared Tasmanian_libdream_static
Tasmanian_libfortran90_shared Tasmanian_libfortran90_static

Depending on the selected options, not all targets may be available, e.g., using BUILD SHARED LIBS=ON
will disable the static targets. In order to simplify the user code, the package-config will also create cmake
interface targets without the shared/static suffixes:

Tasmanian_libsparsegrid Tasmanian_libdream Tasmanian_libfortran90

These interface targets will always depend on a valid imported target, and if both shared and static libraries
are present, the static libraries will be chosen by default.

The Tasmanian package-config may also set cmake variable Tasmanian CXX FLAGS. Older versions of
cmake do not set the OpenMP libraries as a dependence of a target build with the OpenMP flags; this, if
Tasmanian was build with OpenMP support and an older version of cmake, the Tasmanian CXX FLAGS
will be set to the OpenMP flags used by Tasmanian. A project linking to Tasmanian will need to also
use the same compiler and the specified flags. If OpenMP is not enabled or if newer cmake is used,
Tasmanian CXX FLAGS is not needed and the variable will not be defined.

See the installed CMakeLists.txt file in share/Tasmanian/examples for comments and proper use of
the Tasmanian package-config.

4.8 Build on Windows using Mircosoft Visual C++ 2015 and 2017

Tasmanian 6.0 comes with full cmake support for MS Visual C++ 2015 and 2017, including BLAS, Python,
MATLAB, and CUDA support. The recommended way of installing Tasmanian under Windows is to use
the CMake GUI program to select the source, build, and install folder, as well as all relevant cmake options.
The options work the same as under UNIX, and Tasmanian ENABLE RECOMMENDED will set optimization
flags for both Release and Debug configurations. After Configure and Generate have been called from
the CMake GUI, Tasmanian can be build, tested and installed with

cd <folder-to-build-binaries> (folder is chosen in the CMake GUI)
cmake --build . --config Release (compiles, can use Debug in place of Release)
ctest -C Release (run all tests for Release)
cmake --build . --config Release --target install (install Tasmanian)
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Alternatively, the Visual Studio editor can open the project files ALL BUILD.vcxproj, RUN TESTS.vcxproj
and INSTALL.vcxproj.

NOTE: in the current version of Tasmanian, the Python function getGPUName() does not work when
CUDA is enabled (segfault is encountered). The corresponding C++ method works correctly, only the
Python interface is affected. As this is a minor issue, it will be addressed at a later time, for now, do not use
the faulty method.

Previous versions of Tasmanian included Windows .bat scripts that can build the libraries from the Devel-
opment Prompt. The commands are:

WindowsMake.bat
WindowsMake.bat test
WindowsMake.bat clean (optional: reset the project)

Detailed instructions are given in the included WindowsREADME.txt, but the .bat scripts are now deprecated
and will be removed in the next major release. Also note that the simple script is not compatible with CMake,
i.e., executing WindowsMake.bat will alter the source code and may conflict with a CMake build.
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5 Library: Tasmanian Sparse Grids

All of the sparse grids functionality is included in the libtasmaniansparsegrid C++ library. Code that
interfaces with the library should include the TasmanianSparseGrid.hpp, which introduces the TasGrid
namespace and the definition of the TasmanianSparseGrid class. By design, each object (instance of the
class) is a stand-alone unit operating independently from other objects without the need for global library
initialization.

5.1 Error Handling

The class has multiple overloaded interface functions, error checking (e.g., size of the input) is performed
only on the interface using STL vectors. Most functions throw exceptions

std::invalid_argument("Message")
std::runtime_error("Message")

where Message is a human readable short explanation of the nature of the problem. Overall the error-
checking interface is still incomplete, but functional and stable.

5.2 STL vector interface

The Tasmanian interface has been updated to accept STL vectors for all functions where previously arrays
were uses. Overloaded functions can accept either all arrays or all vectors, where empty vectors are used in
place of NULL pointers. There is no performance difference between arrays and vectors (they use identical
algorithms at the back-end), but arrays offer opportunity for error checking, e.g., exceptions are thrown
when the vector has incorrect size, as opposed to segfault errors in the case of arrays.

5.3 Default Constructor/Destructor TasmanianSparseGrid()

TasmanianSparseGrid();
˜TasmanianSparseGrid();

The default constructor makes an empty grid which can access only the make*Grid() and read() methods
(and of course the static members such as getVersion(). The destructor frees all resources.

5.4 getVersion*()

static const char* getVersion() const;
static int getVersionMajor() const;
static int getVersionMinor() const;

Returns the version of the library, either as a simple hard-coded string or integers indicating the major and
minor parts.
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5.5 getLicense()

static const char* getLicense() const;

Returns a short string indicating the license of the library. This is a simple hard-coded string.

5.6 isOpenMPEnabled()

static bool isOpenMPEnabled() const;

Hard-coded booleans indicating whether the library is build with OpenMP support. Note that OpenMP is
not considered “acceleration” in the context of Tasmanian, OpenMP will be used at all stages of the sparse
grids, i.e., not just evaluations.

5.7 makeGlobalGrid()

void makeGlobalGrid( int dimensions,
int outputs,
int depth,
TypeDepth type,
TypeOneDRule rule,
const int *anisotropic_weights = 0, (can be const std::vector<int> &)
double alpha = 0,
double beta = 0,
const char *custom_rule_filename = 0,
const int *level_limits = 0); (can be const std::vector<int> &)

This function creates a sparse grid induced by one of the global quadrature and interpolation rules. See
Section 2.1 for a full list of the rules. The parameters are described as follows:

dimensions is a positive integer specifying the dimension of the grid. There is no hard restriction on how big
the dimension can be, however, for large dimensions, the number of points of the sparse grid grows
fast (this is called the curse of dimensionality) and hence the grid may require prohibitive amount of
memory.

outputs is a non-negative integer specifying the number of outputs for the function that would be interpolated.
If outputs is zero, then the grid can only generate quadrature and interpolation weights, i.e., problems
(3) and (2). There is no hard restriction on how many outputs can be handled, however, note that the
code requires at least outputs × number of points in storage and hence for large number of
outputs memory management may have adverse effect on performance.

depth is a non-negative integer that controls the density of abscissa points. This is the L parameter in tensor
selection (20) - (28). There is no hard restriction on how big depth can be, however, it has direct
effect on the number of points and hence performance and memory requirements.

type is an enumerated type indicating the tensor selection strategy.
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– type level: see (20)

– type curved: see (21)

– type hyperbolic: see (22)

– type iptotal: see (23)

– type ipcurved: see (24)

– type iphyperbolic: see (25)

– type qptotal: see (26)

– type qpcurved: see (27)

– type qphyperbolic: see (28)

– type tensor: creates a full (not sparse) tensor grid in the notation of §2.1,G =
⊗d

k=1 Um(L·ξk).

– type iptensor: creates the smallest full tensor grid that will interpolate exactly all polynomials
in span{xν : ν ≤ L · ξ}

– type iptensor: creates the smallest full tensor grid that will integrate exactly all polynomials
in span{xν : ν ≤ L · ξ}

rule is an enumerated type from any of the global rules in Tables 1, 2 and 3. Those are:

rule chebyshev

rule chebyshevodd

rule clenshawcurtis

rule clenshawcurtis0

rule fejer2

rule rleja

rule rlejadouble2

rule rlejadouble4

rule rlejaodd

rule rlejashifted

rule rlejashiftedeven

rule leja

rule lejaodd

rule maxlebesgue

rule maxlebesgueodd

rule minlebesgue

rule minlebesgueodd

rule mindelta

rule mindeltaodd

rule gausslegendre

rule gausslegendreodd

rule gausspatterson

rule gausschebyshev1

rule gausschebyshev1odd

rule gausschebyshev2

rule gausschebyshev2odd

rule gaussgegenbauer

rule gaussgegenbauerodd

rule gaussjacobi

rule gaussjacobiodd

rule gausslaguerre

rule gausslaguerreodd

rule gausshermite

rule gausshermiteodd

rule customtabulated

Note: the custom tabulated rule requires custom rule file, see below as well as Appendix 11.

anisotropic (anisotropic weights) is either NULL (empty when vector) or an array of integers dimensions or
2× dimensions, specifying the ξ and η anisotropic weights. If the pointer is NULL, then Tasmanian
assumes ξ = 1 and η = 0, otherwise, the entries 0 to dimension−1 of the vector specify the
components in ξ and the following dimension to 2× dimension entries specifies η (if type is
not set to one of the “*curved” ones, then the second set of entries is not used). Note that in the
literature, the weights are assumed to be real numbers, however, Tasmanian assumes that the weights
are normalized rational numbers, i.e., the library uses ξ = ξ/maxk ξk and η = η/maxk ξk (no typo
here maxk ξk is used in both cases).

alpha specifies the α parameter of ρ(x), this is used only if rule requires the α parameter. See Table 2.
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beta specifies the β parameter of ρ(x), this is used only if rule requires the β parameter. See Table 2.

custom rule file is either NULL or the path to a file describing a custom rule. Custom rules are described via tables
provided in a text file format. See Appendix 11 for more information about the file format of the
custom file.

level limits is either NULL (empty when vector) or an array of size dimensions that indicates a limit for the grid
level in a given direction. If limits are specified, the no points will be added to the grid beyond the
given level, e.g., Clenshaw-Curtis rule of level 1 has 3 points, if leve limit for dimensions 0 is set to
1, then all grid points will align with those 3 points regardless of the coordinates of other dimensions.
To inddicate no limit for a given direction, either use a very large limit or set level limits to −1.

