Jikzi: A New Framework for Secure Publishing

Ross J Anderson and Jong-Hyeon Lee

University of Cambridge Computer Laboratory
Pembroke Street, Cambridge CB2 3QG
(rjal4,jhl21)@cl.cam.ac.uk

Abstract. We present a new way to deal with security policy on the
web. Our aim is to let people build integrated publishing and e-commerce
services using appropriate, simple and uniform mechanisms. Our goal is
a single framework that applies equally to the publication of catalogues,
music, software, public key certificates and even old fashioned books. Our
prototype framework, Jikzi, supports multiple security policies — even in
the same document — with a single transparent markup language.

Historically, most computer security research was motivated by military
concerns; most papers deal with confidentiality, some with authentica-
tion. But the emphasis in commerce is on integrity, availability and ac-
countability; confidentiality is often not a major concern at all. This
motivates us to take a fresh look at the foundations of our discipline,
and revisit not just security policy models but also the authentication
and integrity mechanisms we use.

The growing importance of XML may simplify much; if it is adopted as
widely as some expect, then everything from digital certificate formats
through legacy multilevel secure systems will also be up for review. We
believe our prototype system indicates a fruitful alternative approach.

1 Introduction

The security of electronic commerce can be thought of as three separate but
loosely related problems — publishing, payment and copy control.

Firstly, most of the activity which people describe as electronic commerce
consists of some kind of publishing. Publishing used to be understood as a busi-
ness sector — the business of making and selling books, CDs, videos and software
— but it increasingly makes up the very stuff of online business. Regardless of the
product or service sold, electronic commerce consists largely of publishing web
pages, catalogues and price lists, as well as more specialist items such as public
key certificates.

Secondly, once an online customer has decided to purchase a product or
service, the deal is typically done using a credit card. As the cardholder is not
physically present, there are a number of risks (such as the use of stolen credit
card numbers) that are traditionally controlled by such rules as ‘goods bought



by mail or telephone order must be dispatched to a cardholder address verified
with the credit card issuer’. However, transactions may now involve the delivery
of intangible goods to an email address, and this may create new risks.

Thirdly, it is possible for customers to make perfect copies of digital goods
such as music and software, and pass these on to their friends. Pirates may
even mass manufacture them and sell them at a discount. How can copying be
controlled, given the open nature of the medium and the difficulty of making
consumer electronic devices really tamper-resistant?

The second and third problems have been studied extensively. The industry
appears to have settled on SSL/TLS as a standard for online credit card pay-
ments; meanwhile, there are many moves to control copying, ranging from the
launch of new digital audio formats to an upgraded version of DVD. However,
the first problem — secure publication — has received little attention.

Yet secure publication is important. Although possible embarrassment from a
hacked web site might be the first risk that springs to mind, there are much worse
financial exposures (e.g., if a stock manipulator can pass off bogus news about
a non-existent merger or acquisition). There are also serious safety hazards: for
example, doctors are starting to rely on online reference sources for data on drug
doses and reactions.

In this paper we describe a security policy model that seeks to deal in a
quite general way with the issue of secure publication, whether of books, music,
software, public key certificates, videos, drug formularies, aircraft maintenance
manuals, academic papers or business records. We describe a set of mechanisms
to support authentication and integrity in a quite general way in such environ-
ments, with a particular emphasis on audit and accountability. We sketch the
beginnings of an authentication logic to help us analyse whether a particular pro-
tocol is sound. Finally, we describe a prototype implementation, which we call
Jikzi, after the first ever book published using a movable type printing press; this
is a Buddhist text printed in Korea in 1377, some 63 years before Gutenberg.

2 Previous Work

The direct precursor of Jikzi was the Wax system, developed to secure the online
publication of medical information such as drug data [4]. The main problems
we encountered were the performance penalty imposed by trying to verify the
signature on a whole book when the reader simply wished to consult a single
section of it and the difficulty of securing long-lived data such as books using
relatively short-lived objects such as public keys. Wax solved these problems by
associating with each publisher a tree of hashes: the leaves were hashes of the
individual sections, and the nodes progressed up through chapters and books
until the root, which protects a publisher’s whole catalogue, is authenticated by
other means (typically a one-time signature). Thus when a user opens a book at
the entry corresponding to a particular drug, the entry can be verified quickly



without having to check a signature on the entire book. The lesson learned from
Wax was that it is a sound design principle in publishing to use hash trees and
to minimise the amount of signature — preferably to a single signature on each
new version of a publisher’s catalogue.

