
Chapter 5

Cryptography

ZHQM ZMGM ZMFM
– G JULIUS CAESAR

KXJEY UREBE ZWEHE WRYTU HEYFS KREHE GOYFI
WTTTU OLKSY CAJPO BOTEI ZONTX BYBWT GONEY

CUZWR GDSON SXBOU YWRHE BAAHY USEDQ
– JOHN F KENNEDY

5.1 Introduction

Cryptography is where security engineering meets mathematics. It gives us the
tools that underlie most modern security protocols. It is the key technology for
protecting distributed systems, yet it is surprisingly hard to do right. As we’ve
already seen in Chapter 4, “Protocols,” cryptography has often been used to
protect the wrong things, or to protect them in the wrong way. Unfortunately,
the available crypto tools aren’t always very usable.

But no security engineer can ignore cryptology. A medical friend once told
me that while she was young, she worked overseas in a country where, for
economic reasons, they’d shortened their medical degrees and concentrated on
producing specialists as quickly as possible. One day, a patient who’d had both
kidneys removed and was awaiting a transplant needed her dialysis shunt redone.
The surgeon sent the patient back from the theater on the grounds that there
was no urinalysis on file. It just didn’t occur to him that a patient with no
kidneys couldn’t produce any urine.

Just as a doctor needs to understand physiology as well as surgery, so a
security engineer needs to be familiar with at least the basics of crypto (and
much else). There are, broadly speaking, three levels at which one can ap-
proach crypto. The first consists of the underlying intuitions; the second of
the mathematics that we use to clarify these intuitions, provide security proofs
where possible and tidy up the constructions that cause the most confusion; and
the third is the cryptographic engineering – the tools we commonly use, and the

140



5.2. HISTORICAL BACKGROUND

experience of what can go wrong with them. In this chapter, I assume you have
no training in crypto and set out to explain the basic intuitions. I illustrate
them with engineering, and sketch enough of the mathematics to help give you
access to the literature when you need it. One reason you need some crypto
know-how is that many common constructions are confusing, and many tools
o↵er unsafe defaults. For example, Microsoft’s Crypto API (CAPI) nudges en-
gineers to use electronic codebook mode; by the end of this chapter you should
understand what that is, why it’s bad, and what you should do instead.

Many crypto textbooks assume that their readers are pure maths graduates,
so let me start o↵ with non-mathematical definitions. Cryptography refers to
the science and art of designing ciphers; cryptanalysis to the science and art of
breaking them; while cryptology, often shortened to just crypto, is the study of
both. The input to an encryption process is commonly called the plaintext or
cleartext, and the output the ciphertext. Thereafter, things get somewhat more
complicated. There are a number of basic building blocks, such as block ciphers,
stream ciphers, and hash functions. Block ciphers may either have one key for
both encryption and decryption, in which case they’re called shared-key (also
secret-key or symmetric), or have separate keys for encryption and decryption, in
which case they’re called public-key or asymmetric. A digital signature scheme
is a special type of asymmetric crypto primitive.

I will first give some historical examples to illustrate the basic concepts. I’ll
then fine-tune definitions by introducing the security models that cryptologists
use, including perfect secrecy, concrete security, indistinguishability and the
random oracle model. Finally, I’ll show how the more important cryptographic
algorithms actually work, and how they can be used to protect data. En route,
I’ll give examples of how people broke weak ciphers, and weak constructions
using strong ciphers.

5.2 Historical Background

Suetonius tells us that Julius Caesar enciphered his dispatches by writing ‘D’ for
‘A’, ‘E’ for ‘B’ and so on [1493]. When Augustus Caesar ascended the throne,
he changed the imperial cipher system so that ‘C’ was now written for ‘A’, ‘D’
for ‘B’ etcetera. In modern terminology, we would say that he changed the key
from ‘D’ to ‘C’. Remarkably, a similar code was used by Bernardo Provenzano,
allegedly the capo di tutti capi of the Sicilian mafia, who wrote ‘4’ for ‘a’, ‘5’ for
‘b’ and so on. This led directly to his capture by the Italian police in 2006 after
they intercepted and deciphered some of his messages [1243].

The Arabs generalised this idea to the monoalphabetic substitution, in which
a keyword is used to permute the cipher alphabet. We will write the plaintext
in lower case letters, and the ciphertext in upper case, as shown in Figure 5.1:

abcdefghijklmnopqrstuvwxyz
SECURITYABDFGHJKLMNOPQVWXZ

Figure 5.1 – monoalphabetic substitution cipher

Security Engineering 141 Ross Anderson



5.2. HISTORICAL BACKGROUND

OYAN RWSGKFR AN AH RHTFANY MSOYRM OYSH SMSEAC NCMAKO; but it’s a pen-
cil and paper puzzle to break ciphers of this kind. The trick is that some letters,
and combinations of letters, are much more common than others; in English
the most common letters are e,t,a,i,o,n,s,h,r,d,l,u in that order. Artificial intel-
ligence researchers have experimented with programs to solve monoalphabetic
substitutions. Using letter and digram (letter pair) frequencies alone, they typ-
ically need about 600 letters of ciphertext; smarter strategies such as guessing
probable words can cut this to about 150 letters; and state-of-the-art systems
that use neural networks and approach the competence of human analysts are
also tested on deciphering ancient scripts such as Ugaritic and Linear B [972].

There are basically two ways to make a stronger cipher – the stream cipher
and the block cipher. In the former, you make the encryption rule depend on
a plaintext symbol’s position in the stream of plaintext symbols, while in the
latter you encrypt several plaintext symbols at once in a block.

5.2.1 An early stream cipher – the Vigenère

This early stream cipher is commonly ascribed to the Frenchman Blaise de
Vigenère, a diplomat who served King Charles IX. It works by adding a key
repeatedly into the plaintext using the convention that ‘A’ = 0, ‘B’ = 1, ..., ‘Z’
= 25, and addition is carried out modulo 26 – that is, if the result is greater
than 25, we subtract as many multiples of 26 as are needed to bring is into the
range [0, ..., 25], that is, [A, ..., Z]. Mathematicians write this as

C = P + K mod 26

So, for example, when we add P (15) to U (20) we get 35, which we reduce
to 9 by subtracting 26. 9 corresponds to J, so the encryption of P under the key
U (and of U under the key P) is J, or more simply U + P = J. In this notation,
Julius Caesar’s system used a fixed key K = D, while Augustus Caesar’s used K
= C and Vigenère used a repeating key, also known as a running key. Techniques
were developed to do this quickly, ranging from printed tables to brass cipher
wheels. Whatever the technology, the encryption using a repeated keyword for
the key would look as shown in Figure 5.2:

Plain tobeornottobethatisthequestion
Key runrunrunrunrunrunrunrunrunrun
Cipher KIOVIEEIGKIOVNURNVJNUVKHVMGZIA

Figure 5.2 – Vigenère (polyalphabetic substitution cipher)

A number of people appear to have worked out how to solve polyalpha-
betic ciphers, from the womaniser Giacomo Casanova to the computing pioneer
Charles Babbage. But the first published solution was in 1863 by Friedrich
Kasiski, a Prussian infantry o�cer [832]. He noticed that given a long enough
piece of ciphertext, repeated patterns will appear at multiples of the keyword
length.

Security Engineering 142 Ross Anderson



5.2. HISTORICAL BACKGROUND

In Figure 5.2, for example, we see ‘KIOV’ repeated after nine letters, and
‘NU’ after six. Since three divides both six and nine, we might guess a keyword
of three letters. Then ciphertext letters one, four, seven and so on were all
enciphered under the same keyletter; so we can use frequency analysis techniques
to guess the most likely values of this letter, and then repeat the process for the
remaining letters of the key.

5.2.2 The One-time Pad

One way to make a stream cipher of this type proof against attacks is for the
key sequence to be as long as the plaintext, and to never repeat. This is known
as the one-time pad and was proposed by Gilbert Vernam during World War
I [812]; given any ciphertext, and any plaintext of the same length, there’s a key
that decrypts the ciphertext to the plaintext. So regardless of the amount of
computation opponents can do, they’re none the wiser, as given any ciphertext,
all possible plaintexts of that length are equally likely. This system therefore
has perfect secrecy.

Here’s an example. Suppose you had intercepted a message from a wartime
German agent which you knew started with ‘Heil Hitler’, and the first ten letters
of ciphertext were DGTYI BWPJA. So the first ten letters of the one-time pad were
wclnb tdefj, as shown in Figure 5.3:

Plain heilhitler
Key wclnbtdefj
Cipher DGTYIBWPJA

Figure 5.3 – A spy’s message

But once he’s burnt the piece of silk with his key material, the spy can claim
that he’s actually a member of the underground resistance, and the message
actually said ‘Hang Hitler’. This is also possible, as the key material could just
as easily have been wggsb tdefj, as shown in Figure 5.4:

Cipher DGTYIBWPJA
Key wggsbtdefj
Plain hanghitler

Figure 5.4 – What the spy can claim he said

Now we rarely get anything for nothing in cryptology, and the price of the
perfect secrecy of the one-time pad is that it fails completely to protect message
integrity. So if you wanted to get this spy into trouble, you could change the
ciphertext to DCYTI BWPJA (Figure 5.4):

Cipher DCYTIBWPJA
Key wclnbtdefj
Plain hanghitler

Figure 5.5 – Manipulating the message to entrap the spy

Security Engineering 143 Ross Anderson



5.2. HISTORICAL BACKGROUND

Leo Marks’ engaging book on cryptography in the Special Operations Exec-
utive in World War II [996] relates how one-time key material was printed on
silk, which agents could conceal inside their clothing; whenever a key had been
used it was torn o↵ and burnt. In fact, during the war, Claude Shannon proved
that a cipher has perfect secrecy if and only if there are as many possible keys
as possible plaintexts, and every key is equally likely; so the one-time pad is the
only kind of system that o↵ers perfect secrecy. He was finally allowed to publish
this in 1948 [1391, 1392].

The one-time tape was used for top-level communications by both sides from
late in World War II, then for strategic communications between NATO allies,
and for the US-USSR hotline from 1963. Thousands of machines were produced
in total, using paper tapes for key material, until they were eventually replaced
by computers from the mid-1980s1. But such cryptography is too expensive
for most applications as it consumes as much key material as there is tra�c.
It’s more common for stream ciphers to use a pseudorandom number generator
to expand a short key into a long keystream. The data is then encrypted by
combining the keystream, one symbol at a time, with the data. It’s not enough
for the keystream to appear “random” in the sense of passing the standard
statistical randomness tests: it must also have the property that an opponent
who gets his hands on even quite a lot of keystream symbols should not be able
to predict any more of them.

An early example was rotor machines, mechanical stream-cipher devices that
produce a very long sequence of pseudorandom states2 and combine them with
plaintext to get ciphertext. These machines were independently invented by
a number of people from the 1920s, many of whom tried to sell them to the
banking industry. Banks weren’t in general interested, for reasons we’ll discuss
below, but rotor machines were very widely used by the combatants in World
War II to encipher radio tra�c, and the e↵orts made by the Allies to decipher
German tra�c included the work by Alan Turing and others on Colossus, which
helped kickstart the computer industry after the war.

Stream ciphers have been widely used in hardware applications where the
number of gates had to be minimised to save power. We’ll look at some real
designs in later chapters, including the A5 algorithm used to encipher mobile
phone tra�c. However, block ciphers are more flexible and are more common
in systems being designed now, so let’s look at them next.

5.2.3 An early block cipher – Playfair

The Playfair cipher was invented in 1854 by Sir Charles Wheatstone, a telegraph
pioneer who also invented the concertina and the Wheatstone bridge. The
reason it’s not called the Wheatstone cipher is that he demonstrated it to Baron
Playfair, a politician; Playfair in turn demonstrated it to Prince Albert and to
Viscount Palmerston (later Prime Minister), on a napkin after dinner.

1Information about the machines can be seen at the Crypto Museum, https://www.
cryptomuseum.com.

2letters in the case of the Hagelin machine used by the USA, permutations in the case of
the German Enigma and the British Typex

Security Engineering 144 Ross Anderson



5.2. HISTORICAL BACKGROUND

This cipher uses a 5 by 5 grid, in which we place the alphabet, permuted by
the key word, and omitting the letter ‘J’ (see Figure 5.6):

P A L M E
R S T O N
B C D F G
H I K Q U
V W X Y Z

Figure 5.6 – the Playfair enciphering table

The plaintext is first conditioned by replacing ‘J’ with ‘I’ wherever it occurs,
then dividing it into letter pairs, preventing double letters occurring in a pair by
separating them with an ‘x’, and finally adding a ‘z’ if necessary to complete the
last letter pair. The example Playfair wrote on his napkin was ‘Lord Granville’s
letter’ which becomes ‘lo rd gr an vi lx le sl et te rz’.

It is then enciphered two letters at a time using the following rules:

• if the two letters are in the same row or column, they are replaced by the
succeeding letters. For example, ‘am’ enciphers to ‘LE’

• otherwise the two letters stand at two of the corners of a rectangle in the
table, and we replace them with the letters at the other two corners of
this rectangle. For example, ‘lo’ enciphers to ‘MT’.

We can now encipher our specimen text as follows:

Plain lo rd gr an vi lx le sl et te rz
Cipher MT TB BN ES WH TL MP TA LN NL NV

Figure 5.7 – example of Playfair enciphering

Variants of this cipher were used by the British army as a field cipher in
World War I, and by the Americans and Germans in World War II. It’s a
substantial improvement on Vigenère as the statistics that an analyst can collect
are of digraphs (letter pairs) rather than single letters, so the distribution is much
flatter and more ciphertext is needed for an attack.

Again, it’s not enough for the output of a block cipher to just look intuitively
“random”. Playfair ciphertexts look random; but they have the property that if
you change a single letter of a plaintext pair, then often only a single letter of
the ciphertext will change. Thus using the key in Figure 5.7, rd enciphers to TB
while rf enciphers to OB and rg enciphers to NB. One consequence is that given
enough ciphertext, or a few probable words, the table (or an equivalent one)
can be reconstructed [598]. In fact, the quote at the head of this chapter is a
Playfair-encrypted message sent by the future President Jack Kennedy when he
was a young lieutenant holed up on a small island with ten other survivors after
his motor torpedo boat had been sunk in a collision with a Japanese destroyer.
Had the Japanese intercepted it, they might possibly have decrypted it, and

Security Engineering 145 Ross Anderson



5.2. HISTORICAL BACKGROUND

history could be di↵erent. For a stronger cipher, we will want the e↵ects of
small changes in the cipher’s input to di↵use completely through its output.
Changing one input bit should, on average, cause half of the output bits to
change. We’ll tighten these ideas up in the next section.

The security of a block cipher can also be greatly improved by choosing a
longer block length than two characters. For example, the Data Encryption
Standard (DES), which is widely used in payment systems, has a block length of
64 bits and the Advanced Encryption Standard (AES), which has replaced it in
most other applications, has a block length of twice this. I discuss the internal
details of DES and AES below; for the time being, I’ll just remark that we need
more than just an adequate block size.

For example, if a bank account number always appears at the same place
in a transaction, then it’s likely to produce the same ciphertext every time a
transaction involving it is encrypted with the same key. This might allow an
opponent to cut and paste parts of two di↵erent ciphertexts in order to produce
a valid but unauthorised transaction. Suppose a bad man worked for a bank’s
phone company, and monitored an enciphered transaction that he knew said
“Pay IBM $10,000,000”. He might wire $1,000 to his brother causing the bank
computer to insert another transaction saying “Pay John Smith $1,000”, inter-
cept this instruction, and make up a false instruction from the two ciphertexts
that decrypted as “Pay John Smith $10,000,000”. So unless the cipher block is
as large as the message, the ciphertext will contain more than one block and
we’ll need some way of binding the blocks together.

5.2.4 Hash functions

The third classical type of cipher is the hash function. This evolved to protect
the integrity and authenticity of messages, where we don’t want someone to be
able to manipulate the ciphertext in such a way as to cause a predictable change
in the plaintext.