5.8 makeSequenceGrid()

void makeGlobalGrid( int dimensions,
int outputs,
int depth,
TypeDepth type,
TypeOneDRule rule,
const int *anisotropic_weights = 0, (can be const std::vector<int> &)
const int *level_limits = 0 ); (can be const std::vector<int> &)

Creates a global grid using the representation described in section 2.3. The rule is restricted to one of the
nested rules with growth m(l) = l + 1, namely:

rule rleja

rule rlejashifted

rule leja

rule maxlebesgue

rule minlebesgue

rule mindelta

Mathematically the Sequence and Global grids do not differ in properties; however, the Sequence grids
use optimized internal data structures which leads to massive increase in speed when calling evaluate*()
functions, at the expense of increased storage and increased cost of loadNeededPoints(). Run the sparse
grid examples to see a simple benchmark.

5.9 makeFourierGrid()

void makeFourierGrid( int dimensions,
int outputs,
int depth,
TypeDepth type,
const int* anisotropic_weights = 0, (can be const std::vector<int> &)
const int* level_limits = 0); (can be const std::vector<int> &)

Creates a Fourier grid that uses trigonometric function basis and guarantees that the interpolant satisfies
periodic boundary conditions.

dimensions same as makeGlobalGrid()

outputs same as makeGlobalGrid()
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depth controls the density of the nodes in conjunction with type

type uses algorithms for tensor selection identical to the Global grids with frequency number used in place
for polynomial order

anisotropic same as makeGlobalGrid()

level limits same as makeGlobalGrid()

5.10 makeLocalPolynomialGrid()

void makeLocalPolynomialGrid( int dimensions,
int outputs,
int depth,
int order,
TypeOneDRule rule = rule_localp,
const int *level_limits = 0 ); (can be const std::vector<int> &)

Creates a grid based on one of the local hierarchical piece-wise polynomial rules described in section 2.7.
Local grids can be used for integration, however, in many cases, this would result in points associated with
zero weights.

dimensions same as makeGlobalGrid().

outputs same as makeGlobalGrid(), however, due to the non-trivial form of the surplus coefficients sj , large
number of outputs comes with bigger computational cost in addition to the larger storage cost of more
than 2 × outputs × number of points.

depth is a positive integer that specifies the initial number of levels for the grid, namely the L in (41).

order is an integer no smaller than −1, which specifies the largest order of polynomial to be used (i.e., the p
parameter). If order is set to −1, the largest possible order would be selected automatically “on the
fly”.

rule is specifies one of the three local polynomial rules rule localp, rule semilocalp, rule localp0,
rule localpb.

level limits same as makeGlobalGrid()

5.11 makeWaveletGrid()

void makeWaveletGrid( int dimensions,
int outputs,
int depth,
int order = 1,
const int *level_limits = 0 ); (can be const std::vector<int> &)

Creates a grid based on local hierarchical wavelet basis, see 2.10.

dimensions same as in makeGlobalGrid() and makeLocalPolynomialGrid()
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outputs same as in makeLocalPolynomialGrid()

depth same as in makeLocalPolynomialGrid()

order an integer equal to either 1 or 3.

5.12 updateGlobalGridGrid(), updateSequenceGrid()

void updateGlobalGrid( int depth,
TypeDepth type,
const int *anisotropic_weights = 0 ); (can be const std::vector<int> &)

void updateSequenceGrid( int depth,
TypeDepth type,
const int *anisotropic_weights = 0 ); (can be const std::vector<int> &)

The inputs a the same as in makeGlobalGrid()/makeSequenceGrid(), thus function should only be
called for a grid with a nested rules (i.e., among the non-Gauss rules only rule chebyshev is non-nested,
among the Gauss rules only rule gausspatterson is nested). If the grid has no outputs or no values have
been loaded, then this function is equivalent to calling makeGlobalGrid()/makeSequenceGrid() with
the new depth, type and anisotropic weights but using the old dimensions, outputs and rule. If
values have been loaded, then a new tensor index set Θnew is created according to the formula specified by
type and the new index set is added (i.e., set union) to the old index set. This corresponds to refinement
with user specified depth and anisotropic weights.

5.13 Copy Constructor, copyGrid()

TasmanianSparseGrid(const TasmanianSparseGrid &source);
void copyGrid(const TasmanianSparseGrid *source);

Copy the source grid into the current one. Points, weights, dimensions, domain transforms and active
refinement are copied. Acceleration options are not copied, i.e., the new grid falls to the default acceleration
mode.

5.14 write()

void write(const char *filename, bool binary = false) const;
void write(std::ofstream &ofs, bool binary = false) const;

Writes out the grid in either ASCII text or binary format to the ofstream or a file with given filename.
The first function will open the file and call the second, while the second function allows for multiple grids
to be stored in the same file.
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5.15 read()

void read(const char* filename);
void read(std::ifstream &ifs, bool binary = false);

Reads a grid that has already been written to the file with filename or the stream. Runtime exception
is raised is a problem is encountered with the file format. The first function automatically distinguishes
between ASCII and binary formats.

5.16 setDomainTransform()

void setDomainTransform( const double a[],
const double b[] );

void setDomainTransform( const std::vector<double> &a,
const std::vector<double> &b );

By default integration and interpolation are performed on a canonical interval [−1, 1] (with the exception
of a few Gauss rules descried in Table 2 and Fourier grids that default to [0, 1]). Optionally, the library can
transform the canonical interval into a custom one defined by the a and b parameters for every direction.
The transformation is applied as a post-processing step to the abscissas and weights.

a is an array/vector of size getNumDimensions() that defines the ak parameter associated with every
direction.

b is an array/vector of size getNumDimensions() that defines the bk parameter associated with every
direction.

5.17 isSetDomainTransform()

bool isSetDomainTransform() const;
void clearDomainTransform();
void getDomainTransform( double a[], double b[] ) const;
void getDomainTransform( std::vector<double> &a, std::vector<double> &b ) const;

isSet returns True is a transform is set, False otherwise;

clear cancels the currently set transformation, note that this will effectively invalidate any point and values
used by the grid (the points and values are still there, but the points will change and the values will
not longer refelct the correct points);

get returns the currently loaded transform, the arrays must have size equal to getNumDimensions(), the
vectors will be allocated to such size (if no transform has been set, the vectors will be empty).
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5.18 getNumDimensions(), getNumOutputs()

int getNumDimensions() const;
int getNumOutputs() const;

Returns the value of the dimension and outputs parameter used by the make***Glid() function call.

5.19 getOneDRule()

TypeOneDRule getOneDRule() const;
const char* OneDimensionalMeta::getHumanString( TypeOneDRule rule );

Returns the value of the rule parameter in the make***Glid() function call, for a wavelet grids this returns
rule wavelet and Fourier grids return rule fourier. The second function can be used to get a human
readable description of any rule.

5.20 getCustomRuleDescription()

const char *getCustomRuleDescription() const;

Returns the custom rule description string, see Appendix 11. If rule was not set to rule customtabulated,
then this function will return NULL.

5.21 getAlpha()/getBeta()

double getAlpha() const;
double getBeta() const;

Returns the alpha and beta parameters used in the call to makeGlobalGrid(). For all other grids, these
functions return 0.

5.22 getOrder()

int getOrder() const;

Returns the order parameter used in the call to makeLocalPolynomialGrid() or makeWaveletGrid(),
for global, sequence, and Fourier grids this function returns −1.

5.23 getNum***()

int getNumLoaded() const;
int getNumNeeded() const;
int getNumPoints() const;
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Returns the number of points. The loaded points are ones that have already been associated with values
via the loadNeededPoints() function. Right after the call to make***Gird() the needed points are
all the points in the grid, otherwise the needed points are those generated by the refinement procedures.
If no points have been loaded, then getNumPoints() returns the same as getNumNeeded(), otherwise,
getNumPoints() returns the same as getNumLoaded().

Note: if a grid is created with zero outputs, then getNumNeeded() always returns 0 and getNumPoints()
returns the same as getNumLoaded(), i.e., no points are needed and all points are considered loaded.

5.24 get***Points()

double* getLoadedPoints() const;
void getLoadedPoints( double *x ) const;
void getLoadedPoints( std::vector<double> &x ) const;

double* getNeededPoints() const;
void getNeededPoints( double *x ) const;
void getNeededPoints( std::vector<double> &x ) const;

double* getPoints() const;
void getPoints( double *x ) const;
void getPoints( std::vector<double> &x ) const;

If no argument is given, returns an array of length getNumDimensions() × getNum***() of values that
represent the points of the grid. If x is specified as an array, it must be at least of size getNumDimensions()
× getNum***(); vectors will be resized. The number of points corresponds to the output of getNum***().
The first point is located in the first getNumDimensions() number of entries, the second point is located in
the second getNumDimensions() number of entries, and so on.

5.25 getQuadratureWeights()

double* getQuadratureWeights() const;
void getQuadratureWeights( double weights[] ) const;
void getQuadratureWeights( std::vector<double> &weights ) const;

If no arguments are given to the function, it returns an array of size getNumPoints() of the quadra-
ture weights associated with the points. If x is specified as an array, then it must be at least as big as
getNumPoints(); vectors will be resized. The first weight is associated with the first point returned by
getPoints(), the second weight is associated with the second point and so on.

5.26 getInterpolationWeights()

double* getInterpolationWeights( const double x[] ) const;
void getInterpolationWeights( const double x[], double weights[] ) const;
void getInterpolationWeights( const std::vector<double> &x,

std::vector<double> &weights ) const;
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Returns the interpolation weights associated with the point x, as in equation (2). For global and sequence
grids with nested rules this function returns the multivariate Legendre polynomials evaluated at point x. For
global grids with non-nested rules, this returns a linear combination of tensors of Legendre polynomials
(note that non-nested grids do not generate interpolants). For all grids other than Global, computing the
getInterpolationWeights() is very expensive and should be avoided (if possible).

x is an array of dimension getNumDimensions() representing the point of interest to evaluate the
weights.

weights an array of size getNumPoints() (vectors get resized), weights returns the interpolation weights as-
sociated with the grid points. The first weight is associated with the first points returned by getPoints(),
the second weight is associated with the second point and so on.