The Wax design has had some success in the UK medical informatics field.
But it uses a proprietary hypertext format, so the next step was to generalise
it to work with html. The result was the ERL, or eternal resource locator [3],
which can be thought of as a URL plus a hash of what you expect to find there.
Having developed this, we realised that it was very powerful and useful: the
writer of a web page or other document can authenticate any digital object by
simply including its ERL, and this enables the construction of webs of trust of
the kind familiar from PGP but applying quite generally to objects rather than
just to the names of principals. Many of the problems associated with public
key infrastructures simply go away; one ends up managing a few root keys and
doing a lot of version control.

It has now become clear that we need to support XML as this is the emerging
framework for commercial markup languages [8]. XML is well positioned between
SGML and HTML; it is easier to use than SGML, yet and provides more degrees
of freedom in extension than HTML. Major software vendors are committed to
supporting it, including both major players in the browser market, who already
support XML processing partially and are expected to support it fully in the
near future.

The goal of the Jikzi project is thus to develop general XML-based mecha-
nisms for embedding security properties in hypertext documents, and to under-
stand the underlying computer science issues such as resilience, scalability and
verification.

This brings us to other work in the same general field. Two particular projects
bear mention: the Secure Document Markup Language (SDML) developed by
Kravitz at IBM [17] which defines the tags necessary to implement electronic
cheques (‘payee’, ‘amount’, ‘currency’, ‘signature’, ‘certificate’) and the World
Wide Web Consortium’s DSig project [10] to implement digital signature tech-
nology in content marking and rating schemes. While both of these projects are
useful and instructive, we need something more general; we want to deal not just
with cheques but with all other kinds of bills of exchange (such as bills of lading)
and we want to be able to deal with inheritance properties (a bank cheque is a
kind of cheque, and a cheque is a kind of bill of exchange).

A general security system should also be able to deal with applications such
as military messaging: governments are likely to remain wedded to the idea of
having paragraph-level security labels (i.e., a document is mixture of paragraphs
at different levels such as unclassified and secret), and XML appears to be the
only serious way in which the relevant document management routines can be
implemented without rewriting a huge amount of software.

We also ought to be able to deal with publishing in the most general sense,
which means dealing with issues of replication, persistence and control. Previous



work in this area includes the Distributed Object-based Document Architecture
(DODA) [25] which is aimed at computer supported cooperative work, such as
software development. DODA is somewhat like a secure RCS in which ‘folios’
of documents are bundled together and managed by hash and signature mecha-
nisms according to a policy such as ‘a software upgrade can only be issued when
both a testing manager and a customer manager sign it’; such policies can be
enforced using mechanisms such as threshold signature.

3 A New Conceptual Model

Academic security research has tended to be 90% on confidentiality, 9% on au-
thentication/integrity and perhaps 1% on availability. Yet commercial informa-
tion systems departments have the opposite priorities. Availability of service is
tops, with perhaps a third of the whole budget going on hot spare backup sites,
network redundancy, and so on; integrity is next with several percent of the
budget going on consistency checking mechanisms, internal audit and the like;
but confidentiality is not a high priority at all [1]. In the world of publishing,
this is especially so. So what would a security policy model for publishing look

like?

At its simplest, a publisher is a principal who from time to time creates and
makes world-readable a document such as a book, and also from time to time
creates and makes world-readable a catalogue or index of such documents.

Stripping this to the bare essentials, we posit a universe in which each user
can append data to a single file, which all other users can read. Deletion of
data — even in one’s own file — is not allowed. Thus we exclude consideration
of confidentiality for the time being; the integrity of all strings once written
is guaranteed; the authenticity of the author of a string is obvious; and we
make digital signatures trivial (I can sign anything by simply asserting it in my
file). The immutability of data once written means that a user can countersign a
document by reference, e.g. ‘I hereby concur with document number 382 in Bob’s
file’. We will ignore complex data structures such as indexes, as the mechanisms
whereby they can be created from flat append-only files are well known.

We will now discuss append-only file systems and their implications for mod-
eling security policy.

3.1 Append-only file systems

Append-only file systems are rarely considered in the research literature, but are
remarkably common in real life. Banks must keep records for a period of time set
by law (6 years in the UK), and much the same applies to medical records, though
the period for which a record must be kept depends on the condition to which
it relates — cancer records, for example, are kept for the patient’s lifetime [2].



