PIN Skimmer: Inferring PINs Through The Camera and
Microphone

Laurent Simon University of Cambridge
Imrs2@cl.cam.ac.uk

ABSTRACT

Today’s smartphones provide services and uses that required
a panoply of dedicated devices not so long ago. With them,
we listen to music, play games or chat with our friends; but
we also read our corporate email and documents, manage
our online banking; and we have started to use them di-
rectly as a means of payment. In this paper, we aim to raise
awareness of side-channel attacks even when strong isola-
tion protects sensitive applications. Previous works have
studied the use of the phone accelerometer and gyroscope
as side channel data to infer PINs. Here, we describe a new
side-channel attack that makes use of the video camera and
microphone to infer PINs entered on a number-only soft key-
board on a smartphone. The microphone is used to detect
touch events, while the camera is used to estimate the smart-
phone’s orientation, and correlate it to the position of the
digit tapped by the user. We present the design, implemen-
tation and early evaluation of PIN Skimmer, which has a
mobile application and a server component. The mobile ap-
plication collects touch-event orientation patterns and later
uses learnt patterns to infer PINs entered in a sensitive ap-
plication. When selecting from a test set of 50 4-digit PINs,
PIN Skimmer correctly infers more than 30% of PINs after
2 attempts, and more than 50% of PINs after 5 attempts
on android-powered Nexus S and Galaxy S3 phones. When
selecting from a set of 200 8-digit PINs, PIN Skimmer cor-
rectly infers about 45% of the PINs after 5 attempts and 60%
after 10 attempts. It turns out to be difficult to prevent such
side-channel attacks, so we provide guidelines for developers
to mitigate present and future side-channel attacks on PIN
input.

Categories and Subject Descriptors

D.4.6 [OPERATING SYSTEMS]: Security and Protec-
tion—Invasive software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SPSM’13, November 8, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2491-5/13/11 ...$15.00.
http://dx.doi.org/10.1145/2516760.2516770.

Ross Anderson University of Cambridge
rjal4@cl.cam.ac.uk

General Terms
Security, Design

Keywords

Mobile, Side Channel, Covert Channel, Camera, Video Cam-
era, PIN, Audio, Microphone, Mobile Malware

1. INTRODUCTION

Modern smartphone platforms let users customize their
device via third-party applications found on “app stores” or
traditional websites. Application provenance is a problem so
users are constantly at risk of installing malicious apps that
steal personal data or gain root access to their device. In
order to provide stronger isolation for sensitive applications
(e.g. DRM, payment, banking, corporate emails), more ro-
bust architectures have been proposed. Samsung’s KNOX
[1] and BlackBerry’s Balance [2] introduce the notion of iso-
lated “containers” running on top of a single kernel. Users
access their corporate documents in the “Work container”
which is shielded from the “Home container” where third-
party apps are installed. Theoretically, malware running in
“Home” can exploit vulnerabilities in the shared kernel to
get access to “Work”. So to provide greater protection, new
smartphone architectures propose to run two entire OSes in
parallel on the application CPU. The default OS (e.g. An-
droid, WP, BB, etc.) runs as usual and can be customized
with third-party apps; while the other OS only runs sensi-
tive apps (e.g. corporate emails, banking apps, etc.). This
separation can be achieved with virtualization [3], micro-
kernel [4] or ARM’s TrustZone technology [5] and provides
“strong” isolation between the two OSes. The default OS
(e.g. Android) is usually referred to as the Rich Ezecution
Environment (REE), the Insecure OS or the Untrusted OS.
The separate OS hosting sensitive apps is usually referred
to as the Trusted Ezecution Environment (TEE), the Secure
0OS, or the Trusted OS. Fig. 2 illustrates the concept with
one Untrusted OS (left) and one Trusted OS (right).

Virtualization solutions are not yet available; however those
based on TrustZone are already shipped in many phones.
For example, the Samsung Galaxy S3/S4 runs Android as
the Untrusted OS and a Trusted OS based on TrustZone
technology. While users type sensitive information within
the Trusted OS, the Android OS cannot access the screen,
thereby providing an allegedly secure input path. This might
be used to protect the SIM PIN, the OS PIN, the NFC pay-
ment PIN or PINs typed to access banking services on the
dial pad.

However, the sheer amount of shared hardware resources
between the Trusted OS and the Untrusted OS opens up the
possibility of side channel attacks. For instance, by monitor-
ing the accelerometer and gyroscope during PIN input, re-
searchers are able to infer which part of the screen is tapped
and greatly reduce the key space of the PIN to brute-force
it (see Section 7).

To our knowledge, there is no previous work using the
video camera and microphone as side-channels to infer se-
crets entered on touchscreen smartphones. In this paper,
we evaluate the feasibility of such attacks. By recording
audio during PIN input, we can detect touch events (see
Section 3.4). By recording video from the front camera dur-
ing PIN input, we can retrieve the frames that correspond to
touch events. Then we extract orientation changes from the
touch-event frames, and we show that it is possible to infer
which part of the screen is touched by users. We hope to
raise awareness of side channel attacks on smartphones even
when “strong” isolation is used to secure sensitive input.

Our main contributions are as follows.

e We present a new side-channel attack on PIN input
using the front video camera and microphone.

e We raise awareness of the difficulty of properly design-
ing a trusted path. Specifically, all shared resources
need careful consideration when reasoning about their
security.

e We present the design, implementation and early eval-
uation of PIN Skimmer when applied to a standard
PIN pad on the Google Nexus S and Samsung Galaxy
S3.

e We propose simple OS-level countermeasures to miti-
gate side-channel attacks on sensitive input.

The remainder of this paper is organized as follows. In
Section 2, we explain the principles of the attack and the
assumptions made. Section 3 follows with the details on the
design and implementation of PIN Skimmer. We present
the results of our evaluation in Section 4, then we discuss
the limitations of our attack in Section 5. We propose possi-
ble countermeasures to mitigate the vulnerability in Section
6, while the related work can be found in Section 7. We
conclude in Section 8.

2. ATTACK OVERVIEW
2.1 Assumptions and Threat Model

Infection: We assume the user has naively installed a ma-
licious application from app stores like Google’s [6], Ama-
zon’s [7], Alcatel’s [8], Gfan’s [9] and eoeMarket’s [10], or
maliciously been tricked into installing it via social engi-
neering techniques [11, 12], drive-by downloads [13] or via
QR codes [14]. We initially assumed that the malicious ap-
plication had exploited a vulnerability in Android and had
gained root access on the device. We later discovered that,
with some ingenuity, the attack can be performed by any
app with camera and microphone permission (see Section
6.1).

Phone Architecture: We assume a smartphone with
two OSes running in parallel. A good example of such a
phone is the Samsung Galaxy S3 which concurrently runs

the Android OS and the TrustZone OS. Even though the
malicious app has gained root access in the Android OS, the
architecture of the phone ensures that it cannot access sen-
sitive data in the TrustZone OS. As a plausible attack sce-
nario, we assume the Trusted OS runs a banking application
protected by a PIN. When users want to transfer money via
the banking app, they open the app in the Trusted OS and
enter their PIN. When users interact with the Trusted OS,
the Android OS (and hence the rootkit) cannot access the
screen, hence providing a trusted path between the Trusted
OS and the user. However, the rootkit still has access to
certain shared resources like the accelerometer, the camera,
the microphone, the GPS, etc. that can be used as side
channels (Fig. 2). We will see in Section 6.1 that if the
banking application runs in the Android OS (rather than
in TrustZone OS), other Android apps can also perform the
attack without requiring root access.