5.27 loadNeededPoints()

void loadNeededPoints( const double vals[] );
void loadNeededPoints( const std::vector<double> &vals );

Provides the values of the function to be interpolated evaluated at the corresponding abscissas. The values
are copied in the Tasmanian internal data structures. If getNumNeeded() is 0, this function will overwrite
all currently stored values.

vals must be an array or vector of size getNumOutputs()× getNumNeeded() providing the values of the
model at the needed points. If getNumNeeded() = 0, then the size must correspond to all currently
stored data getNumOutputs()× getNumPoints(). The first getNumOutputs() entries correspond
to the outputs of the interpolated function at the first grid point (either loaded or needed point). The
second set of getNumOutputs() entries correspond to the second point and so on.

5.28 evaluate(), evaluateFast()

void evaluate( const double x[], double y[] ) const;
void evaluate( const std::vector<double> &x, std::vector<double> &y ) const;
void evaluateFast( const double x[], double y[] ) const;
void evaluateFast( const std::vector<double> &x, std::vector<double> &y ) const;

Finds the value of the interpolant (or point-wise approximation) at the provided point x as defined by equa-
tion (1). The result is written into y.

x an array/vector of size getNumDimensions() that indicate the point where the interpolant should be
evaluated.

y an already allocated array of size getNumOutputs() or a vector that will be resized. On exit, the
entries of y will contain the values of the interpolant at the point x.

The Fast and not Fast versions give the same result, but Fast uses the enabled acceleration. The Fast
function is potentially much faster, especially when working with models with many outputs, but Fast is not
thread safe, i.e., if two threads simultaneously call evaluateFast() on the same object it will create a race
condition. CUDA and GPU based evaluations are always thread unsafe, BLAS evaluations could be thread
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save depending on the BLAS implementation, e.g., OpenBLAS can be either safe or unsafe depending on
compile flags. The conservative assumptions is that evaluateFast() is not thread safe.

Note: thread safety relates to calling two functions associated with the same object; in Tasmanian, function
calls to different objects never create race conditions (unless such problems come from some of the third
party libraries).

5.29 evaluateBatch()

void evaluateBatch(const double x[], int num_x, double y[]) const;
void evaluateBatch(const std::vector<double> &x, std::vector<double> &y) const;

Evaluate the approximation at multiple points with a single command.

x an array/vector of size getNumDimensions() × num x that indicate the point where the interpolant
should be evaluated, the first set of getNumDimensions() entries indicate the first point, the second
set of getNumDimensions() entries indicates the second point, and so on. In the vector interface,
num x is inferred from the size of x.

y an already allocated array of size getNumOutputs() × num x or vector that will be resized. On
exit, the entries of y are overwritten with the values of the interpolant at the point x. The first set of
getNumOutputs() entries indicate the outputs at the first point, the second set of getNumOutputs()
entries is the second set of outputs and so on.

This function uses acceleration and similarly to evaluateFast(), it is not thread safe. The Batch func-
tion gives the same output as multiple calls to evaluate(), but Tasmanian will leverage OpenMP, CUDA
kernels, and third-party libraries for accelerated matrix-matrix multiplication. The performance boost is
massive even without GPU acceleration.

5.30 integrate()

void integrate( double y[] ) const;
void integrate( std::vector<double> &q ) const;

Integrates the interpolant over the domain and returns the result in y.

y an already allocated array of size getNumOutputs() or a vector that will be resized. On exit, the
entries of y are overwritten with the values of the integral of the interpolant over the domain.

5.31 is/Global/Sequence/Fourier/LocalPolynomial/Wavelet()

bool isGlobal() const;
bool isSequence() const;
bool isFourier() const;
bool isLocalPolynomial() const;
bool isWavelet() const;
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The function corresponding to the last call to make***Grid() returns True, all other functions return
False. If make***Grid() has not been called, then all functions return False.

5.32 is/set/get/clearConformalTransformASIN()

void setConformalTransformASIN(const int truncation[]);
void getConformalTransformASIN(int truncation[]) const;
bool isSetConformalTransformASIN() const;
void clearConformalTransform();

Allow to manipulate the conformal transform based on the truncated arcsin(x) Maclaurin series. The trun-
cation is a set of integers with dimension getNumDimensions() that indicate the number of terms to use in
the truncation, i.e., truncation 4 will result in 7-th order polynomial (arcsin(x) has only odd powers in the
series). NOTE: setting or clearing the transform will change the points and weights associated with the grid
and any currently loaded values of f(x) will not longer be valid.

5.33 clear/getLevelLimits()

void clearLevelLimits();
void getLevelLimits( int *limits ) const;
void getLevelLimits( std::vector<int> &limits ) const;

When make***Grid() is called with level limits, the limits are stored within the grid and used in all refine-
ment calls. The clear function can be used to delete any set limits and the get function can be used to read
the limits. The input array limits must have length getNumDimensions(), the vector will be resized.

5.34 setAnisotropicRefinement()

void setAnisotropicRefinement( TypeDepth type,
int min_growth,
int output,
const int *level_limits = 0 ); (can be const std::vector<int> &)

Implements the anisotropic refinement strategy described briefly in section 2.4 and in more details in [31].
This function can only be called for Global and Sequence grids. Note that refinement cannot be used if the
grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

type specifies the type of refinement to use, this can be any type described in makeGlobalGrid(), with
the exception of the tensor and hyperbolic types;

min growth forces the new “refined” grid to have a minimum number of new (needed) points, which is useful in
controlling the number of points for the next iteration;

output specifies the output to use in the refinement strategy and only computes orthogonal expansion or
surpluses for that specific output, Sequence grids store all surpluses anyway, hence all outputs can be
easily used together in the refinement strategy, to achieve that set output to −1;
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level limits sets new limits, by default (NULL or empty), the limits used by make**Grid() are used for all refine-
ment calls.

5.35 setSurplusRefinement() - global version

void setSurplusRefinement( double tolerance, int output,
const int *level_limits = 0 ); (can be const std::vector<int> &)

Implements the surplus refinement strategy described in equation (31) in section 2.4. This function can only
be called for Sequence grids and Global grids with sequence rules. Note that refinement cannot be used if
the grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

tolerance specifies the cutoff threshold, no refinement will be performed for surpluses with relative magnitude
smaller than tolerance;

output specifies the output to use in the refinement strategy and only computes surpluses for that specific
output; Sequence grids store all surpluses anyway, hence all outputs can be easily used together in the
refinement strategy, to achieve that set output to −1;

level limits sets new limits, by default (NULL or empty), the limits used by make**Grid() are used for all refine-
ment calls.

5.36 setSurplusRefinement() - local version

void setSurplusRefinement( double tolerance,
TypeRefinement criteria,
int output,
const int *level_limits = 0,
const double *scale_correction = 0 );

void setSurplusRefinement( double tolerance,
TypeRefinement criteria,
int output,
const std::vector<int> &,
const std::vector<double> & );

Implements the surplus refinement strategy described briefly in section 2.8 and in more details in [29]. This
function can only be called for Local polynomial and Wavelet grids. Note that refinement cannot be used if
the grid has no outputs or before values have been loaded, i.e., loadNeededPoints() has been called.

tolerance specifies the cutoff threshold, i.e., the ε parameter in equations (42), (43), (44), (45);

criteria specifies the refinement strategy

refine classic, see (42)

refine parents first, see (43)

refine direction selective, see (44)

refine fds, see (45)

output specifies the output to use in the refinement strategy and only consider surpluses for that specific
output. Optionally, output can be set to −1 in which case all surpluses will be considered, i.e., for
each point the code will consider the output with largest relative surplus;
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level limits sets new limits, by default (NULL or empty), the limits used by make**Grid() are used for all refine-
ment calls;

scale correction defines a non-negative number to multiply the corresponding hierarchical coefficient before compar-
ing to the tolerance. This can be used to set/ignore refinement in certain regions based on specific
problem interest or prior knowledge, as opposed to treating all coefficients identically. If all outputs
are to be used, then scale correction must have length getNumPoints() × getNumOutputs(),
if only one output is to be used, then the length is only getNumPoints().

5.37 clearRefinement()

void clearRefinement();

Every set***Refinement() function generates a new set of potential points for the sparse grid. The
clearRefinement() function removes the needed points and all internal data structures associated with
the last call to any of the set refinement functions. Note that clearRefinement() will have no effect if
getNumNeeded() is zero, i.e., a refinement cannot be undone after loadNeededPoints() is called. The
purpose of this function is to reduce the memory footprint of the grid in case the user decides not to ignore
the last refinement.

5.38 mergeRefinement()

void mergeRefinement();

Every set***Refinement() function expands the grid to include a new set of points. However, the new
points cannot be used unless Tasmanian has assess to the associated model values. The mergeRefinement()
combines the old and new points into a single grid without using model values; instead, all old and new val-
ues are overwritten with zeros. This is useful when grids are constructed from random set of points and
hierarchical coefficients are computed outside of the TasmanianSparseGrid class (see the next four func-
tions). Note: after mergeRefinement() all values and hierarchical coefficients are set to zero.

5.39 getHierarchicalCoefficients()

const double* getHierarchicalCoefficients() const;

Prior to Tasmanian 5.1, this function was called getSurpluses(). The function returns a pointer to the
hierarchical coefficients associated with equation (1). Note that modifying the content of the pointer will
result in undefined behavior.

The structure of the coefficients depends on the type of the grid:

Global The coefficients are just the loaded model values for all the grid points following the same order as in
getPoints().
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Sequence The coefficients are the sj coefficients at (29) and (30), there is one coefficient per point per output,
the coefficients associated with the first point is at the first getNumOutputs() entries, the second
point follows at the second set of getNumOutputs() entries, etc. The order of the points matches the
order from getNumPoints().