After the invention of the telegraph in the mid-19th century, banks rapidly
became its main users and developed systems for transferring money electroni-
cally. What’s ‘wired’ is a payment instruction, such as:

‘To Lombard Bank, London. Please pay from our account with you
no. 1234567890 the sum of £1000 to John Smith of 456 Chesterton
Road, who has an account with HSBC Bank Cambridge no. 301234
4567890123, and notify him that this was for “wedding present from
Doreen Smith”. From First Cowboy Bank of Santa Barbara, CA,
USA. Charges to be paid by us.’

Since telegraph messages were relayed from one o�ce to another by human
operators, it was possible for an operator to manipulate a payment message.

In the nineteenth century, banks, telegraph companies and shipping com-
panies developed code books that could not only protect transactions but also
shorten them – which was important given the costs of international telegrams
at the time. A code book was essentially a block cipher that mapped words or

Security Engineering 146 Ross Anderson



5.2. HISTORICAL BACKGROUND

phrases to fixed-length groups of letters or numbers. So “Please pay from our
account with you no.” might become ‘AFVCT’. Sometimes the codes were also
enciphered.

The banks realised that neither stream ciphers nor code books protect mes-
sage authenticity. If, for example, the codeword for ‘1000’ is ‘mauve’ and for
‘1,000,000’ is ‘magenta’, then the crooked telegraph clerk who can compare the
coded tra�c with known transactions should be able to figure this out and
substitute one for the other.

The critical innovation, for the banks’ purposes, was to use a code book but
to make the coding one-way by adding the code groups together into a number
called a test key. (Modern cryptographers would describe it as a hash value or
message authentication code, terms I’ll define more carefully later.)

Here is a simple example. Suppose the bank has a code book with a table
of numbers corresponding to payment amounts as in Figure 5.8:

0 1 2 3 4 5 6 7 8 9
x 1000 14 22 40 87 69 93 71 35 06 58
x 10,000 73 38 15 46 91 82 00 29 64 57
x 100,000 95 70 09 54 82 63 21 47 36 18
x 1,000,000 53 77 66 29 40 12 31 05 87 94

Figure 5.8 – a simple test key system

Now in order to authenticate a transaction for £376,514 we might add to-
gether 53 (no millions), 54 (300,000), 29 (70,000) and 71 (6,000) ignoring the
less significant digits. This gives us a test key of 207.

Most real systems were more complex than this; they usually had tables
for currency codes, dates and even recipient account numbers. In the better
systems, the code groups were four digits long rather than two, and in order
to make it harder for an attacker to reconstruct the tables, the test keys were
compressed: a key of ‘7549’ might become ‘23’ by adding the first and second
digits, and the third and fourth digits, ignoring the carry.

This made such test key systems into one-way functions in that although it
was possible to compute a test from a message, given knowledge of the key, it
was not possible to reverse the process and recover either a message or a key
from a single test – the test just did not contain enough information. Indeed,
one-way functions had been around since at least the seventeenth century. The
scientist Robert Hooke published in 1678 the sorted anagram ‘ceiiinosssttuu’
and revealed two years later that it was derived from ‘Ut tensio sic uis’ – ‘the
force varies as the tension’, or what we now call Hooke’s law for a spring. (The
goal was to establish priority for the idea while giving him time to do more work
on it.)

Banking test keys are not strong by the standards of modern cryptography.
Given between a few dozen and a few hundred tested messages, depending on
the design details, a patient analyst could reconstruct enough of the tables to
forge a transaction. With a few carefully chosen messages inserted into the
banking system by an accomplice, it’s even easier. But the banks got away

Security Engineering 147 Ross Anderson



5.2. HISTORICAL BACKGROUND

with it: test keys worked fine from the late nineteenth century through the
1980s. In several years working as a bank security consultant, and listening to
elderly auditors’ tales over lunch, I only ever heard of two cases of fraud that
exploited it: one external attempt involving cryptanalysis, which failed because
the attacker didn’t understand bank procedures, and one successful but small
fraud involving a crooked sta↵ member. I’ll discuss the systems that replaced
test keys in the chapter on Banking and Bookkeeping.

However, test keys are our historical example of an algebraic function used for
authentication. They have important modern descendants in the authentication
codes used in the command and control of nuclear weapons, and also with
modern block ciphers. The idea in each case is the same: if you can use a unique
key to authenticate each message, simple algebra can give you ideal security.
Suppose you have a message M of arbitrary length and want to compute an
authentication code A of 128 bits long, and the property you want is that nobody
should be able to find a di↵erent message M 0 whose authentication code under
the same key will also be A, unless they know the key, except by a lucky guess for
which the probability is 2�128. You can simply choose a 128-bit prime number
p and compute A = k1M + k2 (mod p) where the key consists of two 128-bit
numbers k1 and k2.

This is secure for the same reason the one-time pad is: given any other
message M 0 you can find another key (k01, k

0
2) that authenticates M 0 to A. So

without knowledge of the key, the adversary who sees M and A simply has
no information of any use in creating a valid forgery. As there are 256 bits of
key and only 128 bits of tag, this holds even for an adversary with unlimited
computing power: such an adversary can easily find the 2128 possible keys for
each pair of message and tag but has no way to choose between them. I’ll discuss
how this universal hash function is used with block ciphers below, and how it’s
used in nuclear command and control in Part 2.

5.2.5 Asymmetric primitives

Finally, some modern cryptosystems are asymmetric, in that di↵erent keys are
used for encryption and decryption. So, for example, most web sites nowadays
have a certificate containing a public key with which people can encrypt their
session using a protocol called TLS; the owner of the web page can decrypt the
tra�c using the corresponding private key. We’ll go into the details later.

There are some pre-computer examples of this too; perhaps the best is the
postal service. You can send me a private message by addressing it to me and
dropping it into a post box. Once that’s done, I’m the only person who’ll be
able to read it. Of course, many things can go wrong: you might get the wrong
address for me (whether by error or as a result of deception); the police might get
a warrant to open my mail; the letter might be stolen by a dishonest postman;
a fraudster might redirect my mail without my knowledge; or a thief might
steal the letter from my doormat. Similar things can go wrong with public key
cryptography: false public keys can be inserted into the system, computers can
be hacked, people can be coerced and so on. We’ll look at these problems in
more detail in later chapters.

Security Engineering 148 Ross Anderson



5.3. SECURITY MODELS

Another asymmetric application of cryptography is the digital signature. The
idea here is that I can sign a message using a private signature key and then
anybody can check this using my public signature verification key. Again, there
are pre-computer analogues in the form of manuscript signatures and seals; and
again, there is a remarkably similar litany of things that can go wrong, both
with the old way of doing things and with the new.

5.3 Security Models

Before delving into the detailed design of modern ciphers, I want to look more
carefully at the various types of cipher and the ways in which we can reason
about their security.

Security models seek to formalise the idea that a cipher is “good”. We’ve
already seen the model of perfect secrecy: given any ciphertext, all possible
plaintexts of that length are equally likely. Similarly, an authentication scheme
that uses a key only once can be designed so that the best forgery attack on it
is a random guess, whose probability of success can be made as low as we want
by choosing a long enough tag.

The second model is concrete security, where we want to know how much
actual work an adversary has to do. At the time of writing, it takes the most
powerful adversary in existence – the community of bitcoin miners, burning
about as much electricity as the state of Denmark – about ten minutes to solve
a 68-bit cryptographic puzzle and mine a new block. So an 80-bit key would
take them 212 times as long, or about a month; a 128-bit key, the default in
modern systems, is 248 times harder again. So even in 1000 years the probability
of finding the right key by chance is 2�35 or one in many billion. In general,
a system is (t, ✏)-secure if an adversary working for time t succeeds in breaking
the cipher with probability at most ✏.

The third model, which many theoreticians now call the standard model, is
about indistinguishability. This enables us to reason about the specific proper-
ties of a cipher we care about. For example, most cipher systems don’t hide the
length of a message, so we can’t define a cipher to be secure by just requiring
that an adversary not be able to distinguish ciphertexts corresponding to two
messages; we have to be more explicit and require that the adversary not be
able to distinguish between two messages M1 and M2 of the same length. This
is formalised by having the cryptographer and the cryptanalyst play a game in
which the analyst wins by finding an e�cient discriminator of something she
shouldn’t be able to discriminate with more than negligible probability. If the
cipher doesn’t have perfect security this can be asymptotic, where we typically
want the e↵ort to grow faster than any polynomial function of a security param-
eter n – say the length of the key in bits. A security proof typically consists of
a reduction where we show that if there exists a randomised (i.e. probabilistic)
algorithm running in time polynomial in n that learns information it shouldn’t
with non-negligible probability, then this would give an e�cient discriminator
for an underlying cryptographic primitive that we already trust. Finally, a con-
struction is said to have semantic security if there’s no e�cient distinguisher for
the plaintext regardless of any side information the analyst may have about it;

Security Engineering 149 Ross Anderson



5.3. SECURITY MODELS

even if she knows all but one bit of it, and even if she can get a decryption of any
other ciphertext, she can’t learn anything more from the target ciphertext. This
skips over quite a few mathematical details, which you can find in a standard
text such as Katz and Lindell [834].

The fourth model is the random oracle model, which is not as general as the
standard model but which often leads to more e�cient constructions. We call a
cryptographic primitive pseudorandom if there’s no e�cient way of distinguish-
ing it from a random function of that type, and in particular it passes all the
statistical and other randomness tests we apply. Of course, the cryptographic
primitive will actually be an algorithm, implemented as an array of gates in
hardware or a program in software; but the outputs should “look random” in
that they’re indistinguishable from a suitable random oracle given the type and
the number of tests that our model of computation permits.

Figure 5.9: – the random oracle

To visualise a random oracle, we might imagine an elf sitting in a black box
with a source of physical randomness and some means of storage (see Figure
5.9) – represented in our picture by the dice and the scroll. The elf will accept
inputs of a certain type, then look in the scroll to see whether this query has
ever been answered before. If so, it will give the answer it finds there; if not, it
will generate an answer at random by throwing the dice, and keep a record for
future reference. We’ll further assume finite bandwidth – the elf will only answer
so many queries every second. What’s more, our oracle can operate according
to several di↵erent rules.

5.3.1 Random functions – hash functions

The first type of random oracle is the random function. A random function
accepts an input string of any length and outputs a string of fixed length, say n
bits long. The same input gives the same output, but the set of outputs appears
random. So the elf just has a simple list of inputs and outputs, which grows

Security Engineering 150 Ross Anderson



5.3. SECURITY MODELS

steadily as it works.

Random functions are our model for cryptographic hash functions. These
were first used in computer systems for one-way encryption of passwords in the
1960s and have many more uses today. For example, if the police seize your
laptop, the standard forensic tools will compute checksums on all the files, to
identify which files are already known (such as system files) and which are novel
(such as user data). These hash values will change if a file is corrupted and so
can assure the court that the police haven’t tampered with evidence. And if we
want evidence that we possessed a given electronic document by a certain date,
we might submit it to an online time-stamping service or have it mined into the
Bitcoin blockchain. However, if the document is still secret – for example an
invention for which we want to establish a priority date – then we would not
upload the whole document, but just the message hash. This is the modern
equivalent of Hooke’s anagram that we discussed in section 5.2.4 above.

5.3.1.1 Properties

The first main property of a random function is one-wayness. Given knowledge
of an input x we can easily compute the hash value h(x), but it is very di�cult
given h(x) to find x if such an input is not already known. (The elf will only pick
outputs for given inputs, not the other way round.) As the output is random,
the best an attacker can do to invert a random function is to keep on feeding in
more inputs until he gets lucky; with an n-bit output this will take about 2n�1

guesses on average. A pseudorandom function will have the same properties, or
they could be used to distinguish it from a random function, contrary to our
definition. So a pseudorandom function will also be a one-way function, provided
there are too many possible outputs for the opponent to guess an input that has
a desired target output by chance. This means choosing n so that the opponent
can’t do anything near 2n computations. If we claim, for example, that SHA256
is a pseudorandom function, then we’re saying that there’s no practical way to
find an input that hashes to a given 256-bit value, unless you knew it already
and used it to compute that value.

A second property of pseudorandom functions is that the output will not give
any information at all about even part of the input. So we can get a one-way
encryption of the value x by concatenating it with a secret key k and computing
h(x, k). If the hash function isn’t random enough, though, using it for one-
way encryption in this manner is asking for trouble. (I’ll discuss an example
later in section 22.2.7: the hash function used by many phone companies in
the 1990s and early 2000s to authenticate mobile phone users wasn’t random
enough, which led to attacks.)

A third property of pseudorandom functions with su�ciently long outputs
is that it is hard to find collisions, that is, di↵erent messages M1 6= M2 with
h(M1) = h(M2). Unless the opponent can find a shortcut attack (which would
mean the function wasn’t pseudorandom) then the best way of finding a collision
is to collect a large set of messages Mi and their corresponding hashes h(Mi),
sort the hashes, and look for a match. If the hash function output is an n-bit
number, so that there are 2n possible hash values, then the number of hashes the
enemy will need to compute before he can expect to find a match will be about

Security Engineering 151 Ross Anderson



5.3. SECURITY MODELS

the square root of this, namely 2n/2 hashes. This fact is of huge importance in
security engineering, so let’s look at it more closely.

5.3.1.2 The birthday theorem

The birthday theorem gets its name from the following problem. A maths
teacher asks a class of 30 pupils what they think is the probability that two
of them have the same birthday. Most pupils intuitively think it’s unlikely,
and the maths teacher then asks the pupils to state their birthdays one after
another. The odds of a match exceed 50% once 23 pupils have been called. As
this surprises most people, it’s also known as the ‘birthday paradox’.

The birthday theorem was first used in the 1930’s to count fish, so it’s also
known as capture-recapture statistics [1350]. Suppose there are N fish in a lake
and you catch m of them, ring them and throw them back, then when you first
catch a fish you’ve ringed already, m should be ‘about’ the square root of N .
The intuitive reason why this holds is that once you have

p
N samples, each

could potentially match any of the others, so the number of possible matches is
about

p
N x

p
N or N , which is what you need3.

This theorem has many applications for the security engineer. For example,
if we have a biometric system that can authenticate a person’s claim to identity
with a probability of only one in a million that two randomly selected subjects
will be falsely identified as the same person, this doesn’t mean that we can use
it as a reliable means of identification in a university with a user population of
twenty thousand sta↵ and students. This is because there will be almost two
hundred million possible pairs. In fact, you expect to find the first collision –
the first pair of people who can be mistaken for each other by the system –
once you have somewhat over a thousand people enrolled. It may well, however,
be OK to use it to verify a claimed identity (though many other things can go
wrong; see the chapter on Biometrics in Part 2 for a discussion).

There are some applications where collision-search attacks aren’t a problem,
such as in challenge-response protocols where an attacker has to find the answer
to the challenge just issued, and where you can prevent challenges repeating.
In identify-friend-or-foe (IFF) systems, for example, common equipment has a
response length of 48 to 80 bits. You can’t a↵ord much more than that, as it
costs radar accuracy.

But there are other applications in which collisions are unacceptable. When
we design digital signature systems, we typically pass the message M through
a cryptographic hash function first, and then sign the hash h(M), for a number
of reasons we’ll discuss later. In such an application, if it were possible to find
collisions with h(M1) = h(M2) but M1 6= M2, then a Mafia owned bookstore’s
web site might precalculate suitable pairs M1,M2, get you to sign an M1 saying
something like “I hereby order a copy of Rubber Fetish volume 7 for $32.95” and
then present the signature together with an M2 saying something like “I hereby
mortgage my house for $75,000 and please send the funds to Mafia Holdings
Inc., Bermuda.”

3More precisely, the probability that m fish chosen randomly from N fish are di↵erent is
� = N(N�1) . . . (N�m+1)/Nm which is asymptotically solved by N ' m2/2log(1/�) [848].

Security Engineering 152 Ross Anderson



5.3. SECURITY MODELS

For this reason, hash functions used with digital signature schemes have n
large enough to make them collision-free. Historically, the two most common
hash functions have been MD5, which has a 128-bit output and will thus require
at most 264 computations to break, and SHA1 with a 160-bit output and a work
factor for the cryptanalyst of at most 280. However, collision search gives at best
an upper bound on the strength of a hash function, and both these particular
functions have turned out to be disappointing, with cryptanalytic attacks that
I’ll describe later in section 5.6.2.