PIN Settings: We focus our investigation on (digit-only)
PINs because they are commonly used on phones (e.g. NFC
payments, SIM PIN, OS lock PIN, “dialed” PINs for banking
services). We assume that the user types a PIN by touching
the screen with the thumb of the hand holding the smart-
phone, as depicted in Fig. 1. Furthermore, we assume that
the user touches the OK-button after entering his PIN in
order to validate it. The PIN pad presented by the banking
app is depicted in Fig. 4: it is identical to the one used to
unlock Android smartphones. As user feedback, we assume
the Trusted OS provides short vibrations upon each of the
user’s inputs. This is a common feature of smartphones’
virtual keyboards and it is also one of the available options
for the Android PIN lock screen, as depicted in the security
settings view in Fig. 3.

Objective: Fig. 4 depicts the PIN pad displayed by
the banking app running in the Trusted OS. Each button
maps to a specific part of the screen. Our objective is to
guess which part of the screen is touched by the user, using
the front video camera and microphone data that remain
accessible to the Android OS while users interact with the
banking app in the trusted OS.

Cashing Out: Once the trojan in the Untrusted OS has
inferred the PIN used to unlock the banking app running in
the trusted OS, the attackers need to cash out. We imag-
ine that real miscreants would advertise the PINs of phones
they have compromised in underground forums along with
the location of the devices. Remember that the trojan has
root access in Android so has access to the GPS at will.
Meanwhile, smartphone theft is a growing problem [15, 16].
We imagine that smartphone thieves would “optimize” their
theft by selectively tracking potential victims for whom the
banking app’s PIN is advertised in an underground forum.

2.2 Attack Flow

PIN Skimmer has four modes of operation depicted in Fig.
6.

Monitoring Mode: In Monitoring Mode, the rootkit in
the Untrusted OS monitors user’s behavior to decide when
to acquire data from the camera and microphone. In this
mode, the rootkit can make use of all sensors (e.g. GPS,
accelerometer, gyroscope) available to the Android OS to
ascertain that necessary conditions are met before recoding
data from the camera and microphone. For example, if the
victim is in motion (e.g. walking), data is noisy so it is

& 8:53 & 10:54
= Security

Sy lock
Untrusted OS Trusted OS ez
Power button instantly loc '+ @ @ &
1 2 3 ‘
a5 s Vib h v ® u’ e
T ibrate on toucl ,_% o7/ s
0 Owner info I~ @
®
. ENCRYPTION ’//,;’/—\\ // N \
Hypervisor | Encrypt phone (\\;:Z) U 'i,\‘
po— Hardware |
Figure 1: User Figure 2: Attack Figure 3: Screen Figure 4: PIN pad. Figure 5: Game
holding & typing scenario lock vibration op- played by users in
with one hand. tion in Android Collecting Mode.
ICS. Users touch the

important to filter it out. At present however, PIN Skimmer
does not implement this mode but previous research suggests
this could be possible [17, 18]. So this mode is left for future
research.

Collecting Mode: In Collecting Mode, the user interacts
with the malware, in the form of a (malicious) game running
in the Android OS as illustrated in Fig. 5. In this mode,
PIN Skimmer legitimately receives all touch events from the
user and simultaneously records data from the front camera.
Every time the user touches the screen, PIN Skimmer takes
a picture with the front camera and saves the image to disk
along with its associated digit. Later, when a WiFi access
point is in range (see Section 2.3), the pictures are uploaded
to a remote server for processing. As presented later in the
paper, the overall size of saved data is less than 2.5 MB. Note
that the number of smartphones with an embedded front
camera is steadily growing as it enables the development of
enhanced services like video calls [19, 20].

Learning Mode: In Learning Mode, the remote server
extracts relevant features from the collected data. The fea-
tures are then fed to a learning algorithm in order to build
a prediction model. In the future, we imagine that the Col-
lecting and Learning phases could be skipped by building a
generic model “offline” from a (large) set of users. For our
current investigation though, we train each user individually.

Logging Mode: In Logging Mode, i.e. when the user
enters a PIN in the Trusted OS, PIN Skimmer turns on
the front camera. It stores the video file (which contains
the audio) on the phone before opportunistically uploading
it to a remote server for processing. The server runs the
algorithm trained in the Learning Mode to predict the PIN.
At this point, the miscreants have a list of possible PINs for
the banking app running on the compromised phones; which
they can sell in the underground market (Section 2.1). As
presented later in the paper, the overall size of the video
is less than 400kB. Based on the prediction model built
in the Learning Mode, the server tries to predict the user’s
corresponding PIN.

2.3 Stealthiness

To be successful, malware must hide their behavior.

identical icons.

Overhead/Battery: Image processing algorithms are
run on a remote server, not on the phone; so there is no
noticeable battery drain noticeable by the victim. Similarly,
the extraction of features, the training of the learning al-
gorithm and the predictions are performed server side so
they do not cause battery drain on the phone. Because
the data to upload does not exceed 2.5 MB for each mode
of operation, there is no noticeable effect on battery when
transferring data to the remote server.

Camera use: The use of camera must also be stealthy in
order not to raise the victim’s suspicion. Some phones have
a LED that is automatically turned on when the camera is
in use. The LED can be disabled via an API exposed by the
Android OS. One possible drawback of this method is that
it might not be supported by all android phones because of
manufacturers’ customizations to the OS. Some phones also
have a shutter sound when pictures are taken. The shutter
sound can be disabled by temporarily muting the speakers
while taking pictures. This could be an issue if the user
is listening to music on his phone while malware mute the
phone. Since our threat model considers malware with root
access to the Android OS, a robust way to disable both the
LED and the shutter sound is to tamper with the OS drivers.

Data saved on phone: As previously described, the
trojan stores pictures in the Collecting Mode and a few sec-
onds of video in the Logging Mode. As presented later in
the paper, the data does not exceed 2.5 MB for each mode of
operation. We believe real malware would tamper with OS
libraries to hide such files from users (as PC rootkits do).

Network Activity: The trojan requires Internet in order
to upload the pictures stored during the Collecting Mode
and a few seconds of video stored during the Logging Mode.
To remain undetected by the victim, it can tamper with OS
libraries to hide the number of packets sent to and received
from a remote server. It is equally important to ensure not
to incur charges to users for data usage. This is a genuine
problem because some users have a limited amount of data
they can spend per month. To this end, we believe a real
trojan would opportunistically wait for a WiFi network to
be in range to upload the data. Most users have a WiFi
router at home to access the Internet. Hence, we believe
that a real trojan would be able to upload data stealthily

W2

Save pictures server
on phone

YES - Upload pictures to

- Delete pictures on
phone

Monotoring Mode (phone)

Play game

Collecting Mode (phone)

Save prediction
model on server <A

Train learning algo <:|

- Process pictures

- Extract features

Learning Mode (server)

NO - Record video/audio

=><_ Noisy? e =

- Save files on phone

Banking app

WiFi? = eINEr | PIN with prediction
- Delete video on model
phone

Logging Mode (phone) and predictions (server)

YES - Upload video to Server predicts

Thieves use PIN to
unlock the
banking app

Thieves loot
victim's account <=

compromised phones ised i
<3 p p L - advertised in

Thieves track Compromised phones

and steal them underground forums

Cashing out

Figure 6: Modus operandi of trojan.

over WiFi every night when victims are home. Malware
may want to hide network activity from the ISP; it could
also make use of Tor [21] or Domain Generation Algorithms
(DGN) to be more covert [22].