Business records in general are kept for the period during which transactions
can be challenged by customers or audited by tax inspectors.

Publishing is perhaps the oldest application of append-only file systems. We
do not expect that the archives of a newspaper or journal will ever have their
content changed (except in the shrinking number of totalitarian states); if an
issue of a publication is found to be defamatory or in breach of copyright, the
appropriate legal remedy is financial compensation rather than retrospective
modification.

Similarly, in commerce, the need for finality of transactions dictates that if a
bank transaction is processed in error, it is not retrospectively deleted but rather
a correcting transaction is passed through the system. (In the days when bank
ledgers were kept on paper, they were kept in ink using bound books.)

There are many mechanisms which can be used to implement an append-only
file store, ranging from CD-WORM drives through RCS to mainframe system
managed storage products. In some applications, such as retail banking, the
volume of transactions is large and thus the disk capacity required is fairly
predictable; in others, such as medical records, the quantity of data which a
doctor can type into his PC is negligible compared with the size of even the
smallest hard disk; in others, there might be some risk of denial-of-service attacks
involving resource exhaustion, and so one might either use disk quotas or insist
on micropayments for disk writes.

The academic literature on append-only file systems, however, appears to be
rather sparse. The earliest mention of which we are aware is the use of a public
bulletin board by Benaloh to ensure the serialisation of pseudonymous votes
cast in a digital election [6]. More generally, log structured file systems improve
the performance of some systems by ensuring faster writes at the expense of
longer read times [23,24]. In systems in which erasure is expensive, such as flash
memory, they allow an even distribution of writes in the media [16]. We might
also mention the Eternity Service [1], a distributed file store in which techniques
of fragmentation, redundancy, scattering and anonymity are used to provide the
highest possible level of protection against service denial attacks: in effect, an
append-only file store which is highly resistant to deletion attempts.

3.2 Example application

The reason we choose to use an append-only file system as our fundamental
primitive is that it greatly simplifies many applications involving availability,
integrity and authentication properties. By so doing, it forces us to think clearly
about what optimisations we are making, and why, when we depart from it.

A good example is the B-money system proposed by Wei Dai [12]. It assumes
that each user maintains a separate account of how much money everyone in the
system owns, and in order to make a payment, one simply broadcasts a signed
message saying ‘I, Alice, hereby pay the sum of X to Bob’. B-money assumes



a synchronous, unjammable broadcast channel, but can clearly be implemented
in our model by having the principals append the transaction to their file. Se-
cure serialisation is required but can be implemented in the obvious way using
Lamport time [18] (but see below).

B-money has some interesting properties. For example, if someone computes
the account balances of other parties incorrectly, it is himself that he puts at
risk; he might accept a payment where the payer had insufficient funds, and then
be embarrassed when one of his own payments was rejected by a more careful
principal on the grounds that he in turn could not cover the payment.

This is a surprisingly apt model of a payment system: in the banking world,
journal files are used to accumulate transactions from cash machines, cheque
sorters, teller stations etc and these are applied overnight to the account master
file in order to update it. The journals fill the same role as the transactions in
b-money, and the overnight run is an optimisation which simplifies processing.
To the extent that a bank’s functions are mechanical (rather than to do with
credit assessment and risk management), it might be replaced by a b-money
system plus a software agent that performs this overnight update.

3.3 Significance

A security policy model, such as Bell-LaPadula [5] or Clark-Wilson [11], is a
simplified way of looking at system security properties. It usually corresponds
only partially to the reality of fielded systems, but is instructive in that the
optimisations in these systems become clear for what they are.

The Jikzi model of the universe, as a set of append-only files, fulfills exactly
this function. If the persistence and integrity of other principals’ records could
be relied on, then the design of business record systems would be much simpler;
as it is, a prudent business will not trust all its counterparties to keep full records
and make them available timely.

Thus instead of trusting that Bob’s file is truly append-only and countersign-
ing by reference (‘I hereby concur with document number 382 in Bob’s file’), a
businessman in the real world will countersign by value (‘I hereby concur with
Bob’s statement X and cite his signature S’) or hash (‘T hereby concur with
Bob’s statement whose SHA-1 is X and cite his signature S on it’). Whether
one retains a copy of the message, or just the hash, will depend on whether one
expects to have to produce the message at some time in the future, or whether
the production would only be of value to another party (in which case there
are trust models in which one still wants to retain the hash in order to have a
complete list of the signatures one has ever made with a given key [22]).