To sum up: if you need a cryptographic hash function to be collision resis-
tant, then you’d better choose a function with an output of at least 256 bits,
such as SHA-2 or SHA-3. However if you only need to be sure that nobody
will find a second preimage for an existing, externally given hash, then you can
perhaps make do with less.

5.3.2 Random generators – stream ciphers

The second basic cryptographic primitive is the random generator, also known
as a keystream generator or stream cipher. This is also a random function, but
it’s the reverse of the hash function in that it has a short input and a long
output. If we had a good pseudorandom function whose input and output were
long enough, we could turn it into a hash function by throwing away all but a
few hundred bits of the output, and turn it into a stream cipher by padding all
but a few hundred bits of the input with a constant and using the output as a
keystream.

It can be used to protect the confidentiality of our backup data as follows:
we go to the keystream generator, enter a key, get a long file of random bits,
and exclusive-or it with our plaintext data to get ciphertext, which we then
send to our backup service in the cloud. (This is also called an additive stream
cipher as exclusive-or is addition modulo 2.) We can think of the elf generating
a random tape of the required length each time he is presented with a new key,
giving it to us and keeping a copy on his scroll for reference in case he’s given
the same input key again. If we need to recover the data, we go back to the
generator, enter the same key, get the same keystream, and exclusive-or it with
our ciphertext to get our plaintext back again. Other people with access to the
keystream generator won’t be able to generate the same keystream unless they
know the key. Note that this would not give us any guarantee of file integrity;
as we saw in the discussion of the one-time pad, adding a keystream to plaintext
can protect confidentiality, but it can’t detect modification of the file. For that,
we might make a hash of the file and keep that somewhere safe.

One-time pad systems are a close fit for our theoretical model, except in that
they are used to secure communications across space rather than time: the two
communicating parties have shared a copy of a keystream in advance. Vernam’s
original telegraph cipher machine used punched paper tape; Marks describes
how SOE agents’ silken keys were manufactured in Oxford by retired ladies
shu✏ing counters; we’ll discuss modern hardware random number generators in
the chapter on Physical Security.

A real problem with keystream generators is to prevent the same keystream

Security Engineering 153 Ross Anderson



5.3. SECURITY MODELS

being used more than once, whether to encrypt more than one backup tape or
to encrypt more than one message sent on a communications channel. During
World War II, the amount of Russian diplomatic tra�c exceeded the quantity
of one-time tape they had distributed in advance to their embassies, so it was
reused. But if M1 +K = C1 and M2 +K = C2, then the opponent can combine
the two ciphertexts to get a combination of two messages: C1�C2 = M1�M2,
and if the messages Mi have enough redundancy then they can be recovered.
Text messages do in fact contain enough redundancy for much to be recovered;
in the case of the Russian tra�c this led to the Venona project in which the US
and UK decrypted large amounts of wartime Russian tra�c from 1943 onwards
and broke up a number of Russian spy rings. In the words of one former NSA
chief scientist, it became a “two-time tape”.

To avoid this, the normal engineering practice is to have not just a key
but also a seed (also known as an initialisation vector or IV) so we start the
keystream at a di↵erent place each time. The seed N may be a sequence number,
or generated at random and sent along with the ciphertext. The details can be
tricky, as an attacker might trick you into synchronising on the wrong key;
so you need a secure protocol in which N is a nonce, designed to ensure that
both parties synchronise on the right working key even in the presence of an
adversary.

5.3.3 Random permutations – block ciphers

The third type of primitive, and the most important in modern cryptography, is
the block cipher, which we model as a random permutation. Here, the function is
invertible, and the input plaintext and the output ciphertext are of a fixed size.
With Playfair, both input and output are two characters; with DES, they’re
both bit strings of 64 bits. Whatever the number of symbols and the underlying
alphabet, encryption acts on a block of fixed length. (So if you want to encrypt
a shorter input, you have to pad it as with the final ‘z’ in our Playfair example.)

We can visualise block encryption as follows. As before, we have an elf in a
box with dice and a scroll. This has on the left a column of plaintexts and on
the right a column of ciphertexts. When we ask the elf to encrypt a message, it
checks in the left hand column to see if it has a record of it. If not, it rolls the
dice to generate a random ciphertext of the appropriate size (and which doesn’t
appear yet in the right hand column of the scroll), and then writes down the
plaintext/ciphertext pair in the scroll. If it does find a record, it gives us the
corresponding ciphertext from the right hand column.

When asked to decrypt, the elf does the same, but with the function of
the columns reversed: he takes the input ciphertext, looks for it on the right
hand scroll, and if he finds it he gives the message with which it was previously
associated. If not, he generates a new message at random, notes it down and
gives it to us.

A block cipher is a keyed family of pseudorandom permutations. For each
key, we have a single permutation that’s independent of all the others. We can
think of each key as corresponding to a di↵erent scroll. The intuitive idea is
that a cipher machine should output the ciphertext given the plaintext and the

Security Engineering 154 Ross Anderson



5.3. SECURITY MODELS

key, and output the plaintext given the ciphertext and the key, but given only
the plaintext and the ciphertext it should output nothing. Furthermore, nobody
should be able to infer any information about plaintexts or ciphertexts that it
has not yet produced.

We will write a block cipher using the notation established for encryption in
the chapter on protocols:

C = {M}K

The random permutation model also allows us to define di↵erent types of
attack on block ciphers. In a known plaintext attack, the opponent is just given
a number of randomly chosen inputs and outputs from the oracle corresponding
to a target key. In a chosen plaintext attack, the opponent is allowed to put a
certain number of plaintext queries and get the corresponding ciphertexts. In a
chosen ciphertext attack he gets to make a number of ciphertext queries. In a
chosen plaintext/ciphertext attack he is allowed to make queries of either type.
Finally, in a related key attack he can make queries that will be answered using
keys related to the target key K, such as K + 1 and K + 2.

In each case, the objective of the attacker may be either to deduce the
answer to a query he hasn’t already made (a forgery attack), or to recover the
key (unsurprisingly known as a key recovery attack).

This precision about attacks is important. When someone discovers a vul-
nerability in a cryptographic primitive, it may or may not be relevant to your
application. Often it won’t be, but will have been hyped by the media – so
you will need to be able to explain clearly to your boss and your customers
why it’s not a problem. So you have to look carefully to find out exactly what
kind of attack has been found, and what the parameters are. For example, the
first major attack announced on the Data Encryption Standard algorithm (dif-
ferential cryptanalysis) required 247 chosen plaintexts to recover the key, while
the next major attack (linear cryptanalysis) improved this to 243 known plain-
texts. While these attacks were of huge scientific importance, their practical
engineering e↵ect was zero, as no practical systems make that much known text
(let alone chosen text) available to an attacker. Such impractical attacks are
often referred to as certificational as they a↵ect the cipher’s security certification
rather than providing a practical exploit. They can have a commercial e↵ect,
though: the attacks on DES undermined confidence and started moving people
to other ciphers. In some other cases, an attack that started o↵ as certificational
has been developed by later ideas into an exploit.

Which sort of attacks you should be worried about depends on your appli-
cation. With a broadcast entertainment system, for example, a hacker can buy
a decoder, watch a lot of movies and compare them with the enciphered broad-
cast signal; so a known-plaintext attack might be the main threat. But there are
surprisingly many applications where chosen-plaintext attacks are possible. A
historic example is from World War II, where US analysts learned of Japanese
intentions for an island ‘AF’ which they suspected meant Midway. So they
arranged for Midway’s commander to send an unencrypted message reporting
problems with its fresh water condenser, and then intercepted a Japanese report
that ‘AF is short of water’. Knowing that Midway was the Japanese objective,

Security Engineering 155 Ross Anderson



5.3. SECURITY MODELS

Admiral Chester Nimitz was waiting for them and sank four Japanese carriers,
turning the tide of the war [812].

The other attacks are more specialised. Chosen plaintext/ciphertext attacks
may be a worry where the threat is a lunchtime attack: someone who gets
temporary access to a cryptographic device while its authorised user is out, and
tries out the full range of permitted operations for a while with data of their
choice. Related-key attacks are a concern where the block cipher is used as a
building block in the construction of a hash function (which we’ll discuss below).
To exclude all such attacks, the goal is semantic security, as discussed above;
the cipher should not allow the inference of unauthorised information (whether
of plaintexts, ciphertexts or keys) other than with negligible probability.

5.3.4 Public key encryption and trapdoor one-way per-
mutations

A public-key encryption algorithm is a special kind of block cipher in which the
elf will perform the encryption corresponding to a particular key for anyone who
requests it, but will do the decryption operation only for the key’s owner. To
continue with our analogy, the user might give a secret name to the scroll that
only she and the elf know, use the elf’s public one-way function to compute
a hash of this secret name, publish the hash, and instruct the elf to perform
the encryption operation for anybody who quotes this hash. This means that a
principal, say Alice, can publish a key and if Bob wants to, he can now encrypt
a message and send it to her, even if they have never met. All that is necessary
is that they have access to the oracle.

The simplest variation is the trapdoor one-way permutation. This is a compu-
tation that anyone can perform, but which can be reversed only by someone who
knows a trapdoor such as a secret key. This model is like the ‘one-way function’
model of a cryptographic hash function. Let us state it formally nonetheless:
a public key encryption primitive consists of a function which given a random
input R will return two keys, KR (the public encryption key) and KR�1 (the
private decryption key) with the properties that

1. Given KR, it is infeasible to compute KR�1 (so it’s not possible to com-
pute R either);

2. There is an encryption function {. . .} which, applied to a message M using
the encryption key KR, will produce a ciphertext C = {M}KR; and

3. There is a decryption function which, applied to a ciphertext C using the
decryption key KR�1, will produce the original message M = {C}KR�1 .

For practical purposes, we will want the oracle to be replicated at both ends
of the communications channel, and this means either using tamper-resistant
hardware or (more commonly) implementing its functions using mathematics
rather than metal.

In most real systems, the encryption is randomised, so that every time some-
one uses the same public key to encrypt the same message, the answer is di↵er-
ent; this is necessary for semantic security, so that an opponent cannot check

Security Engineering 156 Ross Anderson



5.3. SECURITY MODELS

whether a guess of the plaintext of a given ciphertext is correct. There are
even more demanding models than this, for example to analyse security in the
case where the opponent can get ciphertexts of their choice decrypted, with the
exception of the target ciphertext. But this will do for now.

5.3.5 Digital signatures

The final cryptographic primitive we’ll define here is the digital signature. The
basic idea is that a signature on a message can be created by only one principal,
but checked by anyone. It can thus perform the same function in the electronic
world that ordinary signatures do in the world of paper. Applications include
signing software updates, so that a PC can tell that an update to Windows was
really produced by Microsoft rather than by a foreign intelligence agency.

Signature schemes too can be deterministic or randomised: in the first, com-
puting a signature on a message will always give the same result and in the
second, it will give a di↵erent result. (The latter is more like handwritten sig-
natures; no two are ever alike but the bank has a means of deciding whether
a given specimen is genuine or forged.) Also, signature schemes may or may
not support message recovery. If they do, then given the signature, anyone can
recover the message on which it was generated; if they don’t, then the verifier
needs to know or guess the message before they can perform the verification.

Formally, a signature scheme, like a public key encryption scheme, has a
keypair generation function which given a random input R will return two keys,
�R (the private signing key) and V R (the public signature verification key) with
the properties that

1. Given the public signature verification key V R, it is infeasible to compute
the private signing key �R;

2. There is a digital signature function which given a message M and a private
signature key �R, will produce a signature Sig�R{M}; and

3. There is a verification function which, given a signature Sig�R{M} and the
public signature verification key V R, will output TRUE if the signature
was computed correctly with �R and otherwise output FALSE.

Where we don’t need message recovery, we can model a simple digital sig-
nature algorithm as a random function that reduces any input message to a
one-way hash value of fixed length, followed by a special kind of block cipher in
which the elf will perform the operation in one direction, known as signature,
for only one principal. In the other direction, it will perform verification for
anybody.

For this simple scheme, signature verification means that the elf (or the
signature verification algorithm) only outputs TRUE or FALSE depending on
whether the signature is good. But in a scheme with message recovery, anyone
can input a signature and get back the message corresponding to it. In our
elf model, this means that if the elf has seen the signature before, it will give
the message corresponding to it on the scroll, otherwise it will give a random

Security Engineering 157 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

value (and record the input and the random output as a signature and message
pair). This is sometimes desirable: when sending short messages over a low
bandwidth channel, it can save space if only the signature has to be sent rather
than the signature plus the message. An application that uses message recov-
ery is machine-printed postage stamps, or indicia: the stamp consists of a 2-d
barcode with a digital signature made by the postal meter and which contains
information such as the value, the date and the sender’s and recipient’s post
codes. We discuss this at the end of section 16.3.2.

In the general case we do not need message recovery; the message to be
signed may be of arbitrary length, so we first pass it through a hash function
and then sign the hash value. We need the hash function to be not just one-way,
but also collision resistant.

5.4 Symmetric crypto algorithms

Now that we’ve tidied up the definitions, we’ll look under the hood to see how
they can be implemented in practice. While most explanations are geared to-
wards graduate mathematics students, the presentation I’ll give here is based on
one I developed over the years with computer science undergraduates, to help
the non-specialist grasp the essentials. In fact, even at the research level, most
of cryptography is as much computer science as mathematics: modern attacks
on ciphers are put together from guessing bits, searching for patterns, sorting
possible results and so on, and require ingenuity and persistence rather than
anything particularly highbrow.

5.4.1 SP-networks

Claude Shannon suggested in the 1940’s that strong ciphers could be built by
combining substitution with transposition repeatedly. For example, one might
add some key material to a block of input text, and then shu✏e subsets of the
input, and continue in this way a number of times. He described the properties
of a cipher as being confusion and di↵usion – adding unknown key values will
confuse an attacker about the value of a plaintext symbol, while di↵usion means
spreading the plaintext information through the ciphertext. Block ciphers need
di↵usion as well as confusion.

The earliest block ciphers were simple networks which combined substitution
and permutation circuits, and so were called SP-networks [820]. Figure 5.10
shows an SP-network with sixteen inputs, which we can imagine as the bits of
a sixteen-bit number, and two layers of four-bit invertible substitution boxes
(or S-boxes), each of which can be visualised as a lookup table containing some
permutation of the numbers 0 to 15.

The point of this arrangement is that if we were to implement an arbitrary
16 bit to 16 bit function in digital logic, we would need 220 bits of memory

Security Engineering 158 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

S-box S-box S-box S-box

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

H
H
H
H

H
H

H
H
H
H

H
H

H
H
H
H

H
H

XXXXXXXXXXXX

XXXXXXXXXXXX⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠hhhhhhhhhhhhhhhhhh

((((((((((((((((((

S-box S-box S-box S-box

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Figure 5.10: – a simple 16-bit SP-network block cipher

– one lookup table of 216 bits for each single output bit. That’s hundreds of
thousands of gates, while a four bit to four bit function takes only 4 x 24 or 64
bits of memory. One might hope that with suitable choices of parameters, the
function produced by iterating this simple structure would be indistinguishable
from a random 16 bit to 16 bit function to an opponent who didn’t know the
value of the key. The key might consist of some choice of a number of four-
bit S-boxes, or it might be added at each round to provide confusion and the
resulting text fed through the S-boxes to provide di↵usion.

Three things need to be done to make such a design secure:

1. the cipher needs to be “wide” enough

2. it needs to have enough rounds, and

3. the S-boxes need to be suitably chosen.

5.4.1.1 Block size

First, a block cipher which operated on sixteen bit blocks would be rather lim-
ited, as an opponent could just build a dictionary of plaintext and ciphertext
blocks as they were observed. The birthday theorem tells us that even if the
input plaintexts were random, he’d expect to find a match as soon as he had
seen a few hundred blocks. So a practical block cipher will usually deal with
plaintexts and ciphertexts of 64 bits, 128 bits or even more. So if we are using
four-bit to four-bit S-boxes, we may have 16 of them (for a 64 bit block size) or
32 of them (for a 128 bit block size).

