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1 Description of the physical problem : electrical oscillator with 4
diodes bridge full-wave rectifier

In this sample, a LC oscillator initialized with a given voltage across the capacitor and a null current
through the inductor provides the energy to a load resistance through a full-wave rectifier consisting of
a 4 ideal diodes bridge (see fig. 1).
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Figure 1: Electrical oscillator with 4 diodes bridge full-wave rectifier

Both waves of the oscillating voltage across the LC are provided to the resistor with current flowing
always in the same direction. The energy is dissipated in the resistor resulting in a damped oscillation.

2 Definition of a general abstract class of NSDS : the linear time in-
variant complementarity system (LCS)

This type of non-smooth dynamical system consists of :

• a time invariant linear dynamical system (the oscillator). The state variable of this system is de-
noted by x.

• a non-smooth law describing the behaviour of each diode of the bridge as a complementarity
condition between current and reverse voltage (variables (y, λ) ). Depending on the diode position
in the bridge, y stands for the reverse voltage across the diode or for the diode current.
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• a linear time invariant relation between the state variable x and the non-smooth law variables (y, λ)

2.1 Dynamical system and Boundary conditions
Remark : In a more general setting, the system’s evolution would be described by a DAE :

G · x′ = A · x + E · u + b + r

with G, A, E matrices constant over time (time invariant system), u, b source terms functions of time and
r, a term coming from the non-smooth law variables : r = B · λ + a with B, a constant over time.
We will consider here the case of an ordinary differential equation :

x′ = A · x + E · u + b + r

and an initial value problem for which the boundary conditions are t0 ∈ R, x(t0) = x0.

2.2 Relation between constrained variables and state variables
In the linear time invariant framework, the non-smooth law acts on the linear dynamical system evo-
lution through the variable r = B · λ + a. Reciprocally, the state variable x acts on the non-smooth law
through the relation y = C · x + D · λ + F · u + e with C, D, F, e constant over time.

2.3 Definition of the Non Smooth Law between constrained variables
It is a complementarity condition between y and λ : 0 ≤ y ⊥ λ ≥ 0. This corresponds to the behaviour
of the rectifying diodes, as described in 3.3.

3 The formalization of the electrical oscillator with 4 diodes bridge
full-wave rectifier into the LCS

The equations come from the following physical laws :

• the Kirchhoff current law (KCL) establishes that the sum of the currents arriving at a node is zero,

• the Kirchhoff voltage law (KVL) establishes that the sum of the voltage drops in a loop is zero,

• the branch constitutive equations define the relation between the current through a bipolar device
and the voltage across it

Refering to figure 1, the Kirchhoff laws could be written as :

vL = vC
vL = vDF1 − vDR1
vDF1 + vR + vDR2 = 0
vDF2 + vR + vDR1 = 0
iC + iL + iDF1 − iDR2 = 0
iDF1 + iDR1 = iR
iDF2 + iDR2 = iR

while the branch constitutive equations for linear devices are :

iC = Cv′C
vL = Li′L
vR = RiR
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and last the "branch constitutive equation" of the ideal diodes that is no more an equation but instead a
complementarity condition :

0 ≤ iDF1 ⊥ −vDF1 ≥ 0
0 ≤ iDR1 ⊥ −vDR1 ≥ 0
0 ≤ iDF2 ⊥ −vDF2 ≥ 0
0 ≤ iDR2 ⊥ −vDR2 ≥ 0

This is illustrated on figure 2 where the left-hand sketch displays the ideal diode characteristic and the
right-hand sketch displays the usual exponential characteristic as stated by Shockley’s law.
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Figure 2: Non-smooth and smooth characteristics of a diode

3.1 Dynamical equation
After rearranging the previous equations, we obtain :
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3.2 Relations
We recall that the r = B · λ + a equation is expressed with
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from the dynamical equation (3.1).
Rearranging the initial set of equations yields :
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as the second equation of the linear time invariant relation with
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3.3 Non Smooth laws
There is just the complementarity condition resulting from the ideal diode characteristic :

0 ≤ −vDR1 ⊥ iDR1 ≥ 0
0 ≤ −vDF2 ⊥ iDF2 ≥ 0
0 ≤ iDF1 ⊥ −vDF1 ≥ 0
0 ≤ iDR2 ⊥ −vDR2 ≥ 0

4 Description of the numerical strategy: the Moreau’s time-stepping
scheme

4.1 Time discretization of the dynamical system
The integration of the ODE over a time step [ti, ti+1] of length h is :

∫ ti+1

ti
x′ dt =

∫ ti+1

ti
A · x dt +

∫ ti+1

ti
(E · u + b)dt +

∫ ti+1

ti
r dt

The left-hand term is x(ti+1)− x(ti).
Right-hand terms are approximated this way :