Permissions: The permissions needed by the trojan at
installation time could raise suspicion from users. The stealth-
iness depends on the type of components that is exploited
to root the phone. For example, some Android root exploits
like [23] do not need any permissions while others might.
After exploitation, the rootkit can tamper with the relevant
OS components to hide itself entirely from the victim.

3. IMPLEMENTATION DETAILS

To test the feasibility of our attack, we ideally need a
Trusted OS-enabled smartphone to run the PIN pad of Fig.
4. The Samsung Galaxy S3 features a TrustZone-based TEE
called MobiCore developed by G&D [24]. Unfortunately,
developing applications for MobiCore requires certification
by G&D, so this is not possible at the moment.

Hence, to test our attack, we build the PIN pad of Fig. 4
as an Android application and run it on the Google Nexus S
and Samsung Galaxy S3 smartphones. While the user enters
a PIN, the application also records the video stream from
the front camera.

3.1 Collecting Mode

In order to build a prediction model, PIN Skimmer first
needs to interact with users. We collect samples from users
interacting with an Android application that takes the form
of the (simple) game illustrated in Fig. 5. The game takes
a picture with the front camera when the user touches the
icons and saves the images to disk. For the Nexus S, images
have a resolution of 176 x 144 pixels and are of size 6.5KB

123589 —0.08510 27.60422
HMox s = [025094 1.20318 —34.89863
0.00155 0.00048 1

Figure 10: Homography Matrix between OK-frame
and #1-frame.

each. For the Galaxy S3, images have a resolution of 320 x
240 pixels and are of size 24KB each.

3.2 Feature Extraction

After the Collecting Mode, the server extracts relevant
features from the images.

Fig. 7 illustrates what happens when the user touches
digit #1. In order for the thumb to touch the button,
the supporting fingers push the phone upward towards the
thumb. This has the effect of making the orientation of the
smartphone change slightly. Fig. 8 illustrates the difference
in orientation between an OK-button image and a digit-#1
image as seen by the front camera. In order to compute
the orientation corresponding to each digit, we need a point
of reference on the screen. We select the OK-button as the
point of reference since it is always touched last and we know
its position.

Note that the change of smartphone orientation is not
the effect of the thumb touching the smartphone, but the
necessary condition for the thumb to reach the button. This
is different from accelerometer-based attacks which exploit
the resulting orientation changes due to taps on the screen.

Given a digit image and an OK-button image, we first
extract the common key points using the RANdom Sample
Consensus (RANSAC) method [25]. Key points are depicted
as white circles in Fig. 8. They majoritarily correspond to

supporting fingers

Figure 7:

Supporting fingers Figure 8: Key points of OK- Figure 9: Image of OK-button

push the phone upwards to touch button frame (left) and digit #1 frame by Homography.

a digit. frame (right).

the chest and the face of the user. This observation high-
lights the importance of using the front camera rather than
the rear camera. The rear camera usually points to the
floor. The floor often exhibits a homogeneous color and/or
repetitive patterns, which makes the extraction of key points
problematic.

Given the common key points, we determine the rotation
from the OK-button image (the reference) to the digit image.
To this end, we compute the Homography Matrix (HM) [26],
a 3 X 3 matrix that represents the rotation between 2 images
taken at the same position. Here, we implicitly assume the
focal point of the camera is contained into the phone. This
is a fair assumption: the focal distance is 0.9 mm for the
Nexus S and 2.5mm for the Galaxy S3. Fig. 10 shows the
Homography Matrix representing the rotation between the
2 images of Fig. 8. The precision has been reduced to 5
digits to ease the reading. Fig. 9 shows the image of the
OK-button by the Homography transformation of Fig. 10:
it is rotated in such a way that it is identical to digit #1
image (apart from the missing pixels replaced by a black
background).

Each element of the HM represents one feature. Hence,
we use 9 (3 x 3) features in our model. The open-source li-
brary OpenCv [27] is used for all image manipulations stated
above.

3.3 Learning Mode

The objective in the Learning Mode is to use the features
extracted from the images (Section 3.2) and train a learning
algorithm in order to build a prediction model.

We store each feature as a numerical value with a maxi-
mum precision of 14 digits. As a learning algorithm, we use
a Support Vector Machine (SVM) [28] implemented with the
open-source libraries LibSVM [29] and Weka [30]. When pre-
dicting a digit, our classifier outputs a probability for each
of the possible digits, and we select the digit with the high-
est probability as our prediction. To build our model, we
proceed in two phases. In the first “pre-experiment” phase,
we get data from 2 users. The training data is used to ex-
periment with the data and try different SVM parameters.
We repetitively 1) split the data into a 70% sub-training
set and a 30% sub-test set, 2) train the SVM on the sub-
training set with different parameters, 3) test the trained
SVM on the sub-test set; until we find a configuration that
leads to good predictions on the sub-test set. This process
leads us to select the nu-SVC classifier with linear kernel,
the normalized-feature option and nu = 0.5. Between 35%
and 50% of the digits are correctly predicted on the sub-test.

In the “experiment phase”; users’ training data is split into
a 70% sub-training set and a 30% sub-test set (see Section
4.1). The SVM is trained on the sub-training set while the
sub-test set is used to evaluate how well the trained SVM
performs.

Both the extraction phase and the Learning phase are
performed server-side, not on the phone.

3.4 Logging Mode

In Logging Mode, our objective is to use the prediction
model constructed in the Learning Mode in order to predict
the PIN entered by the user in the PIN pad of Fig. 4.

While the user enters a PIN, the application turns on the
front camera and records the video stream to a file. The
video file contains one video stream and one audio stream.
On the Google Nexus S, the video stream is composed of
consecutive image frames sampled at 15 Hz, of resolution
176 x 144 pixels, encoded with UYV420p and compressed
with H.264. The 16-bit mono audio stream is sampled at
a much faster frequency of 16 kHz and encoded with AAC.
The Samsung Galaxy S3 has similar video properties but
frames are sampled twice as fast (30 Hz) and have a higher
resolution of 640 x 480 pixels. Three seconds of video repre-
sent about 7T5KB for the Nexus S and 390KB on the Galaxy
S3.

Unlike in the Collecting Mode, malware cannot legiti-
mately receive touch events because the architecture of the
phone prevents it (Section 1). Fortunately, the Trusted OS
provides short vibrations upon each of the user’s inputs (Sec-
tion 2.1). When the vibrations occur, they loop back into
the microphone, and we try to extract them from the audio
stream contained in our video file to detect touch events.
Hence, it is the microphone that allows us to detect touch
events in this phase. Once we have touch events, we can ex-
tract the features of the corresponding frames (Section 3.2)
and use them as input to our prediction model (Section 3.3)
to predict PINs.

3.4.1 Vibration Characteristics

Fig. 11 shows an audio sample in a controlled (silent)
environment captured by the Nexus S’s microphone during
a vibration. The top image represents the raw audio sam-
ple; the bottom image represents the same sample passed
through a lowpass filter to remove the noise. In the filtered
signal, the vibrations start at sample 1000 with the maxi-
mum amplitude reached at sample 1500, representing 30 ms.
After sample 1500, the signal progressively attenuates and
finishes at sample 3000.

Unfiltered vibration signal

Unfiltered signal

g 0 |
WWWWWW o i

- I
I

SRt Il
.