5.4.1.2 Number of rounds

Second, we have to have enough rounds. The two rounds in Figure 5.10 are
completely inadequate, as an opponent can deduce the values of the S-boxes
by tweaking input bits in suitable patterns. For example, he could hold the
rightmost 12 bits constant and try tweaking the leftmost four bits, to deduce

Security Engineering 159 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

the values in the top left S-box. (The attack is slightly more complicated than
this, as sometimes a tweak in an input bit to an S-box won’t produce a change
in any output bit, so we have to change one of its other inputs and tweak again.
But it is still a basic student exercise.)

The number of rounds we need depends on the speed with which data di↵use
through the cipher. In our simple example, di↵usion is very slow because each
output bit from one round of S-boxes is connected to only one input bit in the
next round. Instead of having a simple permutation of the wires, it is more
e�cient to have a linear transformation in which each input bit in one round is
the exclusive-or of several output bits in the previous round. If the block cipher
is to be used for decryption as well as encryption, this linear transformation will
have to be invertible. We’ll see some concrete examples below in the sections
on AES and DES.

5.4.1.3 Choice of S-boxes

The design of the S-boxes also a↵ects the number of rounds required for se-
curity, and studying bad choices gives us our entry into the deeper theory of
block ciphers. Suppose that the S-box were the permutation that maps the
inputs (0,1,2,...,15) to the outputs (5,7,0,2,4,3,1,6,8,10,15,12,9,11,14,13). Then
the most significant bit of the input would come through unchanged as the most
significant bit of the output. If the same S-box were used in both rounds in the
above cipher, then the most significant bit of the input would pass through to
become the most significant bit of the output. We certainly couldn’t claim that
our cipher was pseudorandom.

5.4.1.4 Linear Cryptanalysis

Attacks on real block ciphers are usually harder to spot than in this example,
but they use the same ideas. It might turn out that the S-box had the property
that bit one of the input was equal to bit two plus bit four of the output; more
commonly, there will be linear approximations to an S-box which hold with a
certain probability. Linear cryptanalysis [724, 1008] proceeds by collecting a
number of relations such as “bit 2 plus bit 5 of the input to the first S-box is
equal to bit 1 plus bit 8 of the output, with probability 13/16”, then searching for
ways to glue them together into an algebraic relation between input bits, output
bits and key bits that holds with a probability di↵erent from one half. If we
can find a linear relationship that holds over the whole cipher with probability
p = 0.5+1/M , then according to the sampling theorem in probability theory we
can expect to start recovering keybits once we have about M2 known texts. If
the value of M2 for the best linear relationship is greater than the total possible
number of known texts (namely 2n where the inputs and outputs are n bits
wide), then we consider the cipher to be secure against linear cryptanalysis.

5.4.1.5 Di↵erential Cryptanalysis

Di↵erential Cryptanalysis [202, 724] is similar but is based on the probability
that a given change in the input to an S-box will give rise to a certain change

Security Engineering 160 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

in the output. A typical observation on an 8-bit S-box might be that “if we
flip input bits 2, 3, and 7 at once, then with probability 11/16 the only output
bits that will flip are 0 and 1”. In fact, with any nonlinear Boolean function,
tweaking some combination of input bits will cause some combination of output
bits to change with a probability di↵erent from one half. The analysis procedure
is to look at all possible input di↵erence patterns and look for those values �i,
�o such that an input change of �i will produce an output change of �o with
particularly high (or low) probability.

As in linear cryptanalysis, we then search for ways to join things up so that
an input di↵erence which we can feed into the cipher will produce a known
output di↵erence with a useful probability over a number of rounds. Given
enough chosen inputs, we will see the expected output and be able to make
deductions about the key. As in linear cryptanalysis, it’s common to consider
the cipher to be secure if the number of texts required for an attack is greater
than the total possible number of di↵erent texts for that key. (We have to be
careful of pathological cases, such as if you had a cipher with a 32-bit block and
a 128-bit key with a di↵erential attack whose success probability given a single
pair was 2�40. Given a lot of text under a number of keys, we’d eventually solve
for the current key.)

There are many variations on these two themes. For example, instead of
looking for high probability di↵erences, we can look for di↵erences that can’t
happen (or that happen only rarely). This has the charming name of impossible
cryptanalysis, but it is quite definitely possible against many systems [201]4.

Block cipher design involves a number of trade-o↵s. For example, we can
reduce the per-round information leakage, and thus the required number of
rounds, by designing the rounds carefully. But a complex design might be slow
in software, or need a lot of gates in hardware, so using simple rounds but more
of them might have been better. Simple rounds may also be easier to analyse.
A prudent designer will also use more rounds than are strictly necessary to
block the attacks known today, in order to give some safety margin, as attacks
only ever get better. But while we may be able to show that a cipher resists
all the attacks we know of, and with some safety margin, this says little about
whether it will resist novel types of attack. (A general security proof for a block
cipher would appear to imply a result such as P 6= NP that would revolutionise
computer science.)

5.4.2 The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is an algorithm originally known
as Rijndael after its inventors Vincent Rijmen and Joan Daemen [419]. It acts
on 128-bit blocks and can use a key of 128, 192 or 256 bits in length. It is
an SP-network; in order to specify it, we need to fix the S-boxes, the linear
transformation between the rounds, and the way in which the key is added into
the computation.

AES uses a single S-box that acts on a byte input to give a byte output.

4This may have been used first at Bletchley in World War II where a key insight into
breaking the German Enigma machine was that no letter ever enciphered to itself.

Security Engineering 161 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

For implementation purposes it can be regarded simply as a lookup table of
256 bytes; it is actually defined by the equation S(x) = M(1/x) + b over the
field GF (28) where M is a suitably chosen matrix and b is a constant. This
construction gives tight di↵erential and linear bounds.

The linear transformation is based on arranging the 16 bytes of the value
being enciphered in a square and then doing bytewise shu✏ing and mixing
operations. The first step is the shu✏e in which the top row of four bytes is
left unchanged, while the second row is shifted one place to the left, the third
row by two places and the fourth row by three places. The second step is a
column-mixing step in which the four bytes in a column are mixed using matrix
multiplication. This is illustrated in Figure 5.11 which shows, as an example,
how a change in the value of the third byte in the first column is propagated.
The e↵ect of this combination is that a change in the input to the cipher can
potentially a↵ect all of the output after just two rounds – an avalanche e↵ect
that makes both linear and di↵erential attacks harder..

1

2

3

4

. . . 1

2

3

4

Shift�

row

1

4

2

3

Mix�

column

Figure 5.11: – the AES linear transformation, illustrated by its e↵ect on byte 3
of the input

The key material is added byte by byte after the linear transformation. This
means that 16 bytes of key material are needed per round; they are derived from
the user supplied key material by means of a recurrence relation.

The algorithm uses 10 rounds with 128-bit keys, 12 rounds with 192-bit keys
and 14 rounds with 256-bit keys. These are enough to give practical, but not
certficational, security – as indeed we expected at the time of the AES compe-
tition, and as I described in earlier editions of this book. The first key-recovery
attacks use a technique called biclique cryptanalysis and were discovered in 2009
by Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger [231];
they give only a very small advantage, with complexity now estimated at 2126

for 128-bit AES and 2254.3 for 256-bit AES, as opposed to 2127 and 2255 for
brute-force search. Faster shortcut attacks are known for the case where we
have related keys. But none of these attacks make any di↵erence in practice,
as they require infeasibly large numbers of texts or very special combinations of
related keys.

Should we trust AES? The governments of Russia, China and Japan try to
get firms to use local ciphers instead, and the Japanese o↵ering, Camellia, is
found in a number of crypto libraries alongside AES and another AES competi-
tion finalist, Bruce Schneier’s Twofish. (Camellia was designed by a team whose

Security Engineering 162 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

own AES candidate was knocked out at the first round.) Conspiracy theorists
note that the US government picked the weakest of the five algorithms that
were finalists in the AES competition. Well, I was one of the designers of the
AES finalist Serpent [77], which came second in the competition: the winner
Rijndael got 86 votes, Serpent 59 votes, Twofish 31 votes, RC6 23 votes and
MARS 13 votes. Serpent has a simple structure that makes it easy to analyse
– the structure of Figure 5.10, but modified to be wide enough and to have
enough rounds – and was designed to have a much larger security margin than
Rijndael in anticipation of the attacks that have now appeared. Yet the simple
fact is that while Serpent is more secure, Rijndael is faster; industry and crypto
researchers voted for it at the last AES conference, and NIST approved it as
the standard.

Having been involved in the whole process, and having worked on the analysis
and design of shared-key ciphers for much of the 1990s, I have a high level of
confidence that AES is secure against practical attacks based on mathematical
cryptanalysis. And even though AES is less secure than Serpent, practical
security is all about implementation, and we now have enormous experience at
implementing AES. Practical attacks include timing analysis and power analysis.
In the former, the main risk is that an opponent observes cache misses and uses
them to work out the key. In the latter, an opponent uses measurements of the
current drawn by the device doing the crypto – think of a bank smartcard that
a customer places in a terminal in a Mafia-owned shop. I discuss both in detail
in Part 2, in the chapter on Emission Security; countermeasures include special
operations in many CPUs to do AES, which are available precisely because the
algorithm is now a standard. It does not make sense to implement Serpent as
well, ‘just in case AES is broken’: having swappable algorithms is known as
pluggable cryptography, yet the risk of a fatal error in the algorithm negotiation
protocol is orders of magnitude greater than the risk that anyone will come up
with a production attack on AES. (We’ll see a number of examples later where
using multiple algorithms caused something to break horribly.)

The back story is that, back in the 1970s, the NSA manipulated the choice
and parameters of the previous standard block cipher, the Data Encryption
Standard (DES) in such a way as to deliver a cipher that was good enough
for US industry at the time, while causing foreign governments to believe it
was insecure, so they used their own weak designs instead. I’ll discuss this in
more detail below, once I’ve described the design of DES. AES seems to have
followed this playbook; by selecting an algorithm that was only just strong
enough mathematically and whose safe implementation requires skill and care,
the US government saw to it that firms in Russia, China, Japan and elsewhere
will end up using systems that are less secure because less skill and e↵ort has
been invested in the implementation. However, this was probably luck rather
than Machiavellian cunning: the relevant committee at NIST would have had
to have a lot of courage to disregard the vote and choose another algorithm
instead. Oh, and the NSA has since 2005 approved AES with 128-bit keys for
protecting information up to SECRET and with 192-bit or 256-bit keys for TOP
SECRET. So I recommend that you use AES instead of GOST, or Camellia,
or even Serpent. The definitive specification of AES is Federal Information
Processing Standard 197, and its inventors have written a book describing its
design in detail [419].

Security Engineering 163 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

5.4.3 Feistel ciphers

Many block ciphers use a more complex structure, which was invented by
Feistel and his team while they were developing the Mark XII IFF in the late
1950’s and early 1960’s. Feistel then moved to IBM and founded a research
group that produced the Data Encryption Standard (DES) algorithm, which is
still a mainstay of payment system security.

A Feistel cipher has the ladder structure shown in Figure 5.12. The input
is split up into two blocks, the left half and the right half. A round function f1
of the left half is computed and combined with the right half using exclusive-or
(binary addition without carry), though in some Feistel ciphers addition with
carry is also used. (We use the notation � for exclusive-or.) Then, a function f2
of the right half is computed and combined with the left half, and so on. Finally
(if the number of rounds is even) the left half and right half are swapped.

A notation which you may see for the Feistel cipher is  (f, g, h, ...) where
f , g, h, ... are the successive round functions. Under this notation, the above
cipher is  (f1, f2, ...f2k�1, f2k). The basic result that enables us to decrypt a
Feistel cipher – and indeed the whole point of his design – is that:

 �1(f1, f2, ..., f2k�1, f2k) =  (f2k, f2k�1, ..., f2, f1)

In other words, to decrypt, we just use the round functions in the reverse
order. Thus the round functions fi do not have to be invertible, and the Feistel
structure lets us turn any one-way function into a block cipher. This means that
we are less constrained in trying to choose a round function with good di↵usion
and confusion properties, and which also satisfies any other design constraints
such as code size, software speed or hardware gate count.

5.4.3.1 The Luby-Racko↵ result

The key theoretical result on Feistel ciphers was proved by Mike Luby and
Charlie Racko↵ in 1988. They showed that if fi were random functions, then
 (f1, f2, f3) was indistinguishable from a random permutation under chosen-
plaintext attack, and this result was soon extended to show that  (f1, f2, f3, f4)
was indistinguishable under chosen plaintext/ciphertext attack – in other words,
it was a pseudorandom permutation. (I omit a number of technicalities.)

In engineering terms, the e↵ect is that given a really good round function,
four rounds of Feistel are enough. So if we have a hash function in which we
have confidence, it is straightforward to construct a block cipher from it: use
four rounds of keyed hash in a Feistel network.

5.4.3.2 DES

The DES algorithm is widely used in banking and other payment applications.
The ‘killer app’ that got it widely deployed was ATM networks; from there

Security Engineering 164 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

? ?

XXXXXXXXXXXXXXXXXXXX

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠

� •f2k� �
?

. . .

? ?

� •f2� �
?

• �f1- -
?

Left Half Right Half

Figure 5.12: – the Feistel cipher structure

Security Engineering 165 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

it spread to prepayment meters, transport tickets and much else. In its classic
form, it is a Feistel cipher, with a 64-bit block and 56-bit key. Its round function
operates on 32-bit half blocks and consists of three operations:

• first, the block is expanded from 32 bits to 48;

• next, 48 bits of round key are mixed in using exclusive-or;

• the result is passed through a row of eight S-boxes, each of which takes a
six-bit input and provides a four-bit output;

• finally, the bits of the output are permuted according to a fixed pattern.

The e↵ect of the expansion, key mixing and S-boxes is shown in Figure 5.13:

Si – 1 Si + 1

Key added�
in here

• • •� • • •�Si

Figure 5.13: – the DES round function

The round keys are derived from the user-supplied key by using each user
key bit in twelve di↵erent rounds according to a slightly irregular pattern. A
full specification of DES is given in [1122].

DES was introduced in 1974 and immediately caused controversy. The most
telling criticism was that the key is too short. Someone who wants to find a
56 bit key using brute force, that is by trying all possible keys, will have a
total exhaust time of 256 encryptions and an average solution time of half that,
namely 255 encryptions. Whit Di�e and Martin Hellman argued in 1977 that
a DES keysearch machine could be built with a million chips, each testing a
million keys a second; as a million is about 220, this would take on average 215

seconds, or a bit over 9 hours, to find the key. They argued that such a machine
could be built for $20 million in 1977 [461]. IBM, whose scientists invented DES,
retorted that they would charge the US government $200 million to build such
a machine. (In hindsight, both were right.)

During the 1980’s, there were persistent rumors of DES keysearch machines
being built by various intelligence agencies, but the first successful public key-
search attack took place in 1997. In a distributed e↵ort organised over the net,
14,000 PCs took more than four months to find the key to a challenge. In 1998,
the Electronic Frontier Foundation (EFF) built a DES keysearch machine called
Deep Crack for under $250,000, which broke a DES challenge in 3 days. It con-
tained 1,536 chips run at 40MHz, each chip containing 24 search units which

Security Engineering 166 Ross Anderson



5.4. SYMMETRIC CRYPTO ALGORITHMS

each took 16 cycles to do a test decrypt. The search rate was thus 2.5 million
test decryptions per second per search unit, or 60 million keys per second per
chip. The design of the cracker is public and can be found at [506]. By 2006,
Sandeep Kumar and colleagues at the universities of Bochum and Kiel built a
machine using 120 FPGAs and costing $10,000, which could break DES in 7
days on average [904]. A modern botnet with 100,000 machines would take a
few hours. So the key length of single DES is now inadequate.