•
∫ ti+1

ti
A · x dt is approximated using a θ-method

∫ ti+1

ti
A · x dt ≈ hθ(A · x(ti+1)) + h(1 −θ)(A · x(ti))

• since the second integral comes from independent sources, it can be evaluated with whatever
quadrature method, for instance a θ-method

∫ ti+1

ti
(E · u + b)dt ≈ hθ(E · u(ti+1) + b(ti+1)) + h(1 −θ)(E · u(ti) + b(ti))

• the third integral is approximated like in an implicit Euler integration
∫ ti+1

ti
r dt ≈ hr(ti+1)
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By replacing the accurate solution x(ti) by the approximated value xi, we get :

xi+1 − xi = hθ(A · xi+1) + h(1−θ)(A · xi) + hθ(E · u(ti+1) + b(ti+1)) + h(1−θ)(E · u(ti) + b(ti)) + hri+1

Assuming that I − hθA is invertible, matrix W is defined as (I − hθA)−1. We get then :

xi+1 = W(I + h(1 −θ)A) · xi + W(hθ(E · u(ti+1) + b(ti+1)) + h(1 −θ)(E · u(ti) + b(ti))) + hWri+1

An intermediate variable x f ree related to the smooth part of the system is defined as :

x f ree = W(I + h(1 −θ)A) · xi + W(hθ(E · u(ti+1) + b(ti+1)) + h(1 −θ)(E · u(ti) + b(ti)))

Thus the calculus of xi+1 becomes :
xi+1 = x f ree + hWri+1

4.2 Time discretization of the relations
It comes straightforwardly :

ri+1 = B · λi+1 + a

yi+1 = C · xi+1 + D · λi+1 + F · u(ti+1) + e

4.3 Time discretization of the non-smooth law
It comes straightforwardly :

0 ≤ yi+1 ⊥ λi+1 ≥ 0

4.4 Summary of the time discretized equations
These equations are summarized assuming that there is no source term and simplified relations as for
the electrical oscillator with full-wave rectifier.

W = (I − hθA)−1

x f ree = W(I + h(1 −θ)A) · xi

xi+1 = x f ree + hWri+1

ri+1 = B · λi+1

yi+1 = C · xi+1 + D · λi+1

0 ≤ yi+1 ⊥ λi+1 ≥ 0

4.5 Numerical strategy
The integration algorithm with a fixed step is described here :
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Algorithm 1 Integration of the electrical oscillator with 4 diodes bridge full-wave rectifier through a
fixed Moreau time stepping scheme
Require: R > 0, L > 0, C > 0
Require: Time parameters h, T, t0 and θ for the integration
Require: Initial value of inductor voltage vL = x0(0)
Require: Optional, initial value of inductor current iL = x0(1) (default : 0)

nstep = T−t0
h

//Dynamical system specification

A =

(

0 −1
C

1
L 0

)

//Relation specification

B =

(

0 0 −1
C

1
C

0 0 0 0

)

C =









0 0
0 0
−1 0
1 0









D =









1
R

1
R −1 0

1
R

1
R 0 −1

1 0 0 0
0 1 0 0









//Construction of time independent operators
Require: I − hθA invertible

W = (I − hθA)−1

M = D + hCWB
//Non-smooth dynamical system integration
for i = 0 to nstep − 1 do

x f ree = W(I + h(1 −θ)A)xi // Computation of x f ree

q = C · x f ree // Formalization of the one step LCP
(yi+1, λi+1) = solveLCP(M, q) // One step LCP solving

xi+1 = x f ree + hWBλi+1 // Computation of new state

end for
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5 Comparison with numerical results coming from SPICE models
and algorithms

We have used the SMASH simulator from Dolphin to perform a simulation of this circuit with a smooth
model of the diode as given by Shockley’s law , with a classical one step solver (Newton-Raphson) and
the trapezoidal integrator.

5.1 Characteristic of the diode in the SPICE model
The figure (3) depicts the static I(V) characteristic of two diodes with default SPICE parameters and
two values for the emission coefficient N : 1.0 (standard diode) and 0.25 (stiff diode).
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Figure 3: Diodes characteristics from SPICE model with N = 0.25 and N = 1

The stiff diode is close to an ideal one with a threshold of 0.2 V.

5.2 Simulation results
Figure (4) displays a comparison of the SMASH and SICONOS results with a trapezoidal integration
(θ = 0.5) and a fixed time step of 1 µs. A stiff diode model was used in SMASH simulations. One can
notice that the results from both simulators are very close. The slight differences are due to the smooth
model of the diode used by SMASH, and mainly to the threshold of around 0.2 V. Such a threshold
yields small differences in the conduction state of the diode with respect to the ideal diode.
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Figure 4: SMASH and SICONOS simulation results with trapezoidal integration, 1 µs time step