Amplituds
)

000 2000
sample

IYifrea)]

Filtered vibration signal

(((((

I ——
il o

Amplitude

;;;;;;;;;;;;;;;;;

0 3000
sample #

Figure 11: Audio sig- Figure 12:
a controlled environment on Nexus S.

on Nexus S.

The spectrum of the filtered signal within the sample
range [1000,2000] is shown in Fig. 12. We can deduce that
the vibrations occur at a frequency of 180 Hz. Hence, in
order to de-noise the audio stream on the Nexus S, we de-
cide to use a butterworth bandpass filter of order 3 with
lowcut 175 Hz and highcut 185 Hz. A similar analysis shows
that the vibrations occur at a frequency of 205Hz on the
Galaxy S3; so we use a bandpass filter with lowcut 200 Hz
and highcut 210 Hz to de-noise the audio signal.

3.4.2 Vibrations in Noisy Environment

Fig. 13 represents the audio signal extracted from a video
recorded by the Nexus S while a user types a PIN and
watches video with nearby desktop computer. The top im-
age represents the unfiltered signal, the bottom image rep-
resents the same signal passed through our bandpass filter
(Section 3.4.1). In the filtered signal, the touch events be-
come apparent. Essentially, the de-noising is reliable in en-
vironments which exhibit few frequencies in the passband
([175Hz,185 Hz| for Nexus S; [200 Hz,210 Hz] for Galaxy S3).

3.4.3 Improving Vibration Detection in Noisy Envi-
ronments

If the noisy environment contains frequencies in our pass-
band, our de-noising method is not fully reliable. In order
to further protect against false positives (i.e. a touch event
is detected when it is not actually present), we convolve the
absolute value of the filtered signal with a rectangular win-
dow of duration 30ms. Recall from Section 3.4.1 that the
vibrations actually last 30 ms. Fig. 14 shows the result of
the convolution product on the filtered signal of Fig. 13.
The 5 peaks indicate frames corresponding to a touch event.
Given our assumptions (Section 2.1), the first 4 peaks cor-
respond to a 4-digit PIN, while the 5" corresponds to the
OK-button.

4. EVALUATION
4.1 Setup

During the Collecting Mode, we collect samples from four
users: two are right-handed, the other two are left-handed.
Users are seated and interact with the game of Fig. 5 for
2min by touching the icon displayed. We obtain an average
of 10 touch events for each digit and for the OK-button. This
represents each user’s training set, about 650KB to save on
disk for the Nexus S and 2.4MB for the Galaxy S3.

FFT coeffi-
nal during vibrations in cients of vibration signal

Figure 13: Audio signal
while watching youtube
video during PIN input.

00
L 120000
% o
E °) 100000
< -2000
oo

20000 40000 60000 80000 100000 120000 140000 Tooooo 80000
sample #

1e7 Filtered signal 60000

s 40000
g 20000
000100000 120000 140000 160000

Amplitud
Lboow s

o,

20000 40000 60000 80000 100000 120000 140000 160000
sample #

Figure 14: Convolu-
tion product of absolute
value of filtered signal
with 30ms-wide rectan-
gular window.

Table 1: Renamed digits.

| Meaning digit for LHU digit for RHU
Fiop Far from thumb, top position #3 #1
Niop | Near thumb, top position #1 #3
Finia | Far from thumb, middle position #6 #4
Nmiqd | Near thumb, middle position #4 #6
Frot Far from thumb, bottom position #9 #7
Npot Near thumb, bottom position H#H7 #9

Table 2: Confusion matrix for Nexus S.

Frop #2 Niop Fumia #5 Nmia Fyor #8 Npor #0

Fiop 49.8 7.0 1.8 18.9 3.2 1.6 12.7 2.0 1.3 1.9
#2 3.4 21.0 8.7 12.8 13.3 6.1 15.4 8.1 3.4 7.9
Niop 1.6 152 122 4.5 13.1 10.5 8.4 12.4 9.9 12.3
Frid 16.6 16.8 4.1 26.3 6.0 3.0 17.5 3.6 1.9 4.4
#5 2.3 183 114 6.9 14.4 9.0 9.1 12.4 6.2 9.9
Nmid 1.7 10.8 13.4 3.6 12.6 11.9 4.8 12.8 129 154
Foot 6.0 21.1 6.8 19.4 9.1 4.5 19.3 5.5 2.4 6.1
#8 2.0 174 124 5.3 13.6 10.2 7.5 12.3 7.8 11.6
Npot 1.1 8.9 14.5 1.7 11.8 13.4 3.9 16.5 16.3 12.0
#0 1.5 129 127 4.3 13.9 10.6 7.5 14.3 8.6 13.7

For each of the images of the training set, we extract the
HM using all the OK-button images as reference (Section
3.2). Then we use the HM data to build our prediction
model. On a Linux machine with a 2.4 GHz CPU and 1GB
of RAM, it takes approximately 1 min 30s and 3 min to com-
pute all the HMs (i.e. to extract the features) for the Nexus S
and Galaxy S3 respectively. The resulting HM data is split
into a 70% sub-training set and a 30% sub-test set. The
SVM is trained on the sub-training set while the sub-test
set is used to evaluate how well the trained SVM performs.
It takes about 8s to build the prediction model on the sub-
training set.

To evaluate the predictions, we randomly select 100 8-
digit PINs. Users enter each PIN once in the PIN pad of
Fig. 4. This represents the evaluation set, and is different
from the training set collected during the Collecting Mode.
We run the prediction model on the evaluation set and we
discuss the results in the following sections.

4.2 Single-Digit Prediction

To present the results, we first need to understand the in-
fluence of users’ handedness on digit prediction. Re-consider
Fig. 7. For a right-handed user, the left part of the screen
is “far” from the thumb while the right part is “near”. For
the thumb to reach a “far” screen position (e.g. digit #1),

Table 3: Confusion matrix for Galaxy S3.

#0 Fiop #2 Niop Fmia #5 Nmia Foot #8 Npot

Frop 573 88 3.0 134 28 1.4 7.4 2.4 1.6 1.9
#2 9.3 20.1 11.7 106 10.0 5.8 11.3 T 73 6.1
Niop 25 139 145 56 13.4 111 7.5 94 143 78
Fria | 261 154 64 196 5.8 2.9 123 46 29 4.0
#5 3.8 164 141 6.9 11.7 82 9.6 10.6 103 84
Npia | 1.4 99 158 4.0 125 142 57 101 178 8.6
Fyor 151 132 88 194 83 4.7 128 6.7 4.7 6.4
#8 3.5 1564 139 102 112 85 9.5 10.3 8.6 8.9
Not 2.1 7.0 146 3.8 124 149 4.1 10.7 20.7 9.7
#0 26 143 150 8.1 11.9 9.1 9.9 11.2 8.3 9.7

the supporting fingers need to “lift” the phone more than
for a “near” screen position (e.g. digit #9). Inversely, for a
left-handed user, the right part of the screen is “far” from
the thumb and the left part is “near”. Hence, to present the
predictions independently of users’ handedness, we rename
digits according to the “role” they play. For example, Fiop
represents the digit in the top position of the screen which
is “Far” from the thumb. For a right-handed user, Fiop is
digit #1; for a left-handed user it is digit #3. Digits #2,
#5, #8 and #0 being in the middle of the screen, they play
the same “role” regardless of users’ handedness, so we do
not rename them. Table 1 gives the renamed digits with
their associated “real” digit for left-handed users (LHU) and
right-handed users (RHU). For a visual representation, Fig.
16 depicts a pad with renamed digits for a right-handed user.