Another criticism of DES was that, since IBM kept its design principles secret
at the request of the US government, perhaps there was a ‘trapdoor’ which would
give them easy access. However, the design principles were published in 1992
after di↵erential cryptanalysis was invented and published [394]. The story was
that IBM had discovered these techniques in 1972, and the US National Security
Agency (NSA) even earlier. IBM kept the design details secret at the NSA’s
request. We’ll discuss the political aspects of all this in 26.2.7.1.

We now have a fairly thorough analysis of DES. The best known shortcut
attack, that is, a cryptanalytic attack involving less computation than keysearch,
is a linear attack using 242 known texts. DES would be secure with more than
20 rounds, but for practical purposes its security is limited by its keylength. I
don’t know of any real applications where an attacker might get hold of even
240 known texts. So the known shortcut attacks are not an issue. However, its
vulnerability to keysearch makes single DES unusable in most applications. As
with AES, there are also attacks based on timing analysis and power analysis.

The usual way of dealing with the DES key length problem is to use the
algorithm multiple times with di↵erent keys. Banking networks have largely
moved to triple-DES, a standard since 1999 [1122]. Triple-DES does an encryp-
tion, then a decryption, and then a further encryption, all with independent
keys. Formally:

3DES(k0, k1, k2;M) = DES(k2;DES�1(k1;DES(k0;M)))

By setting the three keys equal, you get the same result as a single DES
encryption, thus giving a backwards compatibility mode with legacy equipment.
(Some banking systems use two-key triple-DES which sets k2 = k0; this gives an
intermediate step between single and triple DES.) Most new systems use AES
as the default choice, but many banking systems are committed to using block
ciphers with an eight-byte block, because of the message formats used in the
many protocols by which ATMs, point-of-sale terminals and bank networks talk
to each other, and because of the use of block ciphers to generate and protect
customer PINs (which I discuss in the chapter on Banking and Bookkeeping).
Triple DES is a perfectly serviceable block cipher for such purposes for the
foreseeable future.

Another way of preventing keysearch (and making power analysis harder) is
whitening. In addition to the 56-bit key, say k0, we choose two 64-bit whitening
keys k1 and k2, xor’ing the first with the plaintext before encryption and the
second with the output of the encryption to get the ciphertext afterwards. This
composite cipher is known as DESX. Formally,

DESX(k0, k1, k2;M) = DES(k0;M � k1) � k2

Security Engineering 167 Ross Anderson



5.5. MODES OF OPERATION

It can be shown that, on reasonable assumptions, DESX has the properties
you’d expect; it inherits the di↵erential strength of DES but its resistance to
keysearch is increased by the amount of the whitening [856]. Whitened block
ciphers are used in some applications, most specifically in the XTS mode of
operation which I discuss below. Nowadays, it’s usually used with AES, and
AESX is defined similarly, with the whitening keys used to make each block
encryption operation unique – as we shall see below in section 5.5.7.

5.5 Modes of Operation

A common failure is that cryptographic libraries enable or even encourage de-
velopers to use an inappropriate mode of operation. This specifies how a block
cipher with a fixed block size (8 bytes for DES, 16 for AES) can be extended to
process messages of arbitrary length.

There are several standard modes of operation for using a block cipher on
multiple blocks [1130]. It is vital to understand them, so you can choose the
right one for the job, especially as some common tools provide a weak one by
default. This weak mode is electronic code book (ECB) mode, which we discuss
next.

5.5.1 How not to use a block cipher

In electronic code book we just encrypt each succeeding block of plaintext with
our block cipher to get ciphertext, as with the Playfair cipher I gave above as an
example. This is adequate for protocols using single blocks such as challenge-
response and some key management tasks; it’s also used to encrypt PINs in
cash machine systems. But if we use it to encrypt redundant data the patterns
will show through, giving an opponent information about the plaintext. For
example, figure 5.14 shows what happens to a cartoon image when encrypted
using DES in ECB mode. Repeated blocks of plaintext all encrypt to the same
ciphertext, leaving the image quite recognisable.

In one popular corporate email system from the last century, the encryption
used was DES ECB with the key derived from an eight-character password. If
you looked at a ciphertext generated by this system, you saw that a certain block
was far more common than the others – the one corresponding to a plaintext of
nulls. This gave one of the simplest attacks ever on a fielded DES encryption
system: just encrypt a null block with each password in a dictionary and sort
the answers. You can now break at sight any ciphertext whose password was
one of those in your dictionary.

In addition, using ECB mode to encrypt messages of more than one block
length which require authenticity – such as bank payment messages – is par-
ticularly foolish, as it opens you to a cut and splice attack along the block
boundaries. For example, if a bank message said “Please pay account number
X the sum Y , and their reference number is Z” then an attacker might initiate
a payment designed so that some of the digits of X are replaced with some of
the digits of Z.

Security Engineering 168 Ross Anderson



5.5. MODES OF OPERATION

(a) Plaintext (b) ECB ciphertext

Figure 5.14: The Linux penguin, in clear and ECB encrypted (from wikipedia,
derived from images created by Larry Ewing).

5.5.2 Cipher block chaining

Most commercial applications which encrypt more than one block used to
use cipher block chaining, or CBC, mode. Like ECB, this was one of the original
modes of operation standardised with DES. In it, we exclusive-or the previous
block of ciphertext to the current block of plaintext before encryption (see Fig-
ure 5.15).

This mode disguises patterns in the plaintext: the encryption of each block
depends on all the previous blocks. The input initialisation vector (IV) ensures
that stereotyped plaintext message headers won’t leak information by encrypting
to identical ciphertexts, just as with a stream cipher.

However, an opponent who knows some of the plaintext may be able to cut
and splice a message (or parts of several messages encrypted under the same
key). In fact, if an error is inserted into the ciphertext, it will a↵ect only two
blocks of plaintext on decryption, so if there isn’t any integrity protection on the
plaintext, an enemy can insert two-block garbles of random data at locations
of their choice. For that reason, CBC encryption usually has to be used with a
separate authentication code.

More subtle things can go wrong too; systems have to pad the plaintext to
a multiple of the block size, and if a server that decrypts a message and finds
incorrect padding signals this fact, whether by returning an ‘invalid padding’
message or just taking longer to respond, then this opens a padding oracle attack
in which the attacker tweaks input ciphertexts, one byte at a time, watches the
error messages, and ends up being able to decrypt whole messages. This was
discovered by Serge Vaudenay in 2002; variants of it were used against SSL,
IPSEC and TLS as late as 2016 [1575].

Security Engineering 169 Ross Anderson



5.5. MODES OF OPERATION

? ? ?

• • •

EK EK EK

? ? ?

� � �? ? ?
- --IV

P1 P2 P3

C1 C2 C3

...

Figure 5.15: – Cipher Block Chaining (CBC) mode

5.5.3 Counter encryption

Feedback modes of block cipher encryption are falling from fashion, and not
just because of cryptographic issues. They are hard to parallelise. With CBC,
a whole block of the cipher must be computed between each block input and
each block output. This can be inconvenient in high-speed applications, such
as protecting tra�c on backbone links. As silicon is cheap, we would rather
pipeline our encryption chip, so that it encrypts a new block (or generates a
new block of keystream) in as few clock ticks as possible.

The simplest solution is to use AES as a stream cipher. We generate a
keystream by encrypting a counter starting at an initialisation vector: Ki =
{IV + i}K , thus expanding the key K into a long stream of blocks Ki of
keystream, which is typically combined with the blocks of a message Mi us-
ing exclusive-or to give ciphertext Ci = Mi �Ki.

All additive stream ciphers have two important vulnerabilities, which we
mentioned in the context of the one-time pad in section 5.2.2 above. The first
is an attack in depth: if the same keystream is used twice, then the xor of the
two ciphertexts is the xor of the two plaintexts, from which plaintext can often
be deduced, as with Venona. The second is that they fail to protect message
integrity. Suppose that a stream cipher were used to encipher fund transfer
messages. These messages are highly structured; you might know, for example,
that bytes 37–42 contain the sum being transferred. You could then cause the
data tra�c from a local bank to go via your computer, for example by an SS7
exploit. You go into the bank and send $500 to an accomplice. The ciphertext
Ci = Mi � Ki, duly arrives in your machine. You know Mi for bytes 37–42,
so you can recover Ki and construct a modified message which instructs the
receiving bank to pay not $500 but $500,000! This is an example of an attack
in depth; it is the price not just of the perfect secrecy we get from the one-time
pad, but of much more humble stream ciphers too.

Security Engineering 170 Ross Anderson



5.5. MODES OF OPERATION

The usual way of dealing with this is to add an authentication code; one
standard uses a technique called Galois counter mode, which I describe later.

5.5.4 Legacy stream cipher modes

You may find two old stream-cipher modes of operation, output feedback mode
(OFB) and less frequently ciphertext feedback mode (CFB).

Output feedback mode consists of repeatedly encrypting an initial value and
using this as a keystream in a stream cipher. Writing IV for the initialization
vector, we will have K1 = {IV }K and Ki = {IV }K(i�1). However an n-bit

block cipher in OFB mode will typically have a cycle length of 2n/2 blocks, after
which the birthday theorem will see to it that we loop back to the IV. So we may
have a cycle-length problem if we use a 64-bit block cipher such as triple-DES on
a high-speed link: once we’ve called a little over 232 pseudorandom 64-bit values,
the odds favour a match. (In CBC mode, too, the birthday theorem ensures that
after about 2n/2 blocks, we will start to see repeats.) Counter mode encryption,
however, has a guaranteed cycle length of 2n rather than 2n/2, and as we noted
above is easy to parallelise. Despite this OFB is still used, as counter mode only
became a NIST standard in 2002.

Cipher feedback mode is another kind of stream cipher, designed for use
in radio systems that have to resist jamming. It was designed to be self-
synchronizing, in that even if we get a burst error and drop a few bits, the
system will recover synchronization after one block length. This is achieved by
using our block cipher to encrypt the last n bits of ciphertext, adding the last
output bit to the next plaintext bit, and shifting the ciphertext along one bit.
But this costs one block cipher operation per bit, and in any case people use
dedicated link layer protocols for synchronization and error correction nowadays
rather than trying to combine them with the cryptography at the tra�c layer.

5.5.5 Message Authentication Code

Another o�cial mode of operation of a block cipher is not used to encipher data,
but to protect its integrity and authenticity. This is the message authentication
code, or MAC. To compute a MAC on a message using a block cipher, we encrypt
it using CBC mode and throw away all the output ciphertext blocks except the
last one; this last block is the MAC. (The intermediate results are kept secret
in order to prevent splicing attacks.)

This construction makes the MAC depend on all the plaintext blocks as well
as on the key. It is secure provided the message length is fixed; Mihir Bellare,
Joe Kilian and Philip Rogaway proved that any attack on a MAC under these
circumstances would give an attack on the underlying block cipher [179].

If the message length is variable, you have to ensure that a MAC computed
on one string can’t be used as the IV for computing a MAC on a di↵erent string,
so that an opponent can’t cheat by getting a MAC on the composition of the two
strings. In order to fix this problem, NIST has standardised CMAC, in which
a variant of the key is xor-ed in before the last encryption [1131]. (CMAC is

Security Engineering 171 Ross Anderson



5.5. MODES OF OPERATION

based on a proposal by Tetsu Iwata and Kaoru Kurosawa [784].) You may see
legacy systems in which the MAC consists of only half of the last output block,
with the other half thrown away, or used in other mechanisms.

There are other possible constructions of MACs: the most common one is
HMAC, which uses a hash function with a key; we’ll describe it in section 5.6.2.

5.5.6 Galois Counter Mode

The above modes were all developed for DES in the 1970s and 1980s (although
counter mode only became an o�cial US government standard in 2002). They
are not e�cient for bulk encryption where you need to protect integrity as well
as confidentiality; if you use either CBC mode or counter mode to encrypt your
data and a CBC-MAC or CMAC to protect its integrity, then you invoke the
block cipher twice for each block of data you process, and the operation cannot
be parallelised.

The modern approach is to use a mode of operation designed for authenti-
cated encryption. Galois Counter Mode (GCM) has taken over as the default
since being approved by NIST in 2007 [1133]. It uses only one invocation of
the block cipher per block of text, and it’s parallelisable so you can get high
throughput on fast data links with low cost and low latency. Encryption is
performed in a variant of counter mode; the resulting ciphertexts are also used
as coe�cients of a polynomial which is evaluated at a key-dependent point over
a Galois field of 2128 elements to give an authenticator tag. The tag compu-
tation is a universal hash function of the kind I described in section 5.2.4 and
is provably secure so long as keys are never reused. The supplied key is used
along with a random IV to generate both a unique message key and a unique
authenticator key. The output is thus a ciphertext of the same length as the
plaintext, plus an IV and a tag of typically 128 bits each.

GCM also has an interesting incremental property: a new authenticator and
ciphertext can be calculated with an amount of e↵ort proportional to the number
of bits that were changed. GCM was invented by David McGrew and John
Viega of Cisco; their goal was to create an e�cient authenticated encryption
mode suitable for use in high-performance network hardware [1027]. GCM is the
sensible default for authenticated encryption of bulk content. (There’s an earlier
composite mode, CCM, which you’ll find used in Bluetooth 4.0 and later; this
combines counter mode with CBC-MAC, so it costs about twice as much e↵ort
to compute, and cannot be parallelised or recomputed incrementally [1132].)

5.5.7 XTS

GCM and other authenticated encryption modes expand the plaintext by adding
a message key and an authenticator tag. This is very inconvenient in applications
such as hard disk encryption, where we prefer a mode of operation that preserves
plaintext length. Disk encryption systems used to use CBC with the sector
number providing an IV, but since Windows 10, Microsoft has been using a new
mode of operation, XTS-AES, inspired by GCM and standardised in 2007. This
is a codebook mode but with the plaintext whitened by a tweak key derived from

Security Engineering 172 Ross Anderson



5.6. HASH FUNCTIONS

?

��

E-Mi

•

hi�1

hi

Figure 5.16: – feedforward mode (hash function)

the disk sector. Formally, the message Mi encrypted with the key K at at block
j is

AESX(KTj ,K,KTj ;M)

where the tweak key KTj is derived by encrypting the IV using a di↵erent
key and then multiplying it repeatedly with a suitable constant so as to give
a di↵erent whitener for each block. This means that if an attacker swaps two
encrypted blocks, all 256 bits will decrypt to randomly wrong values. You still
need higher-layer mechanisms to detect ciphertext manipulation, but simple
checksums will be su�cient.

5.6 Hash Functions

In section 5.4.3.1 I showed how the Luby-Racko↵ theorem enables us to construct
a block cipher from a hash function. It’s also possible to construct a hash
function from a block cipher5. The trick is to feed the message blocks one at
a time to the key input of our block cipher, and use it to update a hash value
(which starts o↵ at say H0 = 0). In order to make this operation non-invertible,
we add feedforward: the (i� 1)st hash value is exclusive or’ed with the output
of round i. This Davies-Meyer construction gives our final mode of operation
of a block cipher (Figure 5.16).

The birthday theorem makes another appearance here, in that if a hash
function h is built using an n bit block cipher, it is possible to find two messages

5In fact, we can also construct hash functions and block ciphers from stream ciphers – so,
subject to some caveats I’ll discuss in the next section, given any one of these three primitives
we can construct the other two.

Security Engineering 173 Ross Anderson



5.6. HASH FUNCTIONS

M1 6= M2 with h(M1) = h(M2) with about 2n/2 e↵ort (hash slightly more than
that many messages Mi and look for a match). So a 64 bit block cipher is not
adequate, as forging a message would cost of the order of 232 messages, which is
just too easy. A 128-bit cipher such as AES used to be just about adequate, and
in fact the AACS content protection mechanism in Blu-ray DVDs used ‘AES-H’,
the hash function derived from AES in this way.

5.6.1 Common hash functions

The hash functions most commonly used through the 1990s and 2000s evolved
as variants of a block cipher with a 512 bit key and a block size increasing from
128 to 512 bits. The first two were designed by Ron Rivest and the others by
the NSA:

• MD4 has three rounds and a 128 bit hash value, and a collision was found
for it in 1998 [469];

• MD5 has four rounds and a 128 bit hash value, and a collision was found
for it in 2004 [1598, 1600];

• SHA-1, released in 1995, has five rounds and a 160 bit hash value. A
collision was found in 2017 [1483];

• SHA-2, which replaced it in 2002, comes in 256-bit and 512-bit versions
(called SHA256 and SHA512) plus a number of variants.