So our model is not just a (relatively) trivial way of modeling what hap-
pens in an ideal electronic publishing house, but also a principled way of looking
at business records. Previously, the main security policy model proposed for



commercial computer systems — Clark-Wilson — focussed entirely on the trans-
actional aspects (e.g., how to ensure that it took two employees working together
to raise a cheque, and that an indelible log of their actions was kept). The ex-
ternal record keeping aspects have so far escaped, perhaps because until very
recently all business records were kept in paper form (even if the working copies
were electronic) and so the issue of managing evidence in electronic form was just
not considered. However, as electronic commerce spreads, this issue will become
ever more important, and the Jikzi model provides a way of understanding it —
that I must keep a copy of that part of the universe on which I rely?.

Finally, work on the legal validity of electronic signatures has so far focussed
on the signature itself, type approval of the signature creation device, licensing
and insurance of CAs, and so on. However, this is only the tip of the iceberg;
context, and in particular the relationship between documents, is vital in real
court cases. Did the hospital’s web site list the side effects of drug X when the
plaintiff visited it? Did it point to version 1.27 or 1.28 of MegaDrugCorp’s fact
sheet at the time? In general, who knew what when, which document was signed
first, and how does the chain of evidence hang together?

It is for reasons like this that a prudent organisation, seeking to archive its
business records, will not just timestamp and store html pages; we need some
means of protecting — and auditing the use of — links and other dynamic aspects
of the content. Here, the Jikzi approach comes into its own.

4 Towards an Authentication Logic

As this is a protocols workshop, it is natural for the reader to ask what sort of
authentication protocols are natural in the Jikzi model. In fact, if the append-
only model takes care of all integrity and authenticity concerns, do we need any
protocols at all?

The answer, perhaps surprisingly, is yes. Time i1s not included in the ba-
sic security model, and so the fact of one event’s having happened after another
must be established explicitly. This is also true in conventional publishing, where
dependence is typically established by citation. But even this is not straightfor-
ward; there are many cases of papers in a learned journal citing each other, and
in general, where something predictable is going to be written, it can be cited
in advance of its publication.

Thus in order to be sure that someone has read a message which I have writ-
ten, I should include in it something unpredictable, such as a random number.
In this way, incontrovertible serialisation can in principle be established, and
constructs such as Lamport time can follow.

! There are some aspects of the universe that it might not be practical to keep; if 1
have an old VisiCalc file, do I need to keep an Apple Il computer in working order
so that I can browse it? However, our model can at least help people identify and
assess such difficult dependencies.



Suppose that Alice wants to ensure that after she makes some statement X,
say, Bob reads it before responding Y. Our first attempt at such a protocol was:

A—s B:B,X,Ng
B—3A:A Y h(X, Ng)

Here, the element ‘A — B : B, X, Ng’ means that A writes, for B to read,
the values B, X and Np in succession.

We looked at a number of verification logics to see which of them might be
adapted to our purpose. The primitive we need seems to be something like:

B said Y having seen X
and this should be derived from a rule somewhat like the following:
B said (X,Y), X unpredictable implies B said Y having seen X

The elaboration of this into a formal verification system is work in progress;
we report it in the tradition of the Cambridge protocols workshop. There are
two interesting things that we have noticed so far. Firstly, in Kailar’s logic of
accountability [15], we cannot distinguish between different instances of a receipt;
thus the verification of the IBS protocol [20] is incomplete, as IBS is silent on
whether receipts have serial numbers (in fairness, its successors did have; the
point is that the verification might usefully have dealt with them). Secondly,
in the BAN logic [9], a nonce is a nonce: any distinction between a random
challenge, a serial number and a timestamp is made in the protocol idealisation
stage. Yet here, uniqueness and unpredictability are definitely different. What is
more, we might want to have a rule saying something like:

B said Y having seen X, X unpredictable implies Y came after X

But it is not quite that simple. For example, if Alice quotes a message of mine
which I know to have been unpredictable because it contained a random number
which I generated, then I know that she read it; however, Bob might suspect me
of having colluded and told her the random number. So unpredictability is in
the eye of the beholder, and we may have to refine our rule to something like:

B said Y having seen X, A believes X unpredictable implies
A believes Y came after X

We would not claim that a short discussion of the rules a suitable logic might
contain, amounts to the definition of a logic (that is for future work). However,
even the discussion thus far leads us directly to our first ‘scalp’: the above draft
protocol is wrong. The second message should be

B—3 A:A KX Ng)Y

This was not at all obvious at the outset, and it is not clear how the mistake
could have been found with an existing tool.