For each digit entered by users, our prediction model out-
puts the list of predicted digits sorted by probability from
the highest to the lowest. We aggregate and normalize the
probabilities to obtain the confusion matrices. Table 2 and
Table 3 represent the confusion matrices for the Nexus S
and Galaxy S3 respectively. Each row of the matrix repre-
sents the actual digit entered by users, while each column
represents the predicted digit. Ideally, if all predictions were
correct, the matrix would have 100 (100%) on its diagonal
and 0 anywhere else.

Consider the matrix for Nexus S (Table 2). For digit Fyop
(row 1), Fiop (column 1) obtains 49.8% of the aggregated
probabilities, Fp,iq (column 4) obtains 18.9% of the proba-
bilities, digit For (column 7) obtains 12.7% of the probabil-
ities and other digits obtain negligible probabilities. On the
other end, for digit Npiq (row 6), Npmiq (column 6) obtains
only 11.9% of the probabilities (just better than a random
guess), while digits #0, #2, Niop, #5, #8 and Npot all ob-
tain more than 10% of probabilities. Digit N4 is located
near digit #2, Niop, #5, Npot and #8 so it is not surpris-
ing that N4 is mispredicted as one of them (cf. Fig. 16).
More surprisingly and less intuitive, digit #0 obtains more
than 15% of the probabilities while it is not a neighbor of
digit Nyniq. We explain why in the next paragraph.

As previously mentioned, when the thumb reaches for a
digit, the fingers supporting the phone bring the phone for-
ward. The thumb itself can also rotate around two axes
which greatly influence the results.

The first rotation is with the interphalangeal joint as de-
picted in Fig. 17. When touching screen positions “near”
the thumb, the latter can use its interphalangeal joint to
reach neighboring digits without help from the supporting
fingers. However for “far” digits, the thumb needs to be in a
“stretched” position and the interphalangeal joint does not
help. Hence, we expect more “noise” and worse predictions

for digits that are “near the thumb”. The second rotation
is with the carpometacarpal joint as depicted in Fig. 18.
In Fig. 15, we have drawn areas that can be reached by
the thumb without (or with little) help from the support-
ing fingers. The areas represent part of a circle with center
the carpometarcarpal joint. The areas become thicker as we
move towards the thumb to account for the noise due to the
rotation with the interphalangeal joint. Digits in these areas
should be mis-predicted as each other.

Given the explanation and the (approximate) areas drawn
in Fig. 15, we understand why digit #0 obtains more than
15% for digit Npmia: #0 and N,,;4 can be reached by the
thumb with the carpometacarpal joint rotation. We can also
predict that digit #2 and Fpot, though not neighbors, should
be mispredicted as each other; this is confirmed by the con-
fusion matrices. Similarly, digits N:op, #8 and #0 should
also be mispredicted as one another; this is also confirmed
by the confusion matrices.

We also notice little difference between the predictions on
the Nexus S and Galaxy S3, despite the fact that the Galaxy
S3 has a larger screen than the Nexus S. The only noticeable
improvement is for Fj,, digit which is better predicted on
the Galaxy S3.

4.3 PIN Predictions

To evaluate PIN prediction, we can vary both the PIN
length (i.e. the number of digits) and the size of the set.
Varying the size of the PIN set is motivated by the fact
that users do not select their PIN randomly [31]. According
o [32], the 20 most common 4-digit PINs represent about
27% of user-selected PINs. To predict a PIN, PIN Skimmer
first sorts the PINs by probability. Then it has 30 guessing
attempts. For example, for a 50-PIN set, PIN Skimmer
outputs a list of the 50 possible PINs sorted by probability.
If the correct PIN appears in first position, then the PIN
is correctly predicted in 1 attempt. If the PIN appears in
position n, the PIN is correctly predicted after n attempts.
Intuitively, the larger the set, the greater the number of
attempts to correctly guess a PIN.

4.3.1 Influence of Phone

For simplicity, here we only present the results for 4-digit
PINs. We consider (sub)sets of the entire PIN space of size
50, 75, 150 and 200. Fig. 19 shows the prediction results
for PIN sets of size 50 and 150; Fig. 20 shows the results
for PIN sets of size 75 and 200. For instance, for a 50-PIN
set (Fig. 19), 50% of the PINs are correctly guessed after
5 attempts. Like in Section 4.2, we notice that the size of
the phone has little influence on the results. Hence, in the
following sections, we only present the prediction results for
the Nexus S phone.

4.3.2 Influence of Set Size

Here we vary the size of the PIN set we consider. In-
tuitively, the larger the size of the PIN set, the worse the
predictions. We present the results for PINs of size 4 to 8
(digits) in Fig. 21 to Fig. 25. Consider 4-digit PINs (Fig.
21). For a set of 50 PINs, about 30% of the PINs are cor-
rectly guessed after 2 attempts, and 50% after 5 attempts.
For a set of 200 PINs, near 30% of the PINs are predicted
correctly after 5 attempts. After 10 attempts (the max-
imum number of attempts allowed to unlock an iPhone),
about 60% of the PINs are correctly inferred for a set of 50

N Y
[rod P24 50
(8] |5 [l
(B8 =l
oy ifox] [o fox]
-/ - J

Figure 15: Areas reach-
able by the thumb with
little help from support-
ing fingers.

handed user.

PINs, and about 40% for a set of 200 PINs. After 20 at-
tempts (maximum number of attempts allowed on Android
devices), more than 80% of the PINs are guessed for a set
of 50 PINs and about 50% for a set of 200 PINs.

4.3.3 Influence of PIN Length

Here we vary the length of the PINs from 4 to 8 digits.
The results are presented in Fig. 26 to Fig. 30. The straight
line “rand” represents the prediction results of random guess-
ing. For instance, consider a set of 200 PINs (Fig. 26). For
4-digit PINs, 30% of the PINs are correctly guessed after 5
attempts. As the length of the PIN increases, the predic-
tions improve: for 8-digit PINs, more than 45% of the PINs
are correctly guessed after 5 attempts. This seems counter-
intuitive. However, there is a reasonable explanation. First,
the more the digits in a PIN, the more information we have
and hence the greater the “distance” between them. Second,
by keeping the size S of the PIN set constant, increasing the
PIN length L is equivalent to decreasing the ratio S/N where
N = 10" is the size of the entire PIN space. For instance, for
a 200-PIN set of 4-digit PINs, S/N = 200/10* = 2%. For
8-digit PINs, S/N = 200/10° = 0.002%. Keeping the size
of the set constant seems unfair because increasing the PIN
length is supposed to increase the PIN space and make guess-
ing more difficult. However, studies [31] show that users do
not select their PINs randomly; so there is no direct corre-
lation between the theoretical size of the PIN space and the
one resulting from users’ selection. As a convincing example,
consider the space of passwords we use to access our email
accounts. In theory, infinitely-long passwords of randomly-
selected bytes are possible so the password space has an
infinite size. In practice however, we select finite passwords
containing mainly ASCII characters; and often passwords
are predictable English words.