LocalPoly The coefficients are essentially the same as in (40). The order is identical to the Sequence case.

Wavelet The wavelet coefficients that solve the linear system of equations (i.e., the coefficients that guarantee
that the interpolant will match the data at the sparse grid points). The order is the same as in the
Sequence case.

Fourier The Fourier coefficients are not directly associated with sparse grids nodes, instead each coefficient is
associated with a tensor of complex (as in complex numbers) exponential basis functions correspond-
ing to a specific frequency. The Fourier coefficients are complex numbers and the format is that the
first getNumPoints()× getNumOutputs() entries are the real values, while the second set contains
the complex part (the total length of the array is twice the size of the other grids). The order of the
coefficients will match the output of evaluateHierarchicalFunctions() and the real/complex
split has been chosen for performance reasons.

5.40 evaluateHierarchicalFunctions()

void evaluateHierarchicalFunctions( const double x[], int num_x, double y[] ) const;
void evaluateHierarchicalFunctions( const std::vector<double> &x,

std::vector<double> &y ) const;

x is an array of size getNumDimensions() × num x indicating the points of interest where the func-
tions should be evaluated. In the vector case, num x is inferred from the size of x. The format of x is
identical to the one used in evaluateBatch();

y is a vector of size num x× getNumPoints() where the values of the function basis corresponding to
each x are stored.

For Global grids, this is the same as getInterpolantionWeights(). For other types of grids, this gives
the values of the hierarchical functions at the given points, i.e., matrix A in §2.12. In the case of Fourier
grids, the basis values are actually complex numbers, the size of y is 2× num x× getNumPoints() and the
real and complex parts are interlaced (as opposed to the block format of the hierarchical coefficients). Thus,
the following is a valid data conversion:

grid.makeFourierGrid( ... )
std::vector<double> y, x = { ... };
grid.evaluateHierarchicalFunctions(x, y);
std::complex<double> *y_complex = (std::complex<double> *) y.data();
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5.41 evaluateSparseHierarchicalFunctions()

void evaluateSparseHierarchicalFunctions( const double x[], int num_x,
int* &pntr, int* &indx, double* &vals) const;

void evaluateSparseHierarchicalFunctions( const std::vector<double> &x,
std::vector<int> &pntr,
std::vector<int> &indx,
std::vector<double> &vals ) const;

x is an array of size getNumDimensions() × num x indicating the points of interest where the func-
tions should be evaluated, in the vector case num x is inferred from the size of x. The format of x is
identical to the one used in evaluateBatch().

The matrix associated with the hierarchical basis, when working with local polynomial and wavelet grids,
is usually sparse. The evaluateHierarchicalFunctions() function generates the dense representation
of the matrix and evaluateSparseHierarchicalFunctions() generates the sparse representation. On
exit, the size of pnts is num x+1 and it indicates the offsets of each group of non-zeros, where each group is
in turn associated with a single x value. The indx stores the index of the non-zero value, each entry in indx
goes from 0 to getNumPoints() -1, and vals is the corresponding value. Note: do not call this function
for Global, Sequence or Fourier grids.

5.42 setHierarchicalCoefficients()

void setHierarchicalCoefficients( const double c[] );
void setHierarchicalCoefficients( const std::vector<double> &c );

The hierarchical coefficients are set to the ones specified by c. For all but Fourier grids, the size of c must
be getNumPoints() × getNumOutputs() and the order is identical to that in loadNeededPoints() and
getHierarchicalCoefficients(). In the Fourier case, the size of c is double, i.e., 2× getNumOutputs()
× getNumPoints(), where the first half of the entries correspond to the real values of the coefficients while
the second corresponds to the complex part.

The function loadNeededPoints() sets the model values and computes the coefficients, the converse
happens with setHierarchicalCoefficients(), the coefficients are loaded and the values are inferred.

5.43 Acceleration Functions

void enableAcceleration( TypeAcceleration acc );
TypeAcceleration getAccelerationType() const;
static bool isAccelerationAvailable( TypeAcceleration acc );
void favorSparseAcceleration( bool favor );

Tasmanian offers the following types of acceleration

accel none

accel gpu cublas

accel gpu magma

accel cpu blas
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accel gpu cuda accel gpu default

All but accel none require that Tasmanian is build with a corresponding CMake option. The Available()
function can be used to check whether the option was used or not. The enableAcceleration() function
can be called with any options, regardless of the CMake options. If the specified acceleration is not available,
Tasmanian will default to the next best options in the following order:

accel gpu magma→ accel gpu cuda

accel gpu cuda→ accel cpu blas

accel gpu cublas→ accel cpu blas

accel cpu blas→ accel none

The fallback options make it possible to use the same API calls to Tasmanian regardless of the CMake
options, which allows for better performance portability. Since Tasmanian 6.0, accel gpu default is
identical to accel gpu magma and falls-back to cuda, blas and finally none).

The names of the acceleration types relate to the algorithm and libraries used when calling evaluateFast()
and evaluateBatch(). Evaluations proceed in two stages, first compute the values of the basis functions
for the different points in x, then multiply the resulting matrix by the hierarchical coefficients. The first stage
can be done either on the CPU (always using multi-threading with OpenMP, if available) or on the GPU with
custom CUDA kernels. The second stage is a sparse or dense matrix multiplied by the dense matrix of the
coefficients, which can be performed with any of the accelerated linear algebra libraries: BLAS, Nvidia
cuBlas/cuSparse, or UTK MAGMA/MAGMA-sparse. Refer to Table 6 for details.

The acceleration used by the Local Polynomial grids have additional variations, since the back-end can
use either sparse or dense algorithms. By default, Tasmanian will automatically choose a suitable algo-
rithm where the decision is based on data collected from a large number of in-house tests. However,
the decision does not take into account the memory usage (usually higher for dense matrices), and the
tests were performed on Nvidia Tesla GPUs that come with very fast double-precision capabilities. Thus,
the default Tasmanian decision may not be optimal for every situation, e.g., GPUs with less memory,
or reduced double-precision capabilities, or new and untested architecture. Tasmanian includes a func-
tion that will overwrite the automatic process and always select either dense or sparse back-end methods,
favorSparseAcceleration() can be called with either True (sparse) or False (dense). The function
can be called repeatedly; calling True after False or False after True will reset the algorithm to auto, and
calling True after True or False after False will have no effect. This function has no effect when called
for grids that are not Local Polynomial.

The dense GPU algorithms will need enough GPU RAM to store three dense matrices with different sizes:

1. size getNumOutputs() × getNumPoints() for the loaded values;

2. size getNumPoints() × num x for the values of the basis functions;

3. size getNumOutputs() × num x for the output of evaluateBatch().

The first matrix is the same for all calls to evaluateFast() and evaluateBatch(), thus the matrix will
be kept persistently in memory unless another function is called to modify the values or coefficients (i.e.,
loadNeededPoints() or setHierarchicalCoefficients()) or the acceleration type of GPU-id are
updated. The memory associated with the second and third matrices will be deleted after the call to evaluate.
In addition, when using custom CUDA kernels for CUDA and MAGMA accelerations, the kernels need the
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Acceleration Stage 1 Stage 2
accel none CPU (OpenMP) CPU (OpenMP)
accel cpu blas CPU (OpenMP) BLAS
accel gpu cublas CPU (OpenMP) cuBlas/cuSparse
accel gpu cuda GPU (CUDA) cuBlas/cuSparse
accel gpu magma GPU (CUDA) MAGMA

Table 6. Acceleration types and the corresponding algorithms.

input points x as well as some additional meta data required to form the second matrix. Nevertheless, the
total memory usage is dominated by the three matrices.

The sparse GPU algorithms use a sparse presentation to the basis matrix. Depending on the grid structure,
the sparse matrix could have dramatically lower memory footprint, but generally (in most cases) it is of
order roughly log(N)d× num x. However, because of limitations of the cuSparse API, the sparse algorithm
requires another matrix of size equal to the output (third matrix) in order to compute explicit transpose.
Thus, the CUDA and cuBlas acceleration modes could result in larger memory footprint, but MAGMA does
not suffer from this limitation. Also note that transpose is very cheap operation and larger memory usage
does not imply slower performance, the performance difference between sparse and dense comes from the
number of non-zeros and the sparsity pattern.

5.44 set/set/GPUID()

void setGPUID( int in_gpuID );
int getGPUID() const;
static int getNumGPUs();
static int getGPUmemory( int gpu );
static char* getGPUname( int gpu );

Tasmanian can be used on a multi-GPU systems, where each Tasmanian object can be associated with a
different GPU. The set and get functions allow for a GPU to be selected for each object. The static
functions that check the number of available GPUs, the available memory, and the name, are just wrappers
around the standard CUDA API (where GPUs are referred to as CUDA devices). The GPUs use zero-
indexing, the memory reported is in megabytes (220 bytes), and the name is null-terminated C style of string
which must be deleted by the user. Note that each call to evaluateBatch() and evaluateFast() will
also trigger cudaSetDevice() to the GPU set for the corresponding object.

5.45 evaluateHierarchicalFunctionsGPU(), evaluateSparseHierarchicalFunctionsGPU()

void evaluateHierarchicalFunctionsGPU( const double gpu_x[], int cpu_num_x,
double gpu_y[] ) const;

void evaluateSparseHierarchicalFunctionsGPU( const double gpu_x[], int cpu_num_x,
int* &gpu_pntr, int* &gpu_indx,
double* &gpu_vals, int &num_nz ) const;
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Identical to evaluateHierarchicalFunctions() and evaluateSparseHierarchicalFunctions()
with the difference that both input and output arrays reside on the GPU.