The block ciphers underlying these hash functions are similar: their round
function is a complicated mixture of the register operations available on 32 bit
processors [1352]. Cryptanalysis has advanced steadily. MD4 was broken by
Hans Dobbertin in 1998 [469]; MD5 was broken by Xiaoyun Wang and her
colleagues in 2004 [1598, 1600]; collisions can now be found easily, even between
strings containing meaningful text and adhering to message formats such as
those used for digital certificates. Wang seriously dented SHA-1 the following
year, providing an algorithm to find collisions in only 269 steps [1599]; it now
takes about 260 computations. In February 2017, scientists from Amsterdam
and Google published one, to prove the point and help persuade people to move
to stronger hash functions such as SHA-2 [1483] (and from earlier versions of
TLS to TLS 1.3).

In 2007, the US National Institute of Standards and Technology (NIST)
organised a competition to find a replacement hash function family [1135]. The
winner, Keccak, has a quite di↵erent internal structure, and was standardised
as SHA-3 in 2015. So we now have a choice of SHA-2 and SHA-3 as standard
hash functions.

A lot of deployed systems still use hash functions such as MD5 for which
there’s an easy collision-search algorithm. Whether a collision will break any
given application can be a complex question. I already mentioned forensic sys-
tems, which keep hashes of files on seized computers, to reassure the court that
the police didn’t tamper with the evidence; a hash collision would merely signal
that someone had been trying to tamper, whether the police or the defendant,

Security Engineering 174 Ross Anderson



5.6. HASH FUNCTIONS

and trigger a more careful investigation. If bank systems actually took a mes-
sage composed by a customer saying ‘Pay X the sum Y ’, hashed it and signed
it, then a bad man could find two messages ‘Pay X the sum Y ’ and ‘Pay X the
sum Z’ that hashed to the same value, get one signed, and swap it for the other.
But bank systems don’t work like that. They typically use MACs rather than
digital signatures on actual transactions, and logs are kept by all the parties to
a transaction, so it’s not easy to sneak in one of a colliding pair. And in both
cases you’d probably have to find a preimage of an existing hash value, which
is a much harder cryptanalytic task than finding a collision.

5.6.2 Hash function applications – HMAC, commitments
and updating

But even though there may be few applications where a collision-finding algo-
rithm could let a bad guy to steal real money today, the existence of a vulner-
ability can still undermine a system’s value. Some people doing forensic work
continue to use MD5, as they’ve used it for years, and its collisions don’t give
useful attacks. This is probably a mistake. In 2005, a motorist accused of
speeding in Sydney, Australia was acquitted after the New South Wales Roads
and Tra�c Authority failed to find an expert to testify that MD5 was secure
in this application. The judge was “not satisfied beyond reasonable doubt that
the photograph [had] not been altered since it was taken” and acquitted the
motorist; his strange ruling was upheld on appeal the following year [1153]. So
even if a vulnerability doesn’t present an engineering threat, it can still present
a certificational threat.

Hash functions have many other uses. One of them is to compute MACs. A
näıve method would be to hash the message with a key: MACk(M) = h(k,M).
However the accepted way of doing this, called HMAC, uses an extra step in
which the result of this computation is hashed again. The two hashing opera-
tions are done using variants of the key, derived by exclusive-or’ing them with
two di↵erent constants. Thus HMACk(M) = h(k �B, h(k � A,M)). A is con-
structed by repeating the byte 0x36 as often as necessary, and B similarly from
the byte 0x5C. If a hash function is on the weak side, this construction can make
exploitable collisions harder to find [888]. HMAC is now FIPS 198-1.

Another use of hash functions is to make commitments that are to be revealed
later. For example, I might wish to timestamp a digital document in order to
establish intellectual priority, but not reveal the contents yet. In that case, I
can publish a hash of the document, or send it to a commercial timestamping
service, or have it mined into the Bitcoin blockchain. Later, when I reveal the
document, the timestamp on its hash establishes that I had written it by then.
Again, an algorithm that generates colliding pairs doesn’t break this, as you
have to have the pair to hand when you do the timestamp.

Merkle trees hash a large number of inputs to a single hash output. The
inputs are hashed to values that form the leaves of a tree; each non-leaf node
contains the hash of all the hashes at its child nodes, so the hash at the root
is a hash of all the values at the leaves. This is a fast way to hash a large
data structure; it’s used in code signing, where you may not want to wait for

Security Engineering 175 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

all of an application’s files to have their signatures checked before you open it.
It’s also widely used in blockchain applications; in fact, a blockchain is just a
Merkle tree. It was invented by Ralph Merkle, who first proposed it to calculate
a short hash of a large file of public keys [1049], particularly for systems where
public keys are used only once. For example, a Lamport digital signature can
be constructed from a hash function: you create a private key of 512 random
256-bit values ki and publish the verification key V as their Merkle tree hash.
Then to sign h = SHA256(M) you would reveal k2i if the i-th bit of h is zero,
and otherwise reveal k2i+1. This is secure if the hash function is, but has the
drawback that each key can be used only once. Merkle saw that you could
generate a series of private keys by encrypting a counter with a master secret
key, and then use a tree to hash the resulting public keys. However, for most
purposes, people use signature algorithms based on number theory, which I’ll
describe in the next section.

One security-protocol use of hash functions is worth a mention: key updat-
ing and autokeying. Key updating means that two or more principals who share
a key pass it through a one-way hash function at agreed times: Ki = h(Ki�1).
The point is that if an attacker compromises one of their systems and steals the
key, he only gets the current key and is unable to decrypt back tra�c. The chain
of compromise is broken by the hash function’s one-wayness. This property is
also known as backward security. A variant is autokeying where the principals
update a key by hashing it with the messages they have exchanged since the last
key change: K+1i = h(Ki,Mi1,Mi2, . . .). If an attacker now compromises one
of their systems and steals the key, then as soon as they exchange a message
which he can’t observe or guess, security will be recovered; again, the chain
of compromise is broken. This property is known as forward security. It was
first used in banking in EFT payment terminals in Australia [175, 177]. The
use of asymmetric cryptography allows a slightly stronger form of forward se-
curity, namely that as soon as a compromised terminal exchanges a message
with an uncompromised one which the opponent doesn’t control, security can
be recovered even if the message is in plain sight. I’ll describe how this works
next.

5.7 Asymmetric crypto primitives

The commonly used building blocks in asymmetric cryptography, public-key
encryption and digital signature, are based on number theory. I’ll give a brief
overview here, and look in more detail at some of the mechanisms used in Part
II when I discuss applications.

The basic idea is to make the security of the cipher depend on the di�culty
of solving a mathematical problem that’s known to be hard, in the sense that a
lot of people have tried to solve it and failed. The two problems used in almost
all real systems are factorization and discrete logarithm.

Security Engineering 176 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

5.7.1 Cryptography based on factoring

The prime numbers are the positive whole numbers with no proper divisors:
the only numbers that divide a prime number are 1 and the number itself.
By definition, 1 is not prime; so the primes are {2, 3, 5, 7, 11, ...}. The
fundamental theorem of arithmetic states that each natural number greater than
1 factors into prime numbers in a way that is unique up to the order of the
factors. It is easy to find prime numbers and multiply them together to give
a composite number, but much harder to resolve a composite number into its
factors. And lots of smart people have tried really hard since we started using
cryptography based on factoring. The largest composite product of two large
random primes to have been factorized in 2019 was RSA-240, a 795-bit number
(240 decimal digits). This took the equivalent of 900 years’ work on a single
2.2GHz core [256]. It is possible for factoring to be done surreptitiously, perhaps
using a botnet; in 2001, when the state of the art was factoring 512-bit numbers,
such a challenge was set in Simon Singh’s ‘Code Book’ and solved by five Swedish
students using several hundred computers to which they had access [31]. As for
1024-bit numbers, I expect the NSA can factor them already, and I noted in the
second edition that ‘an extrapolation of the history of factoring records suggests
the first factorization will be published in 2018.’ Moore’s law is slowing down,
and we’re a year late. Anyway, organisations that want keys to remain secure
for many years are already using 2048-bit numbers at least.

The algorithm commonly used to do public-key encryption and digital sig-
natures based on factoring is RSA, named after its inventors Ron Rivest, Adi
Shamir and Len Adleman. It uses Fermat’s little theorem, which states that for
all primes p not dividing a, ap�1 ⌘ 1 (mod p) (proof: take the set {1, 2, ...,
p� 1} and multiply each of them modulo p by a, then cancel out (p� 1)! each
side). For a general integer n, a�(n) ⌘ 1 (mod p) where Euler’s function �(n)
is the number of positive integers less than n with which it has no divisor in
common (the proof is similar). So if n is the product of two primes pq then
�(n) = (p� 1)(q � 1).

In RSA, the encryption key is a modulus N which is hard to factor (take
N = pq for two large randomly chosen primes p and q, say of 1024 bits each)
plus a public exponent e that has no common factors with either p� 1 or q� 1.
The private key is the factors p and q, which are kept secret. Where M is the
message and C is the ciphertext, encryption is defined by

C ⌘ Me (mod N)

Decryption is the reverse operation:

M ⌘ e
p
C (mod N)

Whoever knows the private key – the factors p and q of N – can easily
calculate e

p
C (mod N). As �(N) = (p � 1)(q � 1) and e has no common

factors with �(N), the key’s owner can find a number d such that de ⌘ 1
(mod �(N)) – she finds the value of d separately modulo p � 1 and q � 1, and
combines the answers. e

p
C (mod N) is now computed as Cd (mod N), and

decryption works because of Fermat’s theorem:

Security Engineering 177 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

Cd ⌘ {Me}d ⌘ Med ⌘ M1+k�(N) ⌘ M.Mk�(N) ⌘ M.1 ⌘ M (mod N)

Similarly, the owner of a private key can operate on a message with it to
produce a signature

Sigd(M) ⌘ Md (mod N)

and this signature can be verified by raising it to the power e mod N (thus,
using e and N as the public signature verification key) and checking that the
message M is recovered:

M ⌘ (Sigd(M))e (mod N)

Neither RSA encryption nor signature is safe to use on its own. The reason
is that, as encryption is an algebraic process, it preserves certain algebraic prop-
erties. For example, if we have a relation such as M1M2 = M3 that holds among
plaintexts, then the same relationship will hold among ciphertexts C1C2 = C3

and signatures Sig1Sig2 = Sig3. This property is known as a multiplicative ho-
momorphism; a homomorphism is a function that preserves some mathematical
structure. The homomorphic nature of raw RSA means that it doesn’t meet the
random oracle model definitions of public key encryption or signature.

Another general problem with public-key encryption is that if the plaintexts
are drawn from a small set, such as ‘attack’ or ‘retreat’, and the encryption
process is deterministic (as RSA is), then an attacker might just precompute
the possible ciphertexts and recognise them when they appear. With RSA,
it’s also dangerous to use a small exponent e to encrypt the same message
to multiple recipients, as this can lead to an algebraic attack. To stop the
guessing attack, the low-exponent attack and attacks based on homomorphism,
it’s sensible to add in some randomness, and some redundancy, into a plaintext
block before encrypting it. Every time we encrypt the same short message, say
‘attack’, we want to get a completely di↵erent ciphertext, and for these to be
indistinguishable from each other as well as from the ciphertexts for ‘retreat’.
And there are good ways and bad ways of doing this.

Crypto theoreticians have wrestled for decades to analyse all the things that
can go wrong with asymmetric cryptography, and to find ways to tidy it up.
Shafi Goldwasser and Silvio Micali came up with formal models of probabilistic
encryption in which we add randomness to the encryption process, and semantic
security, which we mentioned already; in this context it means that an attacker
cannot get any information at all about a plaintext M that was encrypted to
a ciphertext C, even if he is allowed to request the decryption of any other
ciphertext C 0 not equal to C [632]. In other words, we want the encryption to
resist chosen-ciphertext attack as well as chosen-plaintext attack. There are a
number of constructions that give semantic security, but they tend to be too
ungainly for practical use.

The usual real-world solution is optimal asymmetric encryption padding
(OAEP), where we concatenate the message M with a random nonce N , and
use a hash function h to combine them:

Security Engineering 178 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

C1 = M � h(N)

C2 = N � h(C1)

In e↵ect, this is a two-round Feistel cipher that uses h as its round function.
The result, the combination C1, C2, is then encrypted with RSA and sent. The
recipient then computes N as C2 � h(C1) and recovers M as C1 � h(N) [180].
This was eventually proven to be secure. There are a number of public-key
cryptography standards; PKCS #1 describes OAEP [807]. These block a whole
lot of attacks that were discovered in the 20th century and about which people
have mostly forgotten, such as the fact that an opponent can detect if you
encrypt the same message with two di↵erent RSA keys. In fact, one of the things
we learned in the 1990s was that randomisation helps make crypto protocols
more robust against all sorts of attacks, and not just the mathematical ones.
Side-channel attacks and even physical probing of devices take a lot more work.

With signatures, things are slightly simpler. In general, it’s often enough to
just hash the message before applying the private key: Sigd = [h(M)]d (mod
N); PKCS #7 describes simple mechanisms for signing a message digest [819].
However, in some applications one might wish to include further data in the
signature block, such as a timestamp, or some randomness to make side-channel
attacks harder.

Many of the things that have gone wrong with real implementations have to
do with side channels and error handling. One spectacular example was when
Daniel Bleichenbacher found a way to break the RSA implementation in SSL
v 3.0 by sending suitably chosen ciphertexts to the victim and observing any
resulting error messages. If he could learn from the target whether a given
c, when decrypted as cd (mod n), corresponds to a PKCS #1 message, then
he could use this to decrypt or sign messages [222]. There have been many
more side-channel attacks on common public-key implementations, typically via
measuring the precise time taken to decrypt. RSA is also mathematically fragile;
you can break it using homomorphisms, or if you have the same ciphertext
encrypted under too many di↵erent small keys, or if the message is too short,
or if two messages are related by a known polynomial, or in several other edge
cases. Errors in computation can also give a result that’s correct modulo one
factor of the modulus and wrong modulo the other, enabling the modulus to be
factored; errors can be inserted tactically, by interfering with the crypto device,
or strategically, for example by the chipmaker arranging for one particular value
of a 64-bit multiply to be computed incorrectly. Yet other attacks have involved
stack overflows, whether by sending the attack code in as keys, or as padding
in poorly-implemented standards.

5.7.2 Cryptography based on discrete logarithms

While RSA was the first public-key encryption algorithm deployed in the SSL
and SSH protocols, the most popular public-key algorithms now are based on
discrete logarithms. There are a number of flavors, some using normal modular
arithmetic while others use elliptic curves. I’ll explain the normal case first.

Security Engineering 179 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

A primitive root modulo p is a number whose powers generate all the nonzero
numbers mod p; for example, when working modulo 7 we find that 52 = 25 which
reduces to 4 (modulo 7), then we can compute 53 as 52 x 5 or 4 x 5 which is 20,
which reduces to 6 (modulo 7), and so on, as in Figure 5.17:

51 = 5 (mod 7)
52 = 25 ⌘ 4 (mod 7)
53 ⌘ 4 x 5 ⌘ 6 (mod 7)
54 ⌘ 6 x 5 ⌘ 2 (mod 7)
55 ⌘ 2 x 5 ⌘ 3 (mod 7)
56 ⌘ 3 x 5 ⌘ 1 (mod 7)

Figure 5.17 – example of discrete logarithm calculations

Thus 5 is a primitive root modulo 7. This means that given any y, we can
always solve the equation y = 5x (mod 7); x is then called the discrete logarithm
of y modulo 7. Small examples like this can be solved by inspection, but for a
large random prime number p, we do not know how to do this e�ciently. So
the mapping f : x ! gx (mod p) is a one-way function, with the additional
properties that f(x+ y) = f(x)f(y) and f(nx) = f(x)n. In other words, it is a
one-way homomorphism. As such, it can be used to construct digital signature
and public key encryption algorithms.