S. LIMITATIONS

First, orientation changes between two frames are calcu-
lated via the computation of the Homography Matrix, which
in turn relies on finding key points between the video frames.
In some cases, the number of key points obtained is not large
enough to calculate the HM. Fortunately, such cases are rare
and can be discarded in Collecting Mode. In Logging Mode
however, this problem leads to missing digit predictions. De-
tecting key points also relies on good pictures. This could be
hampered by bright light and other lighting objects. Fortu-
nately, more advanced image processing could be applied to
overcome these problems. The speed at which the user types

Figure 16: PIN-pad with Figure 17: Rotation of Figure 18:
renamed digit for a right-

interphalangeal joint

carpometarcarpal joint

Rotation of
thumb with carpometar-
carpal joint.

thumb with interpha-
langeal joint.

a PIN can also influence the quality of extracted frames: if
he types a PIN too fast, it may render frames blur and ham-
per the detection of the key points.

Second, our model applies to users using the same hand to
hold the phone and type their PIN. It is unknown to us the
percentage of the population which falls into this category.
Related studies (Section 7) majoritarily assume users use
one hand to hold the phone and the other to enter their
PIN. In this regard, our study fills this gap.

Third, our present model only considers a user who types
an L-digit PIN followed by the OK-button (L + 1 touch
events). It does not consider a user who unintentionally
types a wrong digit, deletes it and continues typing. Related
studies do not consider this case either (Section 7).

Fourth, in real-life scenarios, the Collecting Mode may be
itself subject to noise. It is debatable whether a practical
trojan would be able to ascertain the necessary prerequisites
to collect non-noisy information during the Collecting Mode.
In Section 2.2, we term this mode the Monitoring Mode and
we mention that it is left to future research. The use of
other sensors (accelerometer, GPS, etc.) could be used for
this mode, as proposed by [17].

Fifth, the detection of touch events in Logging Mode relies
on the assumption that few noise-frequencies are present in
the passband ([175Hz,185 Hz] for Nexus S, [200 Hz,210 Hz]
for Galaxy S3). This assumption is not guaranteed to hold
every time the user enters his PIN. The human voice is as-
sumed to have a spectrum between 300 Hz and 3000 Hz, so
our de-noising should filter out most of people’s conversa-
tions. But in our tests, we find that some male voices ac-
tually have a wider spectrum with low frequencies reaching
down to 100Hz. In case false positives are detected (i.e.
more than L 4 1 touch events; with L the PIN length), the
trojan could simply discard the data.

6. POSSIBLE COUNTERMEASURES

In this section, we present possible countermeasures to
mitigate side-channel attacks on PIN input. We also take
into account previous works which use the accelerometer
and/or the gyroscope to infer the PIN (Section 7). We also
consider mitigations for devices that do not have a TEE be-
cause the majority of devices in use today do not support
it.

6.1 Non-TEE devices

For devices that do not have a TEE, the PIN-pad appli-
cation runs in the default OS and can be attacked by other

Nexus, 150

—B—Nexus, 50

Percentage of 4-digit-PINs correctly
guessed (%)
n
&

—#-53,50

10
—#=53,150
0

o 5 10 15 20 25 30
guessing attempts

Figure 19: Percentage of 4-
digit PINs correctly guessed for
Nexus S and Galaxy S3 for PIN
sets of size 50 and 150.

Percentage of 5-digit-PINs correctly
guessed (%)

guessing attempts

Figure 22: Percentage of 5-
digit PINs correctly guessed for
Nexus S for different sizes of PIN
set.

Percentage of 8-digit-PINs correctly
guessed(%)

—#—100
0

0 5 10 15 20 25 30
guessing attempts

Figure 25: Percentage of 8-
digit PINs correctly guessed for
Nexus S for different sizes of PIN
set.

Percentage of PINs correctly guessed|(%)

guessing attempts.

Figure 28: Percentage of PINs
correctly guessed for Nexus S for
a 100-PIN set for different PIN
lengths.

&

guessed (%)

Nexus, 200

—B—Nexus, 75

Percentage of 4-digit-PINs correctly

i ~—#-53,75
10
“ —#=—53, 200
o
o 5 10 15 20 25 30
guessingattempts
Figure 20: Percentage of 4-

digit PINs correctly guessed for
Nexus S and Galaxy S3 for PIN
sets of size 75 and 200.

Percentage of 6-digit-PINs correctly
guessed (%)

o T T T T T 1
L] 5 10 15 20 25 30

guessing attempts

Figure 23: Percentage of 6-
digit PINs correctly guessed for
Nexus S for different sizes of PIN
set.

]
*

Percentage of PINs correctly guessed (%)
&

10«‘
0+
0

guessing attempts

Figure 26: Percentage of PINs
correctly guessed for Nexus S for
a 200-PIN set for different PIN
lengths.

90

8

Percentage of PINs correctly guessed|(%)

guessing attempts.

Figure 29: Percentage of PINs
correctly guessed for Nexus S for
a 75-PIN set for different PIN
lengths.

guessed (%)

Percentage of 4-digit-PINs correctly

guessing attempts.

Figure 21: Percentage of 4-
digit PINs correctly guessed for
Nexus S for different sizes of PIN

guessed %)

guessing attempts

Figure 24: Percentage of 7-
digit PINs correctly guessed for
Nexus S for different sizes of PIN
set.

Percentage of PINs correctly guessed (%)

guessingattempts

Figure 27: Percentage of PINs
correctly guessed for Nexus S for
a 150-PIN set for different PIN
lengths.

Percentage of PINs correctly guessed|(%)
\ &
&

guessing attempts.

Figure 30: Percentage of PINs
correctly guessed for Nexus S for
a 50-PIN set for different PIN
lengths.

apps. On Android however, an application can record video
only if it has screen focus. But there are ways around the
restriction. First, using the SYSTEM_ALERT_WINDOW
permission, apps can create floating activities, i.e. activi-
ties that display on top of other apps. Using a transparent
1 x 1-pixel floating activity, a malicious app gains constant
screen focus while remaining invisible to users, enabling it
to capture video at will. Second, even without the former
permission, applications with the CAMERA permission can
take pictures even while running in background. Burst mode
achieves 15 Hz on both the Nexus S and Galaxy S3, so the
attack remains possible. However, the time between two
consecutive pictures is not always constant, so greater care
must be taken to select the correct pictures for each touch
event.

At the application level, mitigation options are limited. In
Android, the access to the microphone is exclusive so mal-
ware cannot access it if the PIN application does. However
access to other resources like accelerometer and gyroscope is
always shared. An OS-level mitigation is appealing because
it centralizes the changes in one place and benefits all ap-
plications. In Android, there are mainly 2 ways to prompt
a user to enter a PIN. The first is to use an AlertDialog
[33] with the option android:password="true” in the mani-
fest file. The option instructs the OS to display the star
character (‘*’) instead of the digit typed. Upon display-
ing an AlertDialog with this option, we suggest the OS also
deny access to shared hardware resources from other user-
installed applications. The second way to prompt for a PIN
is via a GUI component (Activity). In this case, we suggest
the OS expose a PasswordActivity which inherits from the
Activity. The sole use of the PasswordActivity is to inform
the OS that the activity is used to collect sensitive informa-
tion from users. When displayed, the OS should deny access
to shared resources from other user-installed applications.

6.2 TEE-enabled devices

Here, the PIN-pad runs in the TEE. In this case, we
also suggest an OS-level solution. The OS should provide
a PIN/password GUI component callable from TEE appli-
cations. When the component is displayed, the OS (or the
hypervisor) should deny access to shared resources from the
Untrusted OS and other TEE applications. The compo-
nent should provide a default customizable PIN/password
layout, but should also allow the application developers to
write their own layout from scratch.