5.46 getGlobalPolynomialSpace()

int* getPolynomialSpace( bool interpolation, int &n ) const;

Computes the polynomial associated with the grid, see Λm and Λq in equations (16) and (17). Returns a list
of integers that stores the multi-indexes.

interpolation specifies whether to consider the polynomial space associated with interpolation or integration, i.e.,
(16) and (17).

n returns the number of multi-indexes in the list.

returns an array of integers of length getNumDimensions() × n, where the first getNumDimensions()
entries give the first multi-index, the second multi-index is in the second getNumDimensions()
entries, etc.

5.47 printStats()

void printStats( std::ostream &os = std::cout ) const;

Prints short description of the sparse grid to the selected stream. The printed information is in human
readable format.

5.48 getNeededIndexes() and getPointIndexes()

const int* getNeededIndexes() const;
const int* getPointIndexes() const;

Those functions exist primarily for debugging and testing purposes. The functions expose internal data struc-
tures, modifying the content of the pointers will result in undefined bahavior. Function getPointIndexes()
returns an array with multi-indexes, for local polynomial and wavelet grids the function returns X , for
Global, Sequence, and Fourier grids returns X(θ).

5.49 Examples

The file example sparse grids.cpp in the Examples/ folder has sample code that demonstrates proper
use of the TasmanianSparseGrid class. The example can be compiled with the included CMakeLists.txt
(when using cmake) or with the make exmaples command (when using the GNU make build engine).
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6 Library: Tasmanian DREAM

In this section we describe the main classes associated with the Tasmanian DREAM module. Sometime C++
classes are best described with C++ code, hence we have included the dream example which demonstrates
the use of each class, see §11.

6.1 class BaseUniform

class BaseUniform{
public:

BaseUniform();
virtual ˜BaseUniform();

virtual double getSample01() const = 0;
};

By default, Tasmanian uses the pseaudo-random number generator (RNG) build into the C++ compiler.
Often, more sophisticated RNG algorithms are desired and this class allows for the default RNG to be
replaced by a used provided one. All classes that rely on randomness accept an instance of BaseUniform
that would be used in place of the default. The getSample01() function should return a random number
uniformly distributed in (0, 1).

Tasmanian is written with the assumption that getSample01() is computationally expensive and special at-
tention has been given to ensure there are no extraneous call to this function. Nevertheless, random sampling
requires a large number of calls to getSample01(), thus computational cost is of potential consideration.

6.2 class TasmanianDREAM

The class providing the sampling update and accept/reject algorithm is called TasmanianDREAM.

6.2.1 Constructor

class TasmanianDREAM{
public:

TasmanianDREAM();
˜TasmanianDREAM();
void overwriteBaseUnifrom( const BaseUniform *new_uniform );

Default constructor and a function to overwrite the default uniform random number generator, see §6.1.

6.2.2 Version Information

static const char* getVersion();
static int getVersionMajor();
static int getVersionMinor();
static const char* getLicense();
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Same as in Tasmanian Sparse Grid, those functions allow run-time access to the version number and license.

6.2.3 setProbabilityWeightFunction()

void setProbabilityWeightFunction( ProbabilityWeightFunction *probability_weight );

Defines the probability function ρ(x), this function should be called before setting chains or any other
problem parameters. Calling this function will delete the current chain state. The TasmanianDREAM class
will hold an alias to this class, but will not call delete when it is destroyed.

6.2.4 get/setNumChains()

void setNumChains( int num_dream_chains );
int getNumChains() const;

Defines the number of chains to be used in the DREAM algorithm. Must be called after the call to
setProbabilityWeightFunction().

6.2.5 get/setJumpScale()

void setJumpScale( double jump_scale );
double getJumpScale();

Defines the jump scale parameter, i.e., γ defined in §50. This function must be called after the call to
setProbabilityWeightFunction().

6.2.6 getNumDimensions()

int getNumDimensions() const;

The number of dimensions of x. This value is loaded form the probability weight specified in the call to
setProbabilityWeightFunction().

6.2.7 get/setCorrection()

void setCorrectionAll( BasePDF *correct );
void setCorrection( int dim, BasePDF *correct );
const BasePDF* getCorrection( int dim );

Defines the correction parameters, i.e., r defined in §50. The setCorrectionAll() function will set
identical correction for all directions. The second function allows corrections to be set per-direction. The
TasmanianDREAM class will hold an alias to the objects given here but will not call delete on the pointers.
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6.2.8 collectSamples()

double* collectSamples( int num_burnup, int num_samples, bool useLogForm = false );
void collectSamples( int num_burnup, int num_samples,

double *samples, bool useLogForm = false );
void collectSamples( int num_burnup, int num_samples,

std::vector<double> &samples, bool useLogForm = false );

The most computationally expensive function, it performs the actual sampling and has to be called after all
other parameters have been set.

num burnup indicates the number of initial iterations that should be discarded.

num samples indicates the number of iterations to be returned in the samples array/vector. Note that the total number
of samples is num samples × num chains. The array has to be pre-allocated, the vector is resized.

useLogForm indicates whether to perform sampling in regular or log form. Many likelihood functions and prob-
ability distributions include exponential terms that can lead to numerical instability, e.g., comparing
exponentials of large negative numbers. The update and accept/reject steps of the DREAM algorithm
can be expressed through the natural logarithm of the setProbabilityWeightFunction(), which
could improve stability (depending on the problem).

The first sample is stored in the first getNumDimensions() entries, the second sample in the second set of
getNumDimensions() entries, and so on.

6.2.9 setChainState()

void setChainState( const double* state );
void setChainState( const std::vector<double> &state );

Overwrites the current chain state. This allows to manually select the initial samples xc,0 and potentially
avoid repeating a burn-up process. The format of the state files matches the output of collectSamples()
with num samples= 1.

6.2.10 getPDFHistory()

double* getPDFHistory() const;
void getPDFHistory( std::vector<double> &history ) const;

Returns the values of the probability weight at the sample points returned by collectSamples(),
using either regular or log form matching the useLogForm variable.

6.3 class BasePDF

The BasePDF class describes a general probability function designed to be used as a prior to a Bayesian
inference problem or a correction in the DREAM sampling.
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6.3.1 Constructor

class BasePDF{
public:

BasePDF();
virtual ˜BasePDF();
virtual void overwriteBaseUnifrom( const BaseUniform *new_uniform ) = 0;

The overwriteBaseUnifrom() allows the sue of custom RNG, see §6.1.

6.3.2 is/getBoundedAbove/Below()

virtual bool isBoundedBelow() const = 0;
virtual bool isBoundedAbove() const = 0;
virtual double getBoundBelow() const = 0;
virtual double getBoundAbove() const = 0;

The isBounded*() functions return True if the support of the pdf is restricted to a domain bounded
above or below. The getBound*() returns the actual bounds. With respect to the pdfs defined in Table
4, the isBounded*() functions indicate whether the domain contains ∞ either above or below, and the
getBound*() functions return the values of a and b.

6.3.3 getSample()

virtual double getSample() const = 0;

Returns a sample randomly generated by the pdf. This function is called to initialize the chain state of the
TasmanianDREAM class. Hence, it is possible to return a number inconsistent with the probability density
function (although this is not advisable).

6.3.4 getDensity/Log()

virtual double getDensity( double x ) const = 0;
virtual double getDensityLog( double x ) const = 0;

Returns the probability density at point x, or the log of the pdf.

6.3.5 TypeDistribution()

virtual TypeDistribution getType() const = 0;

Returns an enumerated type corresponding to the distribution. The full list of enumerated types is:

dist uniform, dist exponential
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dist gaussian, dist truncated gaussian

dist beta, dist gamma

dist custom

where additional classes should specify the dist custom type.

6.4 class ProbabilityWeightFunction

The class that described ρ(x) and Γ for the DREAM sampling procedure. Unlike the BasePDF class, this
class is defined in a multidimensional context, there is no assumption that the function integrates to 1, and
there is no explicit way to generate random samples with the associated PDF.

6.4.1 Constructor

class ProbabilityWeightFunction{
public:

ProbabilityWeightFunction();
virtual ˜ProbabilityWeightFunction();

The properties of this class are intended for inheritance, hence the base constructor is empty.

6.4.2 getNumDimensions()

virtual int getNumDimensions() const = 0;

Returns the number of dimensions of x.

6.4.3 getDomainBounds()

virtual void getDomainBounds( bool* lower_bound, bool* upper_bound ) = 0;
virtual void getDomainBounds( double* lower_bound, double* upper_bound ) = 0;
virtual void getDomainBounds( std::vector<bool> &lower, std::vector<bool> &upper ) = 0;
virtual void getDomainBounds( std::vector<double> &lower, std::vector<double> &upper ) = 0;

The arrays lower bound and upper bound have dimensions equal to getNumDimensions() and return
whether or not the support of the ProbabilityWeightFunction is finite or infinite, as well as the numer-
ical value of the upper and lower bound. The vectors must be resized. The DREAM sampler assumes that
the pdf is 0 outside the bounds specified here and no sample will ever be evaluated for such point not would
it be accepted. In practice, the PDF could be supported on a subset of the hypercube defined by the domain
bounds, but evaluate() will be called for those samples.

Either the vector or array functions can be implemented in the custom class, if both are present, the DREAM
will default to the vector implementation. Note that the boolean and double functions have to match, i.e.,
cannot mix boolean vectors and double arrays.
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6.4.4 evaluate()

virtual void evaluate( int num_points, const double x[], double y[], bool useLogForm ) = 0;
virtual void evaluate( const std::vector<double> &x,

std::vector<double> &y, bool useLogForm ) = 0;

Returns the values of the pdf at the specified points.

num points is the number of points that need to be evaluated. Note that this number will never exceed the number
of chains, however, it may be less as samples outside of the domain bounds will not be evaluated. The
vector function infers num points as the size of x divided by getNumDimensions().

x is an array or vector where the first set of getNumDimensions() entries corresponds to the first point,
the second set of getNumDimensions() entries corresponds to the second point, etc.

y is an output array or vector that will contain the values of the unscaled pdf. The array will have
sufficient size to fit all values, the vector must be resized to match num points.

useLogForm indicates whether to return the pdf of the log of the pdf. Note: when useLogForm=True the values
in y could be negative.