A final point, which we discussed at the workshop presentation but do not
have the space to elaborate here, is that when one combines the Jikzi policy



model with software agents (such as the agent we mentioned as a possible imple-
mentation of a bank in the b-money scenario above) then the result is a model
that is somewhat similar to Clark-Wilson but somewhat more precise. We plan
to develop this theme in a later paper.

5 The Jikzi Prototype

As mentioned above, one purpose of the Jikzi project was to extend the previous
prototypes of securing documents in HI'ML and SGML such as ERL and SDML,
using XML. XML enables the automation of document handling and interpre-
tation using DTD (document type definitions), CSS (cascading style sheets) [7]
and XSL (extensible stylesheet language) [13].

Jikzi uses its own markup language based on XML to support basic security
features such as hashing and signature. The fastest way to explain it is probably
by example, so we now describe how to write a electronic checque. First, we
define a set of entities which will be used throughout our DTD files: stdDef .dtd
contains the basic entity definitions. It also includes declarations for DTD files.

<!-- stdDef.dtd: DTD for entities —-->
<'ENTITY % nameList "foreName CDATA #REQUIRED
surName CDATA #REQUIRED
initial CDATA #IMPLIED">
<!ENTITY % datelList "year CDATA #REQUIRED
month CDATA #REQUIRED
day CDATA #REQUIRED
hour CDATA #IMPLIED
minute CDATA #IMPLIED
second CDATA #IMPLIED">
<!ENTITY % algoList "algoName CDATA #REQUIRED
version CDATA #IMPLIED">
<!ENTITY % orglList "orgName CDATA #REQUIRED
dept CDATA #IMPLIED
section CDATA #IMPLIED">
<!ELEMENT dtd (dtdInfo)+>
<!'ELEMENT dtdInfo EMPTY>
<'ATTLIST dtdInfo name CDATA #REQUIRED
version CDATA #REQUIRED
URL CDATA #IMPLIED
author CDATA #IMPLIED>
<!-- end of stdDef.dtd -->

signList.dtd is used for signing a document; it contains signature informa-
tion, plus the public key information needed to check the signature.

<!-- signList.dtd: DTD for signing docs -->



<'ENTITY % stdDef SYSTEM "http://www/~ jhl21/dtds/stdDef.dtd">
%stdDef;
<!'ELEMENT signList (sign)+>
<!'ELEMENT sign (signInfo, pKeyInfo, signature)>
<!'ELEMENT signInfo (signer, signAlgo, url?, parent?)>
<!ELEMENT signer EMPTY>
<'ATTLIST signer %namelList; orgName CDATA #IMPLIED
signerId CDATA #IMPLIED>
<!ELEMENT signAlgo EMPTY>
<'ATTLIST signAlgo %algoList;>
<!'ELEMENT url (#PCDATA)>
<!'ELEMENT parent (#PCDATA)>
<!'ELEMENT pKeyInfo (pKeyVersion, cert, pKey)>
<!'ELEMENT pKeyVersion (#PCDATA)>
<!'ELEMENT cert EMPTY>
<'ATTLIST certIssuer CDATA #REQUIRED
certSerial CDATA #REQUIRED
certUrl CDATA #REQUIRED
revokeUrl CDATA #REQUIRED>
<'ELEMENT pKey (#PCDATA)>
<!ELEMENT signature (#PCDATA)>
<!-- end of signList.dtd -->

eCheque.dtdis a simple electronic cheque definition, and uses signList.dtd.
It includes the cheque number, account number, payee, payer(s), payment amount,
issue date, and timestamp. (A currency code can be specified with the payment
amount.)

<!-- eCheque.dtd: DTD for electronic cheques -->
<!ENTITY % signList SYSTEM "http://www/~jhl21/dtds/signList.dtd">
%signList;
<!ELEMENT eCheque (dtd, chequeBody, signList)>
<!ELEMENT chequeBody (chequeld, account,

payee, payment, issueDate, notLater?, timestamp, signInfo+)>
<!'ELEMENT chequelId (#PCDATA)>
<!'ELEMENT account (#PCDATA)>
<!'ELEMENT payer (#PCDATA)>
<!ELEMENT payee EMPTY>
<!'ATTLIST payee %4namelist; payeeId CDATA #IMPLIED>
<!'ELEMENT payment EMPTY>
<'ATTLIST payment amount CDATA #REQUIRED

currency CDATA #IMPLIED>
<!ELEMENT issueDate EMPTY>
<VATTLIST issueDate %dateList;>
<!ELEMENT notLater EMPTY>
<VATTLIST notLater %dateList;>
<'ELEMENT timestamp (#PCDATA)>
<!-- end of eCheque.dtd -->



Electronic cheques are thus, as in SDML, just like paper cheques. There are
external dependencies, or course, such as the certificates (which need to link the
account number to the signer’s distinguished name). In a real implementation,
the dependencies are likely to get so complex that formal tools may be advisable
in order to check for properties such as completeness and consistency.