5.7.2.1 One-way commutative encryption

Imagine we’re back in ancient Rome, that Anthony wants to send a secret to
Brutus, and the only communications channel available is an untrustworthy
courier (say, a slave belonging to Caesar). Anthony can take the message, put
it in a box, padlock it, and get the courier to take it to Brutus. Brutus could
then put his own padlock on it too, and have it taken back to Anthony. He in
turn would remove his padlock, and have it taken back to Brutus, who would
now at last open it.

Exactly the same can be done using a suitable encryption function that
commutes, that is, has the property that {{M}KA}KB = {{M}KB}KA. Alice
can take the message M and encrypt it with her key KA to get {M}KA which
she sends to Bob. Bob encrypts it again with his key KB getting {{M}KA}KB .
But the commutativity property means that this is just {{M}KB}KA, so Alice
can decrypt it using her key KA getting {M}KB . She sends this to Bob and he
can decrypt it with KB, finally recovering the message M .

How can a suitable commutative encryption be implemented? The one-time
pad does indeed commute, but is not suitable here. Suppose Alice chooses a
random key xA and sends Bob M � xA while Bob returns M � xB and Alice
finally sends him M � xA� xB, then an attacker can simply exclusive-or these
three messages together; as X �X = 0 for all X, the two values of xA and xB
both cancel out, leaving the plaintext M .

The discrete logarithm problem comes to the rescue. If the discrete log
problem based on a primitive root modulo p is hard, then we can use discrete
exponentiation as our encryption function. For example, Alice encodes her
message as the primitive root g, chooses a random number xA, calculates gxA

Security Engineering 180 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

modulo p and sends it, together with p, to Bob. Bob likewise chooses a random
number xB and forms gxAxB modulo p, which he passes back to Alice. Alice
can now remove her exponentiation: using Fermat’s theorem, she calculates
gxB = (gxAxB)(p�xA) (mod p) and sends it to Bob. Bob can now remove his
exponentiation, too, and so finally gets hold of g. The security of this scheme
depends on the di�culty of the discrete logarithm problem. In practice, it can
be tricky to encode a message as a primitive root; but there’s a simpler way to
achieve the same e↵ect.

5.7.2.2 Di�e-Hellman key establishment

The first public-key encryption scheme to be published, by Whitfield Di�e and
Martin Hellman in 1976, has a fixed primitive root g and uses gxAxB modulo p
as the key to a shared-key encryption system. The values xA and xB can be
the private keys of the two parties.

Let’s walk through this. The prime p and generator g are common to all
users. Alice chooses a secret random number xA, calculates yA = gxA and
publishes it opposite her name in the company phone book. Bob does the
same, choosing a random number xB and publishing yB = gxB . In order to
communicate with Bob, Alice fetches yB from the phone book, forms yBxA

which is just gxAxB , and uses this to encrypt the message to Bob. On receiving
it, Bob looks up Alice’s public key yA and forms yAxB which is also equal to
gxAxB , so he can decrypt her message.

Alternatively, Alice and Bob can use transient keys, and get a mechanism
for providing forward security. As before, let the prime p and generator g be
common to all users. Alice chooses a random number RA, calculates gRA and
sends it to Bob; Bob does the same, choosing a random number RB and sending
gRB to Alice; they then both form gRARB , which they use as a session key (see
Figure 5.19).

A ! B : gRA (mod p)
B ! A : gRB (mod p)
A ! B : {M}gRARB

Figure 5.18 – the Di�e-Hellman key exchange protocol

Alice and Bob can now use the session key gRARB to encrypt a conversation.
If they used transient keys, rather than long-lived ones, they have managed to
create a shared secret ‘out of nothing’. Even if an opponent had inspected both
their machines before this protocol was started, and knew all their stored pri-
vate keys, then provided some basic conditions were met (e.g., that their random
number generators were not predictable and no malware was left behind) the
opponent could still not eavesdrop on their tra�c. This is the strong version of
the forward security property to which I referred in section 5.6.2. The opponent
can’t work forward from knowledge of previous keys which he might have ob-
tained. Provided that Alice and Bob both destroy the shared secret after use,
they will also have backward security: an opponent who gets access to their
equipment subsequently cannot work backward to break their old tra�c.

Security Engineering 181 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

Slightly more work is needed to provide a full solution. Some care is needed
when choosing the parameters p and g; we can infer from the Snowden disclo-
sures, for example, that the NSA can solve the discrete logarithm problem for
commonly-used 1024-bit prime numbers6. And there are several other details
which depend on whether we want properties such as forward security.

But this protocol has a small problem: although Alice and Bob end up with
a session key, neither of them has any real idea who they share it with.

Suppose that in our padlock protocol Caesar had just ordered his slave to
bring the box to him instead, and placed his own padlock on it next to An-
thony’s. The slave takes the box back to Anthony, who removes his padlock,
and brings the box back to Caesar who opens it. Caesar can even run two in-
stances of the protocol, pretending to Anthony that he’s Brutus and to Brutus
that he’s Anthony. One fix is for Anthony and Brutus to apply their seals to
their locks.

With the Di�e-Hellman protocol, the same idea leads to a middleperson
attack. Charlie intercepts Alice’s message to Bob and replies to it; at the same
time, he initiates a key exchange with Bob, pretending to be Alice. He ends up
with a key gRARC which he shares with Alice, and another key gRBRC which he
shares with Bob. So long as he continues to sit in the middle of the network and
translate the messages between them, they may have a hard time detecting that
their communications are compromised. The usual solution is to authenticate
transient keys, and there are various possibilities.

In the STU-2 telephone, which is now obsolete but which you can see in the
NSA museum at Fort Meade, the two principals would read out an eight-digit
hash of the key they had generated and check that they had the same value
before starting to discuss classified matters. Something similar is implemented
in Bluetooth versions 4 and later, but is complicated by the many versions that
the protocol has evolved to support devices with di↵erent user interfaces. The
protocol has su↵ered from multiple attacks, most recently the key negotiation
of Bluetooth (KNOB) attack, which allows a middleperson to force one-byte
keys that are easily brute forced; all devices produced before 2018 are vulnera-
ble [103]. The standard allows for key lengths between one and sixteen bytes;
as the keylength negotiation is performed in the clear, an attacker can force the
length to the lower limit. All standards-compliant chips are vulnerable; this
may be yet more of the toxic waste from the Crypto Wars. Earlier versions of
Bluetooth are more like the ‘just-works’ mode of the HomePlug protocol de-
scribed in section 4.7.1 in that they were principally designed to help you set
up a pairing key with the right device in a benign environment, rather than
defending against a sophisticated attack in a hostile one. The more modern
ones appear to be better, but it’s really just theatre.

So many things go wrong: protocols that will generate or accept very weak
keys and thus give only the appearance of protection; programs that leak keys

6The likely discrete log algorithm, NFS, involves a large computation for each prime number
followed by a smaller computation for each discrete log modulo that prime number. The open
record is 795 bits, which took 3,100 core-years in 2019 [256], using a version of NFS that’s three
times more e�cient than ten years ago. There have been persistent rumours of a further NSA
improvement and in any case the agency can throw a lot more horsepower at an important
calculation.

Security Engineering 182 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

via side channels such as the length of time they take to decrypt; and soft-
ware vulnerabilities leading to stack overflows and other hacks. If you’re imple-
menting public-key cryptography you need to consult up-to-date standards, use
properly accredited toolkits, and get someone knowledgeable to evaluate what
you’ve done. And please don’t write the actual crypto code on your own – doing
it properly requires a lot of di↵erent skills, from computational number theory
to side-channel analysis and formal methods. Even using good crypto libraries
gives you plenty of opportunities to shoot your foot o↵.

5.7.2.3 ElGamal digital signature and DSA

Suppose that the base p and the generator g are public values chosen in some
suitable way, and that each user who wishes to sign messages has a private
signing key X with a public signature verification key Y = gX . An ElGamal
signature scheme works as follows. Choose a message key k at random, and
form r = gk (mod p). Now form the signature s using a linear equation in k, r,
the message M and the private key X. There are a number of equations that
will do; the one that happens to be used in ElGamal signatures is

rX + sk = M

So s is computed as s = (M � rX)/k; this is done modulo �(p). When both
sides are passed through our one-way homomorphism f(x) = gx mod p we get:

grXgsk ⌘ gM

or

Y rrs ⌘ gM

An ElGamal signature on the message M consists of the values r and s, and
the recipient can verify it using the above equation.

A few more details need to be fixed up to get a functional digital signature
scheme. As before, bad choices of p and g can weaken the algorithm. We will
also want to hash the message M using a hash function so that we can sign
messages of arbitrary length, and so that an opponent can’t use the algorithm’s
algebraic structure to forge signatures on messages that were never signed. Hav-
ing attended to these details and applied one or two optimisations, we get the
Digital Signature Algorithm (DSA) which is a US standard and widely used in
government applications.

DSA assumes a prime p of typically 2048 bits7, a prime q of 256 bits dividing
(p� 1), an element g of order q in the integers modulo p, a secret signing key x
and a public verification key y = gx. The signature on a message M , Sigx(M),
is (r, s) where

7In the 1990s p could be in the range 512–1024 bits and q 160 bits; this was changed
to 1023–1024 bits in 2001 [1127] and 1024–3072 bits in 2009, with q in the range 160–256
bits [1128].

Security Engineering 183 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

r ⌘ (gk (mod p)) (mod q)

s ⌘ (h(M) � xr)/k (mod q)

The hash function used by default is SHA2568.

DSA is the classic example of a randomised digital signature scheme without
message recovery. The most commonly-used version nowadays is ECDSA, a
variant based on elliptic curves, which we’ll discuss now – this is for example
the standard for cryptocurrency and increasingly also for certificates in bank
smartcards.

5.7.3 Elliptic curve cryptography

Discrete logarithms and their analogues exist in many other mathematical struc-
tures. Elliptic curve cryptography uses discrete logarithms on an elliptic curve
– a curve given by an equation like y2 = x3 + ax + b. These curves have the
property that you can define an addition operation on them and the resulting
Mordell group can be used for cryptography. The algebra gets a bit complex and
this book isn’t the place to set it out9. However, elliptic curve cryptosystems
are interesting for at least two reasons.

First is performance; they give versions of the familiar primitives such as
Di�e-Hellmann key exchange and the Digital Signature Algorithm that use less
computation, and also have shorter variables; both are welcome in constrained
environments. Elliptic curve cryptography is used in applications from the latest
versions of EMV payment cards to Bitcoin.

Second, some elliptic curves have a bilinear pairing which Dan Boneh and
Matt Franklin used to construct cryptosystems where your public key is your
name [242]. Recall that in RSA and Di�e-Hellmann, the user chose his private
key and then computed a corresponding public key. In a so-called identity-based
cryptosystem, you choose your identity then go to a central authority that issues
you with a private key corresponding to that identity. There is a global public
key, with which anyone can encrypt a message to your identity; you can decrypt
this using your private key. Earlier, Adi Shamir had discovered identity-based
signature schemes that allow you to sign messages using a private key so that
anyone can verify the signature against your name [1381]. In both cases, your
private key is computed by the central authority using a system-wide private
key known only to itself. Identity-based primitives have been used in a few
specialist systems: in Zcash for the payment privacy mechanisms, and in a UK
government key-management protocol called Mikey-Sakke. Computing people’s

8The default sizes of p are chosen to be 2048 bits and q 256 bits in order to equalise
the work factors of the two best known cryptanalytic attacks, namely the number field sieve
whose running speed depends on the size of p and Pollard’s rho which depends on the size
of q. Larger sizes can be chosen if you’re anxious about Moore’s law or about progress in
algorithms.

9See Katz and Lindell [834]for an introduction.

Security Engineering 184 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

private keys from their email addresses or other identifiers may seem a neat
hack, but it can be expensive when government departments are reorganised
or renamed [96]. Most organisations and applications use ordinary public-key
systems with certification of public keys, which I’ll discuss next.

5.7.4 Certification

Now that we can do public-key encryption and digital signature, we need some
mechanism to bind users to keys. The approach proposed by Di�e and Hellman
when they invented digital signatures was to have a directory of the public keys
of a system’s authorised users, like a phone book. A more common solution,
due to Loren Kohnfelder, is for a certification authority (CA) to sign the users’
public encryption keys or their signature verification keys giving certificates that
contain a user’s name, one or more of their public keys, and attributes such as
authorisations. The CA might be run by the local system administrator; but it
is most commonly a third party service such as Verisign whose business is to sign
public keys after doing some due diligence about whether they are controlled by
the principals named in them.

A certificate might be described symbolically as

CA = SigKS (TS , L,A,KA, VA) (5.1)

where TS is the certificate’s starting date and time, L is the length of time
for which it is valid, A is the user’s name, KA is her public encryption key, and
VA is her public signature verification key. In this way, only the administrator’s
public signature verification key needs to be communicated to all principals in
a trustworthy manner.

Certification is hard, for a whole lot of reasons. Naming is hard, for starters;
we discuss this in the following chapter on Distributed Systems. But often names
aren’t really what the protocol has to establish, as in the real world it’s often
about authorisation rather than authentication. Government systems are often
about establishing not just a user’s name or role but their security clearance
level. In banking systems, it’s about your balance, your available credit and your
authority to spend it. In commercial systems, it’s often about linking remote
users to role-based access control. In user-facing systems, there is a tendency
to dump on the customer as many of the compliance costs as possible [433].
There are many other things that can go wrong with certification at the level of
systems engineering. At the level of politics, there are hundreds of certification
authorities in a typical browser, they are all more or less equally trusted, and
many nation states can coerce at least one of them10. The revocation of bad
certificates is usually flaky, if it works at all. There will be much more on these
topics later. With these warnings, it’s time to look at the most commonly used
public key protocol, TLS.

10The few that can’t, try to cheat. In 2011 Iran hacked the CA Diginotar, and in 2019
Kazakhstan forced its citizens to add a local police certificate to their browser. In both cases
the browser vendors pushed back fast and hard: Diginotar failed after it was blacklisted, while
the Kazakh cert was blocked even if its citizens installed it manually. This of course raises
issues of sovereignty.

Security Engineering 185 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

5.7.5 TLS

I remarked above that a server could publish a public key KS and any web
browser could then send a message M containing a credit card number to it
encrypted using KS: {M}KS . This is in essence what the TLS protocol (then
known as SSL) was designed to do, at the start of e-commerce. It was devel-
oped by Paul Kocher and Taher ElGamal in 1995 to support encryption and
authentication in both directions, so that both http requests and responses can
be protected against both eavesdropping and manipulation. It’s the protocol
that’s activated when you see the padlock on your browser toolbar.

Here is a simplified description of the basic version of the protocol in TLS
v1:

1. the client sends the server a client hello message that contains its name
C, a transaction serial number C#, and a random nonce NC ;

2. the server replies with a server hello message that contains its name S, a
transaction serial number S#, a random nonce NS , and a certificate CS
containing its public key KS. The client now checks the certificate CS,
and if need be checks the key that signed it in another certificate, and so
on back to a root certificate issued by a company such as Verisign and
stored in the browser;

3. the client sends a key exchange message containing a pre-master-secret key,
K0, encrypted under the server public key KS. It also sends a finished
message with a message authentication code (MAC) computed on all the
messages to date. The key for this MAC is the master-secret, K1. This
key is computed by hashing the pre-master-secret key with the nonces
sent by the client and server: K1 = h(K0, NC , NS). From this point
onward, all the tra�c is encrypted; we’ll write this as {...}KCS in the
client-server direction and {...}KSC from the server to the client. These
keys are generated in turn by hashing the nonces with K1.

4. The server also sends a finished message with a MAC computed on all the
messages to date. It then finally starts sending the data.

C ! S : C,C#, NC

S ! C : S, S#, NS , CS
C ! S : {K0}KS

C ! S : {finished,MAC(K1, everythingtodate)}KCS

S ! C : {finished,MAC(K1, everythingtodate)}KSC , {data}KSC

Once a client and server have established a pre-master-secret, no more public-
key operations are needed as further master secrets can be obtained by hashing
it with new nonces.