Either the vector or array functions can be implemented in the custom class, if both are present, the DREAM
will default to the vector implementation.

6.4.5 getInitialSample()

void getInitialSample( double x[] );

The vector x has size getNumDimensions() and is overwritten with an initial guess for the pdf. This is
used to automatically initialize the chain state, however, if the chains state is set directly with the function
TasmanianDREAM::setChainState(), then this function will be ignored.

6.5 class ProbabilityWeightFunction

class LikelihoodTSG : public ProbabilityWeightFunction{
public:

LikelihoodTSG( const TasGrid::TasmanianSparseGrid *likely, bool savedLogForm );
˜LikelihoodTSG();
void setPDF( int dimension, BasePDF* &pdf );

This class is designed to solve a Bayesian inference problem where the likelihood function has been approx-
imated with a sparse grid method, i.e.,

Gθ[L](x) ≈ L(d, f(x)).

The savedLogForm indicates whether the construction was done using L(d, f(x) or log(L(d, f(x))), as it
is often times easier to interpolate the log of a complex pdf, especially when using Gaussian likelihood in
high dimensions.
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The LikelihoodTSG class assumes that the likelihood is associated with priors based on the domain of the
sparse grid, i.e.,

• rule gausslaguerre is associated with Exponential distribution.

• rule gausshermite is associated with Gaussian distribution.

• rule localp0 and rule clenshawcurtis0 are associated with Beta distribution with α = β = 2.

• All other rules are associated with a uniform distribution.

The domain bounds are taken from the ones specified by the grid. The entries of the initial sample are taken
form the priors.

In many cases, the default pdf selection is undesirable, then the default prior for each dimension can
be overwritten with void setPDF(). Note that in this case the priors will be deleted when the class is
destroyed.

6.6 class PosteriorFromModel

This class is designed to perform Bayesian inference with a model that is either provided by the user in a
wrapper class or f(x) has been approximated with a sparse grid.

6.6.1 Constructor and core functions

class PosteriorFromModel : public ProbabilityWeightFunction{
public:

PosteriorFromModel( const TasGrid::TasmanianSparseGrid *model );
PosteriorFromModel( const CustomModelWrapper *model );
˜PosteriorFromModel();
void overwritePDF( int dimension, BasePDF* pdf );

If the constructor is called with a sparse grid, then default priors will be selected based on the grid rule and
domain similar to ProbabilityWeightFunction, no priors are selected for a custom model. When using
overwritePDF() the pointers will not be deleted when the class is destroyed. The set setErrorLog()
works the same as in other cases.

6.6.2 setLikelihood()/setData()

void setLikelihood( BaseLikelihood *likelihood );
void setData( int num_data_samples, const double *posterior_data );

Those functions allow the user to specify the likelihood function for the inference as well as manipulate
the data. Currently, Tasmanian implements only Gaussian likelihood with covariance that is either constant
diagonal, diagonal, or general dense matrix.

Evaluating the PosteriorFromModel first generates a call to the model or sparse grids, then the output
(i.e., values of f(x)) are given to the evaluate function of the likelihood class. Depending on the way the
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likelihood is set, the data may be included in the class when the class is created, or taken as input to the
evaluate function. If the data is stored in the class, then setData() doesn’t need to be called.

6.7 class BaseLikelihood

class BaseLikelihood{
public:

BaseLikelihood();
virtual ˜BaseLikelihood();
virtual void getLikelihood( int num_model, const double *model,

std::vector<double> &likelihood,
int num_data = 0, const double *data = 0,
bool useLogForm = true ) = 0;

This class defined a function of the form L(d, f(x)). The num model indicates the number of points where
the likelihood needs to be evaluated and model indicates the model values. The number of model outputs has
to be build into the class, e.g., when calling the constructor of the inheriting class. The nun data indicates
the number of data entries and data holds the values. The format of the vectors matches the output of the
sparse grids evaluateBatch() function. The result is stored in likelihood and useLogForm indicates
whether to use the log of the likelihood. Note that the likelihood vector must be resized.

6.8 class GaussianLikelihood

class GaussianLikelihood : public BaseLikelihood{
public:

GaussianLikelihood( int outputs, TypeLikelihood likelihood, const double covariance[],
int data_entries, const double data[] );

˜GaussianLikelihood();

void getLikelihood( int num_model, const double *model,
std::vector<double> &likelihood,
int num_data = 0, const double *data = 0,
bool useLogForm = true );

Defines the Gaussian likelihood currently included in Tasmanian.

L({d1, . . . , ds}, f(x)) = exp

(
−

s∑
i=1

(di − f(x))TΣ−1(di − f(x))

)

For the constructor

• outputs is the number of outputs used by the model, i.e., the range of f(x);

• likelihood (constructor) indicates one of the three types: likely gauss scale, likely gauss diagonal,
and likely gauss dense, where the scale likelihood corresponds to a covariance with constant di-
agonal;

• likelihood (get function) is a vector that will be resized to num model and will contain the values
of the likelihood for each model output;
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• covariance is a single number for likely gauss scale, a vector of size outputs when using
likely gauss diagonal, and an outputs × outputs symmetric positive definite matrix Σ for
likely gauss dense;

• data entries is the number of data entries, i.e., s;

• data the data entries, i.e., the matrix {d1, . . . , ds} in column major format.

The data is stored in the class and the calls to getLikelihood() may contain default data entries. There is
no need to use the setData() function for the PosteriorFromModel class.

6.9 class CustomModelWrapper

class CustomModelWrapper{
public:

CustomModelWrapper();
virtual ˜CustomModelWrapper();
virtual int getNumDimensions() const = 0;
virtual int getNumOutputs() const = 0;
virtual void evaluate( const double x[], int num_points, double y[] ) const;
virtual void evaluate(const std::vector<double> &x, std::vector<double> &y) const;

};

This class can be used to define a custom model, not necessarily associated with sparse grids. The model
should communicate the umber of inputs and outputs and evaluate batches of points, identical to the sparse
grids function evaluateBatch().

6.10 MPI and distributed memory

Tasmanian includes a class that allows the use of multiple sparse grids models in a distributed computing
environment using MPI. Each sparse grid model is associated with local data and the likelihood is the
product of all likelihood across all MPI processes. This class is still in a highly experimental stage and very
feature poor. Use at your own peril.
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7 TASGRID

The tasgrid executable is a command line interface to libtasmaniansparsegrid. It provides the ability
to create and manipulate sparse grids, save and load them into files and optionally interface with another
program via text files. For the most part, tasgrid reads a grid from a file, calls one or more of the functions
described in the previous section and then saves the resulting grid.

The commands for tasgrid correspond to calls to the C++ API, where scalar inputs are given as command
line arguments, and vector/array parameters are given as matrix files, see the end of this section for the
matrix file format.

7.1 Basic Usage

./tasgrid <command> <option1> <value1> <option2> <value2> ....

The first input to the executable is the command that specifies the action that needs to be taken. The com-
mand is followed by options and values.

Every command is associated with a number of options. If other options are provided, then they are ignored.
See the help subsection for how to find which command needs which options.

The tasgrid tool has some error checking and if it encounters an error in the input, tasgrid will print a
short message specifying the error and then exit.

7.2 Example commands

./tasgrid -mq -dim 4 -depth 2 -type qptotal -1d gauss-legendre -p

Make quadrature rule in 4 dimensions that can integrate exactly all quadratic polynomials, print the result to
the screen. Note that the first column is the weight.
./tasgrid -mg -dim 3 -out 2 -depth 4 -type iptotal -1d clenshaw-curtis -gf example_grid_file
./tasgrid -l -gf example_grid_file -vf file_with_values
./tasgrid -e -gf example_grid_file -xf file_with_points -of result_file

Make global grid in 3 dimensions with clenshaw-curtis points that interpolates exactly all polynomials of
order 4. The grid is stored in example grid file. On the second command, model values are read from
the file with values and loaded into the grid. In the final command, the interpolant is evaluated at the
points specified in file with points and the result is stored in the last file.

7.3 Command: -h, help, -help, –help

./tasgrid --help

./tasgrid -makequadrature help

Prints information about the usage of tasgrid. In addition, writing help after any command will print
information specific to that command. Thus, help is a universal option.
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7.4 Commands and C++ functions

./tasgrid -makeglobal -> makeGlobalGrid()

./tasgrid -makesequence -> makeSequenceGrid()

./tasgrid -makelocalpoly -> makeLocalPolynomialGrid()

./tasgrid -makewavelet -> makeWaveletGrid()

./tasgrid -makefourier -> makeFourierGrid()

./tasgrid -makequadrature -> (one of the grids above, see comments)

./tasgrid -makeupdate -> updateGlobalGrid()/updateSequenceGrid()

./tasgrid -setconformal -> setConformalTransformASIN()

./tasgrid -getquadrature -> getQuadratureWeights()/getPoints()

./tasgrid -getinterweights -> getInterpolationWeights()

./tasgrid -getpoints -> getPoints()

./tasgrid -getneededpoints -> getNeededPoints()

./tasgrid -loadvalues -> loadNeededPoints()

./tasgrid -evaluate -> evaluateBatch()

./tasgrid -evalhierarchyd -> evaluateHierarchicalFunctions()

./tasgrid -evalhierarchys -> evaluateSparseHierarchicalFunctions()

./tasgrid -integrate -> integrate()

./tasgrid -getanisotropy -> estimateAnisotropicCoefficients()

./tasgrid -refineaniso -> setAnisotropicRefinement()

./tasgrid -refinesurp -> setSurplusRefinement()

./tasgrid -refine -> setAnisotropicRefinement()/setSurplusRefinement()

./tasgrid -cancelrefine -> clearRefinement()

./tasgrid -mergerefine -> mergeRefinement()

./tasgrid -getcoefficients -> getHierarchicalCoefficients()

./tasgrid -setcoefficients -> setHierarchicalCoefficients()

./tasgrid -getpoly -> getGlobalPolynomialSpace()

./tasgrid -summary -> printStats()

./tasgrid <command> help -> show more info for this command

Additional notes:

• The domain types for all grids are set during the make* command, domains cannot be changed with
the tasgrid executable since domain changes always change the nodes and effectively generates a
new grid.