Anyway, an actual electronic cheque looks like this:

<!-- corpCheque.xml -->
<?7xml version="1.0"7>
<!DOCTYPE eCheque SYSTEM "eCheque.dtd">

<eCheque>
<dtd>
<dtdInfo name="stdDef.dtd" version="1.0"/>
<dtdInfo name="signList.dtd" version="1.0"/>
<dtdInfo name="eCheque.dtd" version="1.0"/>
</dtd>
<chequeBody>
<chequeId>00883627</chequeId>
<account>23-45-67 1234567</account>
<payer>University of Cambridge</payer>
<payee foreName="William" surName="Hopkinson'" initial="F'"/>
<payment amount="19.95" currency="UKP"/>
<issueDate year="1999" month="01" day="15"/>
<notLater year='"1999" month="06" day="30"/>
<timestamp>872043082393</timestamp>
<signInfo>
<signer foreName="John" surName="Smith" initial="M"/>
<signAlgo algoName="PGP-RSA" version="5.5"/>
</signInfo>
<signInfo>
<signer foreName="Edward" surName="Thompson" initial="J"/>
<signAlgo algoName="PGP-DSS'" version="5.5"/>
</signInfo>
</chequeBody>
<signList>
<sign>
<signInfo>
<signer foreName="John" surName="Smith" initial="M"/>
<signAlgo algoName="PGP-RSA" version="5.5"/>
</signInfo>
<pKeyInfo>
<pKeyVersion>1.0</pKeyVersion>
<cert certIssuer="Cambridge Certificate Agency"
certSerial="1234567890"
certUrl="http://wuw.cca.com/certs/1234567890"
revokeUrl="http://www.cca.com/revoke?sn=1234567890">
<pKey>
1QMFEDWhboWuyrPDhRvRXQEBkp4D/ ivupscib5MIQXUA



bcP0UQquigzMpp7W5KXP1Cit9EyqaPtet+1nkaoRXYv
FQIB/eBjkcvNaAO2w/mvHQRQYiAzz6kdPSn/rt9THkX
LAOsOekv
=1zy8
<pKey>
</pKeyInfo>
<signature>
CZ/SDEjG6wt7V3uXWbZGVOpVg5LJg8j7b0N jtdDuAHy
asD8dsMrWe82J23Kwe7sd2jh2348fsKS92R82kw/ Tus
IyeYFI87qHE=
=0TeM
</signature>
</sign>
<sign>
<signInfo>
<signer foreName="Edward" surName="Thompson" initial="J"/>
<signAlgo algoName="PGP-DSS" version="5.5"/>
</signInfo>
<pKeyInfo>
<pKeyVersion>1.0</pKeyVersion>
<cert certIssuer="Cambridge Certificate Agency"
certSerial="2345678901"
certUrl="http://wuw.cca.com/certs/2345678901"
revokeUrl="http://www.cca.com/revoke?sn=2345678901">
<pKey>
SH11b24gTGV1ICgxMDIOKSA8SmOuZy1IeWVvbibMZWV
trSrLDLzXysR1sCHis29Q74wmeTysqY3j2z+RtzAgXb
ErsHSe7p3Jk23Ks23RksE89wEN32Zy7gwl29rt319/8
L12s7ejk
IEz1ly
</pKey>
</pKeyInfo>
<signature>
E0a57bT2+xWWds0Jh3wpIqV25B6+ExJA6xnAB3Az5hd
XZC36FgshDjRks72EosTNmsd7Us4ePgsQ/ZeX82HHIQ
xAEALBQYiHd
n/rt9
</signature>
</sign>
</signList>
</eCheque>
<!-- end of corpCheque.xml -->

(In the above example, signatures are truncated to save space.)

6 Architecture

In the Jikzi prototype, all documents published can be protected from modifi-
cation and deletion by making the underlying document storage append-only.