6.3 Other Considerations

As of today, the camera, the microphone, the accelerome-
ter and the gyroscope are known to help infer PINs on smart-
phones. Unfortunately, it is not possible to anticipate which
other shared resources can be used for side-channels. It is
also likely that new sensors will be added to phones in the
future. This raises the question of which resources should
remain accessible during PIN input. A naive solution would
deny access to all resources, but this may affect usability.
For instance when a call comes in, the user needs to hear
the ring-tone while unlocking his phone; otherwise he may
assume the caller has hung up. For these reasons, we advo-
cate the use of a white-list: deny access to all shared hard-
ware resources except those explicitly allowed. The shared
hardware resources we consider are the (video) camera, mi-
crophone, speakers, screen and on-board sensors defined in

[34]. Only the speakers should be in the white-list. A more
restrictive white-list would allow speakers only when used by
the default “call application” or other system services. Note
that on Android phones, one can answer an incoming call
without entering the PIN even if it is enabled in settings;
but this is not necessarily the case for other OSes.

An orthogonal countermeasure to mitigate side-channel
attacks is to use longer PINs (or passphrases) to increase
the guessing entropy [35, 36], but this affects memorability
and usability. Another additional countermeasure is to en-
force a maximum number of PIN attempts like for banking
cards. Unfortunately, the number of smartphone applica-
tions requiring a PIN will increase over time, forcing users
to re-use them across applications and services (e.g. bank-
ing). Hence, it becomes more difficult to enforce a maximum
number of PIN attempts.

Randomizing the position of the digits of the PIN pad has
been considered. Some online banking websites already use
it on desktop applications. However, we believe this would
cripple usability on phones. Banks have deployed random-
ized PIN pads mainly for money transfer. A typical user
may transfer money a few times a month. However, users
need to unlock their phone throughout the day and make
payments several times every day. Other applications on
the phone may also require a PIN so it would further ag-
gravate usability. Moreover, the solution is not acceptable
for all applications: for instance “payment companies” (e.g.
Visa, PayPal) build “frictionless” payment systems to max-
imize the number of users’ purchases. With a randomized
pad, users can no longer make payments reflexively (i.e. en-
ter their PIN without realizing it). Also, some users tend
to remember their PIN by the position of the digits on the
screen rather than by the digits themselves. Finally, other
studies (see Section 7) show that side-channel attacks on vir-
tual alphabetic keyboards also exist. A randomized virtual
keyboard would be very problematic in terms of usability.
For all these reasons, we believe our suggested countermea-
sures are more general and usable.

A more drastic solution is to get rid of passwords. This
could be achieved via biometrics (e.g. face recognition, fin-
gerprints), electronic devices which the phone can sense [37]
(e.g. smart watches, smart glasses) and/or progressive au-
thentication [38].

7. RELATED WORK

Authors in [39, 40] leverage the magnified-key visual feed-
back provided by most smartphones’ virtual keyboards to
infer users’ input. The idea can be used for shoulder-surfing,
whereby an attacker uses his own smartphone to video-record
other users while they type SMSes or PINs. Authors in [41]
investigate the feasibility of inferring the lock pattern from
the smudges left on the touchscreen by users’ fingers.

Authors in [42] use the smartphone’s accelerometer to
capture inter-key timing measurements of user’s input on a
nearby PC-keyboard. The idea is to leave a smartphone on
the same table as the PC-keyboard to detect the vibrations
caused by keyboard input. Authors in [43, 44, 45, 46] use
the smartphone’s accelerometer to detect motion changes
caused by users’ taps on the screen during sensitive input,
and they can reduce the PIN space considerably. Except
[46], these side-channel attacks mainly consider a user us-
ing one hand for holding the phone and the other for PIN

input. These studies are similar to ours, so we give some
rough comparison here.

In [43], the authors log a 16-digit sequence and predict
each digit separately using the accelerometer and “orienta-
tion sensors”. It seems that the orientation sensor is not a
sensor by itself, but the combination of the accelerometer
and the magnometer data. They correctly predict 40% of
the digits in 1 attempt. This is similar to our “Single-Digit
Prediction” evaluation (Section 4.2). However we cannot re-
use the confusion matrix of Section 4.2 because it represents
the aggregated probability distribution, not the prediction
itself. But we can re-use the raw data itself to compute the
actual prediction: we achieve 26% on first attempt, so their
approach outperforms ours.

In [45] (the follow-up papers of [44] by the same authors),
the authors also look at 4-digit PIN predictions using the ac-
celeromater and gyroscope. They consider the entire 4-digit
PIN space (10* = 10000), and they correctly predict 65%
of the PINs after 81 attempts. In comparison, we achieve
on average only 12% after 81 attempts. To achieve 65%, we
need about 1000 attempts. So their approach outperforms
ours.

In [46], the authors look at both the lock pattern and PIN
predictions using the accelerometer. For a set of 50 4-digit
PINs, they correctly predict 43% of the PINs in 5 attempts.
In comparison, we achieve near 50% so our approach per-
forms as well as theirs. It would be unfair to claim we per-
form better since their study was conducted with 24 users
while ours was with 4.

Authors in [47] go one step further and attempt to infer
entire text messages from accelerometer and gyroscope data.
They consider users using one or two hands in portrait mode,
and two hands in landscape mode.

To our knowledge, this paper is the first attempt to use the
camera and microphone to infer orientation changes during
PIN input. It is also one of the few considering a user using
the same hand for holding the phone and for PIN input.

8. CONCLUSION AND FUTURE WORK

In this paper, we showed that all shared resources need to
be carefully considered because they open up the possibil-
ity of side-channel attacks on both one-OS and multiple-OS
smartphones.

To illustrate our claim, we investigated the feasibility of
inferring PINs entered by users with the use of the front
video camera and microphone. The orientation of the smart-
phone during PIN input is extracted from the video stream
and correlated to the position of the digit on the touch-
screen. We presented the design, implementation and early
evaluation of PIN Skimmer for the Android platform. We
demonstrated that the camera, usually used for conferencing
or face recognition, can be used maliciously to infer users’
touch events.

We hope to raise awareness of the difficulty of designing
a sound trusted path in general. Designers must be aware
of covert channel risks and engineer the overall system ac-
cordingly. On smart OSes like Android, reasoning about the
security of a trusted path becomes more complex as new fea-
tures and services are added over time. We suggested simple
OS-level countermeasures to achieve this goal in Section 6.

In order to improve PIN prediction, future research could
better incorporate the a-priori probability distribution of
PINs [31], inter-key measurements [42] and other sensors’

data (e.g. accelerometer, gyroscope). It could also inves-
tigate different supervised algorithms, monitor PIN input
several times, or try to detect touch events without micro-
phone (e.g. from the video itself). Another approach would
be to adapt our work for pattern lock inference.

Acknowledgement

We wish to thank Omar Choudary and Alastair Beresford
for their valuable suggestions and comments; and Viktor
Konstantinov for suggesting the camera as side-channel. We
also wish to thank the open-source community as a whole,
OpenCyv [27] developers, LibSVM developers [29] and Weka
developers [30] who have made this project possible. Last
but not least, we wish to thank Samsung for sponsoring this
project.

9. REFERENCES

[1] “Samsung KNOX.”
https://www.samsung.com/global/business/
mobile/solution/security/samsung-knox.

[2] “BlackBerry Enterprise Service 10.” http://uk.
blackberry.com/business/software/bes-10.html.