• Make quadrature creates a grid with zero outputs with types that is based on the one dimensional rule.

• The -makeupdate grid will automatically detect sequence or global grids.

• The -getquadrature command will generate larger matrix, where the first column is the weights
and the rest correspond to the points.

• The -getinterweights command can work with multiple points at a time, the call will use OpenMP
(if available).

• The -refine command will call anisotropic refinement on Global and Sequence grids, and surplus
refinement otherwise.

• The coefficients and hierarchical functions for Fourier grids work with complex numbers, meaning
that each pair of consecutive numbers correspond to one complex number (real and complex parts).
This the matrices have twice as many columns. Note that this also applies to the coefficients as inputs
and outputs (which differs from the C++ API).
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• The -evaluate command accepts -gpuid options, which allows to select a CUDA device to use for
acceleration. If the option is omitted, GPU acceleration will not be used.

7.5 Command: -listtypes

./tasgrid -listtypes

List the available one dimensional quadrature and interpolation rules as well as the different types of grids,
refinement and conformal mapping types. Use this command to see the correct spelling of all string options.

7.6 Command: -version or -info

./tasgrid -version

./tasgrid -v

./tasgrid -info

Prints the version of the library and the available acceleration options.

7.7 Command: -test

./tasgrid -test

./tasgrid -test random

./tasgrid -test verbose

Since Tasmanian 6.0 the sparse grids testing is moved to a different executable, i.e., gridtest. The test
method of tasgrid is still included but it covers only a sub-set of the tests. Also, the tests take longer,
especially when CUDA is enables, since large reference solutions have to be computed on the slow CPU.
The gridtest executable takes the random and verbose switches, but does not need the -test command.

The tests rely on random number generation to estimate the accuracy of computed interpolants. If the test
fails, this may be indication of a problem with the hard-coded random seed. Using the random option will
reset the seed on every run and will provide more statistically significant results (also will likely fail a few
times).

The verbose will print more detailed output. This affects only the successful tests, failed tests always print
verbose information.

7.8 Matrix File Format

The matrix files have two formats, binary and ascii. The simple text file describes a two dimensional array
of real (double-precision) numbers. The file contains two integers on the first line indicating the number of
rows and columns. Those are followed by the actual entries of the matrix one row at a time.

The file containing
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3 4
1.0 2.0 3.0 4.0
5.0 6.0 7.0 8.0
9.0 10.0 11.0 12.0

represents the matrix  1 2 3 4
5 6 7 8
9 10 11 12


A matrix file may contain only one row or column, e.g.,

1 2
13.0 14.0

In binary format, the file starts with three characters TSG indicating that this is a binary Tasmanian file.
The characters are followed by two integers and the double-precision numbers that correspond to the matrix
being read left-to-right top-to-bottom.

All files used by tasgrid have the above format with three exceptions. The -gridfile option contains
saved sparse grids and it is not intended for editing outside of the tasgrid calls. The -anisotropyfile
requires a matrix with one column and it should contain double-precision numbers that have integer values.
The -customrulefile has special format is described in Appendix 11.

The default mode is to use binary files for all calls to tasgrid, but ASCII files are easier to debug and
potentially easier to import to external codes. This tasgrid has an option -ascii that can be added to any
command and will force the resulting output to be written in ASCII format.
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8 MATLAB Interface

The MATLAB interface to tasgrid consists of several functions that call various tasgrid commands
and read and write matrix files. Unlike most MATLAB interfaces, this is code does not use .mex files,
but rather system commands and text files. In a nut shell, MATLAB tsgMake*** functions take a user
specified name and create a MATLAB object and a file generated by tasgrid option -gridfile (or
TasmanianSparseGrid::write() function). The MATLAB object is used to reference the specific grid
file and is needed by most other functions. Here are some notes to keep in mind:

• The MATLAB interface requires that MATLAB is able to call external commands and the tasgrid
executable in particular.

• The MATLAB interface also requires access to a folder where the files can be written.

• The MATLAB work folder option in the install.sh scrip as well as cmake allows you to automat-
ically specify where the temporary MATLAB files will be stored. The make matlab target in the
GNU make engine sets the work folder in a sub-folder of the Tasmanian source folder. In either case,
the default folder can be changed by manually editing tsgGetPaths.m.

• Each grid has a user specified name, that is a string which gets appended at the beginning of the file
name.

• The tsgDeleteGrid(), tsgDeleteGridByName() and tsgListGridsByName() functions allow
for cleaning the files in the temporary folder.

• Every MATLAB function corresponds to one tasgrid command.

• Every function comes with help comments that can be accessed by typing

help tsgFunctionName

• Note that it is recommended to add the folder with the MATLAB interface to your MATLAB path,
otherwise you have to use the addpath command every time you want Tasmanian after MATLAB
restart.

• All input variables follow naming convention where the first character specifies the type of the vari-
able:

i stands for integer

s stands for string

f stands for real number

l stands for list

v stands for vector, i.e., row or column matrix

m stands for matrix, i.e., two dimensional array
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8.1 List of MATLAB functions and corresponding C++ API

tsgCancelRefine.m -> clearRefinement()
tsgEstimateAnisotropicCoefficients.m -> estimateAnisotropicCoefficients()
tsgEvaluateHierarchy.m -> evaluateHierarchicalFunctions()
tsgEvaluate.m -> evaluateBatch()
tsgGetHCoefficients.m -> getHierarchicalCoefficients()
tsgGetInterpolationWeights.m -> getInterpolationWeights()
tsgGetNeededPoints.m -> getNeededPoints()
tsgGetPoints.m -> getPoints()
tsgGetPolynomialSpaces.m -> getGlobalPolynomialSpace()
tsgGetQuadrature.m -> getQuadratureWeights()/getPoints()
tsgIntegrate.m -> integrate()
tsgLoadHCoefficients.m -> setHierarchicalCoefficients()
tsgLoadValues.m -> loadNeededPoints()
tsgMakeFourier.m -> makeFourierGrid()
tsgMakeGlobal.m -> makeGlobalGrid()
tsgMakeLocalPolynomial.m -> makeLocalPolynomialGrid()
tsgMakeQuadrature.m -> (see tasgrid -makequadrature)
tsgMakeSequence.m -> makeSequenceGrid()
tsgMakeWavelet.m -> makeWaveletGrid()
tsgMergeRefine.m -> mergeRefinement()
tsgRefineAnisotropic.m -> setAnisotropicRefinement()
tsgRefineSurplus.m -> setSurplusRefinement()
tsgSummary.m -> printStats()

The MATLAB functions wrap around tasgrid, thus what applies to one applies to the other. See the
tasgrid notes about the order of complex Fourier coefficients and make quadrature.

8.2 function tsgCoreTests()

tsgCoreTests()

Performs a series of tests of the MATLAB interface. Failing test are indication of wrong installation.

8.3 function tsgGetPaths()

[ sFiles, sTasGrid ] = tsgGetPaths()

This function returns two strings:

• sTasGrid is a string containing the path to the tasgrid executable (including the name of the exe-
cutable).

• sFiles is the path to a folder where MATLAB has read/write permission. Files will be created and
deleted in this folder.
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8.4 functions tsgReadMatrix() and tsgWriteMatrix()

Those functions are used internally to read from or write to matrix files. Those functions should not be
called directly.

8.5 functions tsgCleanTempFiles()

Those functions are used internally to clean the temporary files.

8.6 function tsgListGridsByName()

Scans the work folder and lists the existing grids regardless whether those are currently associated with
MATLAB objects. The names can be used for calls to tsgDeleteGridByName() and tsgReloadGrid().

8.7 function tsgDeleteGrid()/tsgDeleteGridByName()

Deleting the MATLAB object doesn’t remove the files from the work folder, thus tsgDeleteGrid() has to
be explicitly called to remove the files associated with the grid. If the MATLAB object has been lost (i.e.,
cleared by accident), then the grid files can be deleted by specifying just the name for tsgDeleteGridByName(),
see also tsgListGridsByName().

8.8 function tsgReloadGrid()

Creates a new MATLAB object file for a grid with existing files in the work folder. This function can restore
access to a grid if the grid object has been lost. This function can also create aliases between two grids
which can be dangerous, see section 8.15. This function can also be used to gain access to a file generated by
tasgrid -gridfile option or TasmanianSparseGrid::write() function, just generate the file, move
it to the work folder, rename it to <name> FileG, and call lGrid = tsgReloadGrid( <name> ).

8.9 function tsgCopyGrid()

Creates a duplicate of an existing grid, this function creates a new MATLAB object and a new grid file in
the work folder.

8.10 function tsgWriteCustomRuleFile()

Writes a file with a custom quadrature or interpolation rule, see Appendix 11 and the function help for more
details.
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8.11 function tsgExample()

tsgExample()

This function contains sample code that replicated the C++ example. This is a demonstration on the proper
way to call the MATLAB functions.

8.12 Other functions

All other functions correspond to calls to tasgrid with various options. The names are self-explanatory.
Use the MATLAB help command to see the syntax of each function.

8.13 GPU acceleration

lGrid = tsgMakeLocalPolynomial( \cdots )
lGrid.gpuDevice = 0;
result = tsgEvaluate(lGrid, \cdots)

If the lGrid object has a gpuDevice field, then the corresponding GPU will be used for the evaluations.
Run tsgCoreTest() to see a list of detected CUDA devices.