However, if such mechanisms could be relied on, then — as in our abstract security
policy model — there would be no need for digital signatures, hashes and other
such modification defection mechanisms. What we see such mechanisms actu-
ally achieving is to build, on top of a less reliable set of platforms, a document
store that is more reliable by virtue of the documents, and the links and other
relationships between them, being protected using hashing and digital signature
mechanisms.

Ideally, a user should be able to follow the dependencies automatically and
identify all of the documents on which she relies to support her business records,
or to provide a fully documented medical record. This might not just include (for
example) a copy of her record at her GP’s surgery, but also copies of hospital
records to which a discharge summary in the GP record referred, and copies
of the relevant entries from drug formularies or treatment protocols on which
particular treatment decisions were based.

This is of course an ambitious program, and prototype currently just provides
us with the means to play with security markup languages, DTDs and cascading
style sheets, so that we can begin to explore this space.

Server
User
Interface

Search
Engine

Policy Manager
Manager

Version
Manager
Time
Server JPP

Fig. 1. Architecture of the Jikzi system

The Jikzi server consists of the following blocks: Server User Interface, Jikzi
PreProcessor, Version Manager, Storage Manager, Policy Manager, Search En-
gine, and storage. The Server User Interface has a web interface format so that
users can access it with their browsers; pages for user document submission are
are written in HTML/XML; and the documentation for the Jikzi service is writ-
ten in XML. At this stage, a limited number of browsers support XML features
and we believe that support of XML will expand.

The Jikzi PreProcessor (JPP) consists of three parts: the Type Checker, the
Jikzi Parser, and the Primitive Function Block. The JPP’s input is in XML for-



JPP - Jikzi PreProcessor

xml Jikzi Parser

Type
Checker

xpf

Primitive
Function
Block

Fig. 2. Jikzi PreProcessor

mat and it is tested, manipulated, and then stored in an internal format called
XML Primitive Format (XPF). The Type Checker verifies that submitted doc-
uments are well-formed. The Jikzi Parser catches Jikzi specific tags and embeds
the function they need into the document. The Primitive Function Block is a
library of functions used in Jikzi server which includes hashing, signatured, and
verification algorithms.

The Version Manager acts like RCS; it does version control of all published
files and keeps traces of their update history. Files are stored in a log-structured
way for efficiency. It also lets users browse the history of published documents.

The Storage Manager is a front-end to the file system and enforces the ac-
cess control policy laid down by the Policy Manager. The Policy Manager is
a directory for policies and supports their registration and deregistration. It
also interacts with the Search Engine. The Search Engine fetches documents re-
quested by users on the basis of string matching. The Storage database, at least
in our prototype, keeps all published documents in an append-only file.

The Time Server enables users to affix timestamps to publications. It can use
either an external time service like the Network Time Protocol server [19] or an
internal clock. At present, we use the latter.

This is still an alpha system and under development. Its purpose is to enable
us to understand the issues involved with security markup languages, and the
more input we can get, the better. The system is online at <http://han.al.
cl.cam.ac.uk>, and if you want to be a tester, please contact the authors.

7 Conclusion

The three main aspects of electronic commerce that need to be protected against
error and attack are publication, payment and copy control. So far the first of
these has been largely ignored; in this paper we have tried to highlight the issues.

We have proposed a security policy model for publishing: a file store in which
each user has append access to exactly one file, and all files are world readable.
We have shown how some simple applications fit this model, and indicated its
more general usefulness. We have discussed possible rules for an authentication



logic that would enable us to reason about trust relationships. This analysis
helped us to find an ambiguity in the previous work, namely how one deals with
different instances of a receipt.

We have also described a prototype system that we have developed to explore
the use of authentication and integrity mechanismsin XML. Jikzi is an electronic
publishing system that provides long term storage with support for XML and
CSS, and features such as version management and timestamping.

Our work has some other interesting scientific aspects. It may help to eluci-
date our understanding of time and succession in the context of protocols and
authentication logics, and the relationship between availability and authentica-
tion in scenarios where some views of a database are preserved and others lost.
This may give us a better understanding of application level trust structures. Un-
til now, models such as Clark-Wilson, Rampart [21] and Proactive Security [14]
have tended to consider ‘dual control’ in the context of simple threshold schemes;
but in real applications, one tends to find a much richer syntax of dependencies
that are integrated with the underlying business model: it may take the assent
of a number of principals with distinct roles to commit to a transaction, and
a different set of principals to override it or recover from failure. This can give
much greater resilience, but at a cost of more complexity — complexity familiar
to commercial application developers, but which the research community has so
far largely ignored.