[3] “Xen project.” http://www.xen.org/.

[4] “Okl4 microvisor : Open kernel labs.” http:
//www.ok-1labs.com/products/okl4-microvisor.

[5] “Trustzone: Arm.” http://www.arm.com/products/
processors/technologies/trustzone. php.

[6] “Google play.” https://play.google.com/store.

[7] “Amazon.com: App store for android.”
http://www.amazon.com/mobile-apps/b?ie=
UTF8&node=2350149011.

[8] “Alcatel club games free download. android games for
alcatel club.” http:
//android.mob.org/brands/alcatel/alcatel_club/.

[9] “Gfan.” http://bbs.gfan.com.

[10] “eoemarket.” http://www.eoemarket.com.

[11] T. Anscombe, “Social engineering still biggest threat
to consumers.” http://blogs.avg.com/consumer/
social-engineering-biggest-threat-consumers/,
Jul 2012.

[12] R. Naraine, “Android drive-by download attack via
phishing sms.” http:
//www.zdnet.com/blog/security/android-drive-
by-download-attack-via-phishing-sms/10422, Feb
2012.

[13] D. Goodin, “Android users targeted in drive-by
download attacks.” http://arstechnica.com/
gadgets/2012/05/android-users-targeted-for-
the-first-time-in-drive-by-download-attacks/,
May 2012.

[14] J. Leyden, “That square qr barcode on the poster?
check it’s not a sticker.”
http://www.theregister.co.uk/2012/12/10/qr_
code_sticker_scam/print.html, Dec 2012.

[15] “California prosecutors push for anti-phone theft
moves.” http://www.kcra.com/California-
prosecutors-push-for-anti-phone-theft-moves/-/
11798090/20553058/~/gphknhz/-/index .html.

[16] J. DAVENPORT and W. GANT, “iphone muggers on
bikes plague london.”
http://www.standard.co.uk/news/crime/iphone-

muggers-on-bikes-plague-london-8323324.html,
Nov 2012.

S. Das, L. Green, B. Perez, and M. Murphy,
“Detecting User Activities Using the Accelerometer on
Android Smartphones,” 2010.

R. Templeman, Z. Rahman, D. Crandall, and

A. Kapadia, “PlaceRaider: Virtual theft in physical
spaces with smartphones,” in Proceedings of The 20th
Annual Network and Distributed System Security
Symposium (NDSS), Feb 2013.

“Facetime, the easiest way to call face-to-face.”
“Video chat - free online video calls - video calling -
skype.” http://www.skype.com/intl/en-us/
features/allfeatures/video-call/.

“Tor project.” https://www.torproject.org/.

L. Constantin, “Pushdo botnet is evolving, becomes
more resilient to takedown attempts.”
http://www.pcworld.com/article/2038893/pushdo-
botnet-is-evolving-becomes-more-resilient-to-
takedown-attempts.html, May 2013.
“Rageagaisntthecage.”

“Giesecke & devrient: Creating confidence..”
http://wuw.gi-de.com/en/index. jsp.

Z. Yaniv, “Random Sample Consensus (RANSAC)
Algorithm, A Generic Implementation.” isiswiki.
georgetown.edu/zivy/writtenMaterial/RANSAC. pdf,
Oct 2010.

G. Roth, “Homography.”
http://people.scs.carleton.ca/~c_shu/Courses/
comp4900d/notes/homography . pdf, 2013.

“OpenCv.” http://opencv.willowgarage.com/wiki.
A. Zisserman, “The SVM classifier.” http://www.
robots.ox.ac.uk/"az/lectures/ml/lect2.pdf, 2013.
“LibSvm — A Library for Support Vector Machines.”
http://wuw.csie.ntu.edu.tw/“cjlin/libsvm/.
“Weka 3: Data mining software in java.”
http://wuw.cs.waikato.ac.nz/ml/weka/.

J. Bonneau, S. Preibusch, and R. Anderson, “A
birthday present every eleven wallets? The security of
customer-chosen banking PINs,” in FC ’12: The 16th
International Conference on Financial Cryptography
and Data Security, Mar 2012.

J. Koetsier, “Pin analysis,” September 2013.
“Alertdialog | android developers.”
http://developer.android.com/reference/
android/app/AlertDialog.html.

“Sensor | android developers.”
http://developer.android.com/reference/
android/hardware/Sensor.html.

C. Cachin, Entropy measures and unconditional
security in cryptography. PhD thesis, ETH Zurich,
1997.

S. Brostoff and M. A. Sasse, ““ten strikes and you're
out”: Increasing the number of login attempts can
improve password usability,” in CHI Workshop on
HCI and Security Systems, John Wiley, 2003.

F. Stajano, “Pico: no more passwords!,” in Proceedings
of the 19th international conference on Security
Protocols, SP’11, (Berlin, Heidelberg), pp. 49-81,
Springer-Verlag, 2011.

(38]

39]

[40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

O. Riva, C. Qin, K. Strauss, and D. Lymberopoulos,
“Progressive authentication: deciding when to
authenticate on mobile phones,” in Proceedings of the
21st USENIX conference on Security symposium,
Security’12, (Berkeley, CA, USA), pp. 15-15, USENIX
Association, 2012.

S. Maggi, A. Volpatto, S. Gasparini, G. Boracchi, and
S. Zanero, “Poster: fast, automatic iphone shoulder
surfing,” in Proceedings of the 18th ACM conference
on Computer and communications security, CCS ’11,
(New York, NY, USA), pp. 805-808, ACM, 2011.

R. Raguram, A. M. White, D. Goswami, F. Monrose,
and J.-M. Frahm, “ispy: automatic reconstruction of
typed input from compromising reflections,” in
Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, (New York,
NY, USA), pp. 527-536, ACM, 2011.

A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and

J. M. Smith, “Smudge attacks on smartphone touch
screens,” in Proceedings of the 4th USENIX conference
on Offensive technologies, WOOT’10, pp. 1-7,
USENIX Association, 2010.

P. Marquardt, A. Verma, H. Carter, and P. Traynor,
“(sp)iphone: decoding vibrations from nearby
keyboards using mobile phone accelerometers,” in
Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, (New York,
NY, USA), pp. 551-562, ACM, 2011.

Z. Xu, K. Bai, and S. Zhu, “Taplogger: inferring user
inputs on smartphone touchscreens using on-board
motion sensors,” in Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and
Mobile Networks, WISEC 12, (New York, NY, USA),
pp- 113-124, ACM, 2012.

L. Cai and H. Chen, “Touchlogger: inferring
keystrokes on touch screen from smartphone motion,”
in Proceedings of the 6th USENIX conference on Hot
topics in security, HotSec’'11, (Berkeley, CA, USA),
pp- 9-9, USENIX Association, 2011.

L. Cai and H. Chen, “On the practicality of motion
based keystroke inference attack,” in Proceedings of
the 5th international conference on Trust and
Trustworthy Computing, TRUST’12, (Berlin,
Heidelberg), pp. 273-290, Springer-Verlag, 2012.

A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith,
“Practicality of accelerometer side channels on
smartphones,” in Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC
12, (New York, NY, USA), pp. 41-50, ACM, 2012.
E. Miluzzo, A. Varshavsky, S. Balakrishnan, and R. R.
Choudhury, “Tapprints: your finger taps have
fingerprints,” in Proceedings of the 10th international
conference on Mobile systems, applications, and
services, MobiSys '12, (New York, NY, USA),

pp. 323-336, ACM, 2012.