5.7.5.1 TLS uses

The full protocol is more complex than this, and has gone through a number
of versions. It has supported a number of di↵erent ciphersuites, initially so

Security Engineering 186 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

that export versions of software could be limited to 40 bit keys – a condition
of export licensing that was imposed for many years by the US government.
This led to downgrade attacks where a middleperson could force the use of
weak keys. Other ciphersuites support signed Di�e-Hellman key exchanges for
transient keys, to provide forward and backward secrecy. TLS also has options
for bidirectional authentication so that if the client also has a certificate, this
can be checked by the server. In addition, the working keys KCS and KSC
can contain separate subkeys for encryption and authentication, as is needed for
legacy modes of operation such as CBC plus CBC MAC.

As well as being used to encrypt web tra�c, TLS has also been available as
an authentication option in Windows from Windows 2000 onwards; you can use
it instead of Kerberos for authentication on corporate networks. Another appli-
cation is in mail, where more and more mail servers now use TLS opportunisti-
cally when exchanging emails with another mail server that’s also prepared to
use it. This stops passive eavesdropping, although it leaves open the possibility
of middleperson attacks.

5.7.5.2 TLS security

Although early versions of SSL had a number of bugs [1593], SSL 3.0 and later
appear to be sound; the version after SSL 3.0 was renamed TLS 1.0. It was
formally verified by Larry Paulson in 1998, so we know that the idealised version
of the protocol doesn’t have any bugs [1214].

However, in the more than twenty years since then, there have been over
a dozen serious attacks. Even in 1998, Daniel Bleichenbacher came up with
the first of a number of attacks based on measuring the time it takes a server
to decrypt, or the error messages it returns in response to carefully-crafted
protocol responses [222]. TLS 1.1 appeared in 2006 with protection against
exploits of CBC encryption and of padding errors; TLS 1.2 followed two years
later, upgrading the hash function to SHA256 and supporting authenticated
encryption; and meanwhile there were a number of patches dealing with various
attacks that had emerged. Many of these patches were rather inelegant because
of the di�culty of changing a widely-used protocol; it’s extremely di�cult to
change both the server and client ends at once, as any client still has to interact
with millions of servers, many running outdated software, and most websites
want to be able to deal with browsers of all ages and on all sorts of devices.
We’ll discuss this more in the chapter on Advanced Cryptographic Engineering.

5.7.5.3 TLS 1.3

The most recent major upgrade, TLS 1.3, was approved by the IETF in January
2019 after two years of discussion. It has dropped backwards compatibility in
order to end support for many old ciphers, and made it mandatory to establish
end-to-end forward secrecy by means of a Di�e-Hellman key exchange at the
start of each session. This has caused controversy with the banking industry,
which routinely intercepts encrypted sessions in order to do monitoring for com-
pliance purposes. This will no longer be possible, so banks will have to bear the
legal discomfort of using obsolete encryption or the financial cost of redeveloping

Security Engineering 187 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

systems to monitor compliance at endpoints instead.

5.7.6 Other public-key protocols

/* revisit after revising part 2 */

Dozens of other public-key protocols have found wide use, including the
following, most of which we’ll discuss in detail later.

QUIC is a new UDP-based protocol designed by Google and promoted as an
alternative to TLS that allows quicker session establishment and thus cutting
latency in the ad auctions that happen as pages load; sessions can persist as
people move between access points. This is achieved by a cookie that holds the
client’s last IP address, encrypted by the server. It appeared in Chrome in 2013
and now has about 7% of Internet tra�c; it’s acquired a vigorous standardisation
community. Google claims it reduces search latency 8% and YouTube bu↵er
time 18%. Independent evaluation suggests that the benefit is mostly on the
desktop rather than mobile [818], and there’s a privacy concern as the server
can use an individual public key for each client, and use this for tracking.

PAKE protocols: SAE (symmetric authentication of equals) being rolled out
in WPA3, as I mentioned in the passwords chapter; it ultimately goes back to
Steve Bellovin’s EKE work in the 1990s.

OAuth, which I mention as a cross-site phishing risk in chapter 3.

The Signal protocol provides end-to-end encryption in a number of mod-
ern chat systems with both forward and backward security, hardened using a
ratcheting mechanism. I will discuss this in detail in 25.4.5.

Tor provides protection against tra�c analysis too; this is described in sec-
tion 25.4.2.

SSH has been used for over 20 years for remote access to computers, partic-
ularly Linux boxes, and is described in 23.4.5.1.

Infrastructure stu↵ like DKIM, DNSSec versus DNS over http, BGPsec...

Trusted boot, disk encryption, memory encryption, DRM: SGX, TrustZone,
and all the attacks

PGP / GPG is an even older program for signing and encrypting files for
transmission by email; one of the first such programs to be widely available, it
is still used in some applications such as when researchers and AV companies
encrypt malware in order to share it safely. I discuss it in detail in 25.4.4.

Common implementation failures: refer to side channel chapter, and also
mention poor random number generators leading to RSA keys with common fac-
tors, etc. (see https://www.schneier.com/blog/archives/2012/02/lousy_
random_nu.html for 2012; still a problem in 2019, https://www.computing.
co.uk/ctg/news/3084715/iot-encryption-weak and

The history of code signing, which, like PGP, goes back to the early 1990s –
discuss in the context of patch cycle management? Microsoft’s NSAkey?

Security Engineering 188 Ross Anderson



5.7. ASYMMETRIC CRYPTO PRIMITIVES

5.7.7 Special-purpose primitives

Researchers have invented a large number of public-key and signature primitives
with special properties. Two that have so far appeared in real products are
threshold cryptography and blind signatures.

Threshold crypto is a mechanism whereby a signing key, or a decryption key,
can be split up among n principals so that any k out of n can sign a message
(or decrypt). For k = n the construction is easy. With RSA, for example,
you can split up the private key d as d = d1 + d2 + . . . + dn. For k < n
it’s slightly more complex (but not much – you use the Lagrange interpolation
formula) [458]. Threshold signatures were first used in systems where a number
of servers process transactions independently and vote independently on the
outcome; they have more recently been used to implement business rules on
cryptocurrency wallets such as ‘a payment must be authorised by any two of
the seven company directors’.

Blind signatures are a way of making a signature on a message without
knowing what the message is. For example, if we are using RSA, I can take a
random number R, form ReM (mod n), and give it to the signer who computes
(ReM)d = R.Md (mod n). When he gives this back to me, I can divide out R
to get the signature Md. Now you might ask why on earth someone would want
to sign a document without knowing its contents, but there are some possible
applications.

The first was in digital cash; you might want to be able to issue anonymous
payment tokens to customers, and the earliest idea, due to David Chaum, was
a way to sign ‘digital coins’ without knowing their serial numbers [344]. A bank
might agree to honour for $10 any string M with a unique serial number and a
specified form of redundancy, bearing a signature that verified as correct using
the public key (e, n). The blind signature protocol ensures a customer can get
a bank to sign a coin without the banker knowing its serial number, and it
was used in prototype road toll systems. The e↵ect is that the digital cash
can be anonymous for the spender. The main problem with digital cash was to
detect people who spend the same coin twice, and this was eventually fixed using
blockchains or other ledger mechanisms. Digital cash failed to take o↵ because
neither banks nor governments really want payments to be anonymous: anti-
money-laundering regulations since 9/11 restrict anonymous payment services
to small amounts, while both banks and bitcoin miners like to collect transaction
fees.

Anonymous digital credentials are now used in attestation: the TPM chip
on your PC motherboard might prove something about the software running
on your machine without identifying you. Unfortunately, this led to designs
for attestation in SGX (and its AMD equivalent) which mean that a single
compromised device breaks the whole ecosystem.

more in the chapters on side channels and advanced crypto engi-
neering...

Security Engineering 189 Ross Anderson



5.8. SUMMARY

5.7.8 How strong are asymmetric cryptographic primi-
tives?

In order to provide the same level of protection as a symmetric block cipher,
asymmetric cryptographic primitives generally require at least twice the block
length. Elliptic curve systems appear to achieve this bound; a 256-bit elliptic
scheme could be about as hard to break as a 128-bit block cipher with a 128-bit
key; and the only public-key encryption schemes used in the NSA’s Suite B of
military algorithms are 384-bit elliptic curve systems. The traditional schemes,
based on factoring and discrete log, now require 3072-bit keys to protect material
at Top Secret, as there are shortcut attack algorithms such as the number field
sieve. As a result, elliptic curve cryptosystems are faster.

When I wrote the first edition of this book in 2000, the number field sieve
had been used to attack keys up to 512 bits, a task comparable in di�culty to
keysearch on 56-bit DES keys; by the time I rewrote this chapter for the second
edition in 2007, 64-bit symmetric keys had been brute-forced, and the 663-bit
challenge number RSA-200 had been factored. By the third edition in 2019,
bitcoin miners are finding 68-bit hash collisions every ten minutes, RSA-768 has
been factored and Ed Snowden has as good as told us that the NSA can do
discrete logs for a 1024-bit prime modulus.

There has been much research into quantum computers – devices that per-
form a large number of computations simultaneously using superposed quantum
states. Peter Shor has shown that if a su�ciently large quantum computer could
be built, then both factoring and discrete logarithm computations will become
easy [1397]. So far only very small quantum devices have been built; factoring
15 was about the state of the art in 2007 and we’re stuck there. I am very scep-
tical – as are many physicists – about whether the technology will ever threaten
real systems. Personally I think it more likely that a major challenge to public-
key cryptography would come in the form of a better algorithm for computing
discrete logarithms on elliptic curves: these curves have a lot of structure; they
are studied intensively by some of the world’s smartest pure mathematicians;
better discrete-log algorithms for curves of small characteristic were discovered
in 2013 [144]; and the NSA is moving away from using elliptic-curve crypto.

If quantum computers ever work, we have other ‘post-quantum’ algorithms
ready to go for which quantum computers give no obvious advantage; cipher-
suites using them could be dropped into protocols such as TLS as upgrades.
Many protocols in use could even be redesigned to use variants on Kerberos. If
elliptic logarithms become easy, we have these resources and can also fall back to
discrete logs in prime fields, or to RSA. But if elliptic logs become easy, bitcoins
will become trivial to forge, and the cryptocurrency ecosystem would probably
collapse. So mathematicians concerned about the future of the planet might do
worse than to work on the elliptic logarithm problem.

5.8 Summary

Many ciphers fail because they’re used badly, so the security engineer needs a
clear model of what di↵erent types of cipher do. This can be tackled at di↵erent

Security Engineering 190 Ross Anderson



5.8. SUMMARY

levels; one is at the level of crypto theory, where we can talk about the random
oracle model, the concrete model and the semantic security model, and hopefully
avoid using weak modes of operation and other constructions. The next level is
that of the design of individual ciphers, such as AES, or the number-theoretic
mechanisms that underlie public-key cryptosystems and digital signature mech-
anisms. These also have their own specialised fields of mathematics, namely
block cipher cryptanalysis and computational number theory. The next level
involves implementation badness, which is much more intractable and messy.
This involves dealing with timing, error handling, power consumption and all
sorts of other grubby details, and is where modern cryptosystems tend to break
in practice.

Peering under the hood of real systems, we’ve discussed how block ciphers
for symmetric key applications can be constructed by the careful combination of
substitutions and permutations; for asymmetric applications such as public key
encryption and digital signature one uses number theory. In both cases, there
is quite a large body of mathematics. Other kinds of ciphers – stream ciphers
and hash functions – can be constructed from block ciphers by using them in
suitable modes of operation. These have di↵erent error propagation, pattern
concealment and integrity protection properties. A lot of systems fail because
popular crypto libraries encourage programmers to use inappropriate modes of
operation by exposing unsafe defaults. Never use ECB mode unless you really
understand what you’re doing.

There are many other things that can go wrong, from side channel attacks to
poor random number generators. In particular, it is surprisingly hard to build
systems that are robust even when components fail (or are encouraged to) and
where the cryptographic mechanisms are well integrated with other measures
such as access control and physical security. I’ll return to this repeatedly in
later chapters.

The moral is: Don’t roll your own! Don’t design your own protocols, or your
own ciphers; and don’t write your own crypto code unless you absolutely have
to. If you do, then you not only need to read this book (and then read it again,
carefully); you need to read up the relevant specialist material, speak to experts,
and have capable motivated people try to break it. At the very least, you need
to get your work peer-reviewed. It’s just too easy to make fatal errors.

Research Problems

There are many active threads in cryptography research. Many of them are
where crypto meets a particular branch of mathematics (number theory, alge-
braic geometry, complexity theory, combinatorics, graph theory, and information
theory). The empirical end of the business is concerned with designing prim-
itives for encryption, signature and composite operations, and which perform
reasonably well on available platforms. The two meet in the study of subjects
ranging from cryptanalysis, to the search for primitives that combine provable
security properties with decent performance.

The best way to get a flavor of what’s going on at the theoretical end of

Security Engineering 191 Ross Anderson



5.8. SUMMARY

things is to read the last few years’ proceedings of research conferences such
as Crypto, Eurocrypt and Asiacrypt; work on cipher design appears at Fast
Software Encryption; attacks on implementations often appear at CHES; while
attacks on how crypto gets used in systems can be found in the top systems
security conferences such as IEEE Security and Privacy, CCS and Usenix.

Further Reading

The classic papers by Whit Di�e and Martin Hellman [460] and by Ron Rivest,
Adi Shamir and Len Adleman [1302] are the closest to required reading in this
subject. Bruce Schneier’s Applied Cryptography [1352] covers a lot of ground at a
level a non-mathematician can understand, and got crypto code out there in the
1990s despite US export control laws, but is now slightly dated. Alfred Menezes,
Paul van Oorshot and Scott Vanstone’s Handbook of Applied Cryptography [1041]
is one reference book on the mathematical detail. Katz and Lindell is the book
we get our students to read for the math. It gives an introduction to the standard
crypto theory plus the number theory you need for public-key crypto (including
elliptic curves and index calculus) but is also dated: they don’t mention GCM,
for example [834].

There are many more specialist books. The bible on di↵erential cryptanalysis
is by its inventors Eli Biham and Adi Shamir [202], while a good short tuto-
rial on linear and di↵erential cryptanalysis was written by Howard Heys [724].
Doug Stinson’s textbook has another detailed explanation of linear cryptanal-
ysis [1484]; and the modern theory of block ciphers can be traced through the
papers in the Fast Software Encryption conference series. The original book on
modes of operation is by Carl Meyer and Steve Matyas [1053]. Neal Koblitz
has a good basic introduction to the mathematics behind public key cryp-
tography [863]; and the number field sieve is described by Arjen and Henrik
Lenstra [929].

If you want to work through the mathematical detail of theoretical cryptol-
ogy, there’s an recent graduate textbook by Dan Boneh and Victor Shoup [243].
A less thorough but more readable introduction to randomness and algorithms
is in [676]. Research at the theoretical end of cryptology is found at the FOCS,
STOC, Crypto, Eurocrypt and Asiacrypt conferences.

The history of cryptology is fascinating, and so many old problems keep
on recurring. The standard work is Kahn [812]; there are also compilations
of historical articles from Cryptologia [439, 437, 438] as well as several books
on the history of cryptology in World War II by Kahn, Marks, Welchman and
others [362, 813, 996, 1621]. The NSA Museum at Fort George Meade, Md.,
is also worth a visit, but perhaps the best is the museum at Bletchley Park in
England.

Finally, no chapter that introduces public key encryption would be complete
without a mention that, under the name of ‘non-secret encryption,’ it was first
discovered by James Ellis in about 1969. However, as Ellis worked for GCHQ,
his work remained classified. The RSA algorithm was then invented by Cli↵ord
Cocks, and also kept secret. This story is told in [511]. One e↵ect of the

Security Engineering 192 Ross Anderson



5.8. SUMMARY

secrecy was that their work was not used: although it was motivated by the
expense of Army key distribution, Britain’s Ministry of Defence did not start
building electronic key distribution systems for its main networks until 1992.
And the classified community did not pre-invent digital signatures; they remain
the achievement of Whit Di�e and Martin Hellman.

Security Engineering 193 Ross Anderson