The arrival of XML is bound to force application security syntax to be ex-
amined, and Jikzi provides the context in which this can be done.

8 Acknowledgement

The second author is supported by the EPSRC under grant number GR/L95809
on Resilient Security Mechanisms.

References

1. R. J. Anderson. The Eternity service. In Pragocrypt '96, pages 242-252, Prague,
1996. CTU Publishing House.

2. R. J. Anderson. Security in clinical information systems. BMA Report, British
Medical Association, Jan. 1996. [SBN 0-7279-1048-5.

3. R. J. Anderson, V. Matyas, and F. A. P. Petitcolas. The Eternal Resource Locator:
An alternative means of establishing trust on the world wide web. In 1998 USENIX
Electronic Commerce Workshop, pages 141-153, Boston, MA, 1998.

4. R. J. Anderson, V. Matyas, F. A. P. Petitcolas, I. E. Buchan, and R. Hanka.
Secure books: protecting the distribution of knowledge. In Proceedings of Security
Protocols Workshop '97, pages 1-12, Paris, 1997.

5. D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical founda-
tions. Mitre Report ESD-TR-73-278 (Vol. I-11I), Mitre Corporation, Bedford, MA,
Apr. 1974.



10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. C. Benaloh. Verifiable Secret-Ballot Elections. Ph.D. dissertation, Yale Univer-
sity, New Haven, 1987. YALEU/DCS/TR-561.

B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets, level 2 (CSS2).
W3C Recommendation REC-CSS2-19980512, World Wide Web Consortium, May
1998. <http://www.w3.org/TR/REC-CCS2>.

T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language
(XML 1.0). W3C Recommendation REC-xml-1998210, World Wide Web Consor-
tium, Feb. 1998. <http://www.w3.org/TR/REC-xml>.

. M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. ACM

Transactions on Computer Systems, 8(1):18-36, Feb. 1990.

Y.-h. Chu, P. DesAutels, B. LaMancchia, and P. Lipp. PICS Signed Labels (DSig)
1.0 specification. W3C Recommendation REC-DSig-label-19980527, World Wide
Web Consortium, May 1998. <http://wuw.w3.org/TR/REC-DSig-label>.

D. D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In the 1987 IEEE Symposium on Security and Privacy, pages
184-194, Oakland, CA, 1987.

W. Dai. B-money, 1998. <http://www.eskimo.com/ weidai/bmoney.txt>.

S. Deach. Extensible Stylesheet Language (XSL). W3C Working Draft WD-xsl-
19990421, World Wide Web Consortium, Apr. 1999. <http://www.w3.org/TR/
WD-xs1>.

A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung. Proactive
public key and signature systems. In the 4th ACM Conference on Computer and
Communications Security, pages 100-110. ACM SIGSAC, 1997.

R. Kailar. Accountability in electronic commerce protocols. IEFE Transactions
on Software Engineering, SE-22(5):313-328, May 1996.

A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory based file system.
In the 1995 USENIX Technical Conference, pages 16-20, New Orleans, LA, Jan.
1995.

J. Kravitz. SDML - signed document markup language. W3C Note NOTE-SDML-
19980619, World Wide Web Consortium, June 1998. <http://www.w3.org/TR/
NOTE-SDML>.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, 1978.

D. L. Mills. Internet time synchronization: the network time protocol. IFEFE
Transactions on Communications, COM-39(10):1482-1493, 1991.

K. R. O’Toole. The internet billing server transaction protocol alternatives. Tech-
nical Report INI-TR 1994-1, Carnegie Mellon University Information Networking
Institute, Apr. 1994.

M. K. Reiter. The Rampart toolkit for building high-integrity services. In Theory
and Practice in Distributed Systems, volume 938 of LNCS, pages 99-110. Springer-
Verlag, 1995.

M. R. Roe. Cryptography and evidence. Ph.D. dissertation, University of Cam-
bridge, Cambridge, 1998.

M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system. In 18th ACM Symposium on Operating Systems Principles,
pages 1-15, Asilomar, Oct. 1991.

M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system. ACM Computing Surveys, 10(1):26-52, 1992.

J. F. Snook. Towards Secure, Optimistic, Distributed Open Systems. Ph.D. dis-
sertation, University of Hertfordshire, Hatfield, Sept. 1992. Technical Report No.
151.