8.14 Saving a Grid

You can save the lGrid object just like any other MATLAB object. However, a saved grid has two com-
ponents, the lGrid object and the files associated with the grid that are stored in the folder specified by
tsgGetPath(). The files in the temporary folder will be persistent until either tsgDeleteGrid() is
called or the files are manually deleted. The only exception is that the tsgExample() function will over-
write any grids with names starting with tsgExample1 through tsgExample10. Note that modifying
tsgGetPath() may result in the code not being able to find the needed files and hence the grid object may
be invalidated.

8.15 Avoiding Some Problems

• Make sure to call tsgDeleteGrid() as soon as you are done with a grid, this will avoid clutter in the
temporary folder.

• If you clear an lGrid object without calling tsgDeleteGrid() (i.e., you exit MATLAB without
saving), then make sure to use tsgListGridsByName() and tsgDeleteGridByName() to safely
delete the “lost” grids.

• Working with the MATLAB interface is very similar to working with dynamical memory, where the
data is stored on the disk as opposed to the RAM and the lGrid object is the pointer. Also, the grids
are associated by name as opposed to a memory address.
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• If multiple users are sharing the same temporary folder, then it would be useful if they come up with
a naming convention that prevents two users from using the same grid name. For example, instead
of both users creating a grid named mygrid1, the users should name their grids johngrid1 and
janegrid1.

• All of the grid data for all of the grids is stored in the same folder. Anyone with access to the temporary
folder has full access to all of the sparse grid data.

• If two users have separate copied of tsgGetPaths(), then they can use separate storage folders
without any of the multi-user considerations. This is true even if all other files are shared, including
the tasgrid executable and libtsg library.
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9 Python Interface

The Python interface uses c types and links to the C interface of Tasmanian. The C interface uses a series
of functions that take a void pointer which is an instance of the C++ class. The Python module takes a hold
of the C void pointer and encapsulates it into a Python class. This allows for the usage of Python in a way
very similar to C++.

Both Python 2 and 3 are supported and the Tasmanian module is fully compatible with both versions. By
default, the installer puts /usr/bin/env python in the hash-bang command and this can be overwritten
using the appropriate cmake or make command, see §4.

Required Python modules:

• c types

• numpy

• matplotlib.pyplot (optional)

Every Python function that accepts input checks the validity of the inputs and trows a TasmanianInputError
exception with two strings

• sVariable: pointing to the variable where the error is encountered

• sMessage: gives a short explanation of the error encountered

In addition, every function in the TasmanianSparseGrid class comes with short description that can be
invoked with the Python help command.

The names of the functions in the Python class match the names in the C++ library. The input and output
C++ arrays, i.e., double* double[] int[], are replaced by numpy 1D and 2D arrays. The enumerated
inputs are replaced by strings with the same syntax as the tasgrid command line tool. Refer to the help for
the specifics for each function.

One point of difference in the evaluate functions is that the default Python evaluate() corresponds to C++
evaluateBatch() and is not thread safe by default. Python scripts are usually sequential, hence the faster
thread unsafe option is chosen here. Thread safe evaluations are available with the evaluateThreadSafe()
function. The GPU acceleration options are also available via the Python interface.

Finally, if matplotlib.pyplot is available on execution time, the Python module gives two plotting func-
tions that can be called for grids with two dimensions.

• plotPoints2D: plots the nodes associated with the grid

• plotResponse2D: plots a color image corresponding to the response surface
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10 Fortran Interface

Tasmanian 6.0 comes with semi-stable Fortran 90/95 module that wraps around the C++ sparse grids library
and gives access to all of the core functionality. The interface uses integers that reference entries of an array
of pointers to TasmanainSparseGrid objects. A new ID is generated by tsgNewGridID(), which works
similar to a C++ constructor, then the ID can be used in all follow on calls to the Fortran module. Once
work is done with the grid, tsgFreeGridID() should be called to free all memory used by this grid. And
tsgClearAll() can be called to delete all memory associated with all grids.

function tsgNewGridID() result(newid)
integer :: newid
...

subroutine tsgFreeGridID(gridID)
integer :: gridID
...

subroutine tsgClearAll()

The enumerate types used by the C++ interface are replaced by hard-coded constant integers, i.e., the module
defines a parameter integer tsg clenshaw curtis, which can be used to call tsgMakeGlobalGrid(). All
vectors are replaced by Fortran vectors and 2D matrixes, similar to the calls to tasgrid. However, note
that Fortran is using column-major storage format, hence the row-column format is reversed to what you
see in Python or tasgrid calls, i.e., when the C++ interface calls “the first point is stored in the first set of
getNumDimensions() entries” that means the first column of the Fortran matrix.

All defined integer parameters start wit tsg and all functions/subroutines start with tsg. A full list is
provided at the top of TasmanianSG.f90 file, at the moment the manual will not list all names as they are
practically identical to the C++ interface.

The Fourier grids use complex numbers and hence special functions are provides:

tsgEvaluateComplexHierarchicalFunctions(...)
tsgGetComplexHierarchicalCoefficients(...)
tsgGetComplexHierarchicalCoefficientsStatic(...)

The interface comes with negligible overhead, except for the case of sparse hierarchical functions, where
extra overhead is needed since there is no “clean” way to pass pointer to dynamic memory created in C++
to Fortran 90/95.
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11 Examples

Tasmanian comes with four example files written in C++, Python and MATLAB that demonstrate how to use
the libraries. The examples are a good self explanatory illustration for the libraries are intended to be used
and a very good starting point for people new to Tasmanian. Make sure to look at the source files.

The MATLAB example is called tsgExample() and is located in the MATLAB install folder, which is needed
for the script to interact with the rest of the MATLAB interface. The other three examples are located in the
<install folder>/examples (if using install.sh or cmake) or the source root folder (if using GNU
make). The C++ examples come with CMakeLists.txt or a make examples target, depending on the
build engine.

The three sparse grids example comes in all three languages and executes identical operations, hence all
three can be viewed side by side for comparison. The source is split into independent sections, allowing to
view each example independently. The examples are designed to be simple to illustrate capabilities and not
to be a comprehensive numerical study of sparse grids. Only benchmark 5 comes with a mock-up benchmark
to contrast Global and Sequence grids.

The single DREAM example is written only in C++ and like the rest of the module is still in a testing stage.
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Custom Rule Specification

The custom rule functionality allows the creation of a sparse grid using a rule other than the ones imple-
mented in the code. The custom rule is defined via a file with tables that list the levels, number of points per
level, exactness of the quadrature at each level, points and their associated weights. Currently, the custom
rules work only with global grids and hence the interpolant associated with the rule is a global interpolant
using Lagrange polynomials.

The custom rule is defined via custom rule file, with the following format:

line 1: should begin with the string description: and it should be followed by a string with a short de-
scription of the rule. This string is used only for human readability purposes.

line 2: should begin with the string levels: followed by an integer indicating the total number of rule levels
defined in the file.

After the description and total number of levels have been defined, the file should contain a sequence of
integers describing the number of points and exactness, followed by a sequence of floating point numbers
listing the points and weights.

integers: is a sequence of integer pairs where the first integer indicates the number of points for the current
level and the second integer indicates the exactness of the rule. For example, the first 3 levels of
the Gauss-Legendre rule will be described via the sequence 1 1 2 3 3 5, while the first 3 levels of the
Clenshaw-Curtis rule will be described via 1 1 3 3 5 5.

floats: is a sequence of floating point pairs describing the weights and points. The first number of the pair is
the quadrature weight, while the second number if the abscissa. The points associated with the first
level are listed in the first pairs. The second set of pairs lists the points associated with the second
level and so on.

Here is an example of Gauss-Legendre 3 level rule for reference purposes:

description: Gauss-Legendre rule
levels: 3
1 1 2 3 3 5
2.0 0.0
1.0 -0.5774 1.0 0.5774
0.5556 -0.7746 0.8889 0.0 0.5556 0.7746

Similarly, a level 3 Clenshaw-Curtis rule can be defined as

description: Clenshaw-Curtis rule
levels: 3
1 1 3 3 5 5
2.0 0.0
0.333 1.0 1.333 0.0 0.333 -1.0
0.8 0.0 0.067 -1.0 0.067 1.0 0.533 -0.707 0.533 0.707

Several notes on the custom rule file format:

- Tasmanian works with double precision and hence a custom rule should be defined with the corre-
sponding number of significant digits. The examples above are for illustrative purposes only.
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- The order of points within each level is irrelevant. Tasmanian will internally index the points.

- Points that are within distance of 10−12 of each other will be treated as the same point. Thus, re-
peated (nested) points can be automatically handled by the code. The tolerance can be adjusted in
tsgEnumerates.hpp by modifying the NUM TOL constant,

- Naturally, Tasmanian cannot create a sparse grid that requires a one dimensional rule with level higher
than what is provided in the file. Predicting the required number of levels can be hard in the case
of anisotropic grids, the code will raise a run-time exception if the custom rule does not provide a
sufficient number of points.

- The exactness constants are used only if qptotal or qpcurved types are used and the indexes of
the polynomial space, i.e., getPolynomialIndexes(). If quadrature rules are not used, then the
exactness integers can be set to 0.

- The quadrature weights are used only if integration is performed. If no quadrature or integration is
used, then the weights can all be set to 0.

- If a custom rule is used together with setDomainTransform(), then the transform will assume that
the rule is defined on the canonical interval [−1, 1]. A custom rule can be defined on any arbitrary in-
terval, however, for any interval different from [−1, 1] the setDomainTransform() functions should
not be used.

- The code comes with an example custom rule file that defines 9 levels of the Gauss-Legendre-
Patterson rule, a.k.a., nested Gauss-Legendre rule.
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