Unpublished workshop paper for RESoLVE’12 - March 3, 2012 - London, UK

CHERI: a research platform deconflating
hardware virtualization and protection

Robert N.M. Watson

University of Cambridge
robert.watson@cl.cam.ac.uk

Jonathan Anderson

University of Cambridge
jonathan.anderson@cl.cam.ac.uk

Ben Laurie

Google UK Ltd
benl@google.com

Philip Paeps
NixSys BVB
philip.paeps@cl.cam.ac.uk

Abstract

Contemporary CPU architectures conflate virtualization and pro-
tection, imposing virtualization-related performance, programma-
bility, and debuggability penalties on software requiring fine-
grained protection. First observed in micro-kernel research, these
problems are increasingly apparent in recent attempts to mitigate
software vulnerabilities through application compartmentalisation.
Capability Hardware Enhanced RISC Instructions (CHERI) ex-
tend RISC ISAs to support greater software compartmentalisation.
CHERTI’s hybrid capability model provides fine-grained compart-
mentalisation within address spaces while maintaining software
backward compatibility, which will allow the incremental deploy-
ment of fine-grained compartmentalisation in both our most trusted
and least trustworthy C-language software stacks. We have im-
plemented a 64-bit MIPS research soft core, BERI, as well as a
capability coprocessor, and begun adapting commodity software
packages (FreeBSD and Chromium) to execute on the platform.

1. Introduction

This workshop paper describes Capability Hardware Enhanced
RISC Instructions (CHERI), an extension to the commodity 64-bit
MIPS' instruction set architecture (ISA) to efficiently implement
memory capabilities and the object-capability security model [14].
Using CHERI, we hope to provide enhanced hardware support
for software compartmentalisation—the granular decomposition
of software into isolated components in order to improve robust-
ness, enforce security policies, and mitigate security vulnerabili-
ties. Compartmentalisation combines abstraction, modularity, en-
capsulation, privilege, and separation, whose effects are not gener-
ally directly exposed to contemporary hardware.

' We hope also to investigate this approach with the new ARMvS ISA.

Peter G. Neumann

SRI International
neumann@csl.sri.com

Ross Anderson

University of Cambridge
ross.anderson@cl.cam.ac.uk

Simon W. Moore

University of Cambridge
simon.moore@cl.cam.ac.uk

Michael Roe

University of Cambridge
michael.roe@cl.cam.ac.uk

Jonathan Woodruff

University of Cambridge
jonathan.woodruff@cl.cam.ac.uk

Nirav Dave

SRI International
ndave@csl.sri.com

Steven J. Murdoch

University of Cambridge
steven.murdoch@cl.cam.ac.uk

Hassen Saidi

SRI International
saidi@csl.sri.com

Adoption of software compartmentalisation has historically
been resisted due to its impacts on performance, programmabil-
ity, and debuggability. Many of these problems result from the
use of virtual memory techniques, which were developed to solve
quite different problems in coarse-grained memory management
and paging rather than to provide fine-grained protection. Virtual
addressing also causes programmability and debugging issues in
this context, as programmers are unnecessarily exposed to dis-
tributed system programming problems even in local application
development. Despite these limitations, hostile computing environ-
ments have motivated increasing deployment of compartmentalisa-
tion in operating systems and applications [15, 16]. However, such
efforts are plagued by problems of inefficiency, lack of scalability,
and difficulty in programming and debugging—as we experienced
first-hand during our work on Capsicum [22].

CHERI offers an alternative path by introducing new hardware
protection features that are divorced from virtual memory features.
CHERI systems retain an MMU, which can still be used for full-
system and process virtualization, as well as paging and swapping.
However, CHERI also offers a non-hierarchical, in-address-space
protection model, grounded in capabilities, that can be managed
without recourse to privileged CPU instructions. The CHERI ca-
pability model allows efficient implementation of in-address-space
software compartmentalisation by providing fine-grained mem-
ory protection and trustworthy security domain transitions [6, 24].
The model is a hybrid capability model, which allows capability-
enhanced software components to be tightly integrated with con-
ventional software designs. The hybrid capability philosophy, first
developed in the Capsicum operating system (but constrained by
conventional CPU architectures), provides an incremental software
adoption path, allowing capability system approaches to be de-
ployed in our most trusted TCBs (OS kernels, system libraries,
language run-times), as well as our least trustworthy software (im-

2012/2/8

age decompression and video CODEC:s), all invisibly to other code
in the system [22]. For example, CHERI is able to transparently
execute capability-hardened libraries within unmodified applica-
tions, as well as the converse: sandboxing legacy software libraries
within capability-aware software.

This workshop paper presents our early work in order to seek
feedback from the research community, and so adopts a didactic
style investigating our motivations, methodology, and future plans.
We begin by considering in greater detail the historic conflation
of virtualization with protection in hardware, and how this inter-
acts with protection goals in software. We then describe our re-
search approach, which is concerned with whether protection fea-
tures are better placed in hardware or software. We explore our
current prototype implementation, including development of a gen-
eralised platform for research into the hardware-software interface
and its specific adaptation to security research, as well as a demon-
stration of a hybrid operating system combining capability-aware
and legacy code. Finally, we consider possible techniques for eval-
uating this research, future directions, and related work.

2. Background

Extensive research in operating systems, virtual machines, and pro-
gramming languages over the last four decades reflects an increas-
ing desire for fine-grained, high-performance protection in soft-
ware, ranging from the Berkeley Packet Filter (BPF) to the Java
programming language [7, 11]. Motivations for granular decompo-
sition of software include the desire to improve robustness against
software bugs, mitigation of software vulnerabilities, and imple-
mentation of fine-grained security policies—approaches whose
success derives from the principle of least privilege [18]. Experi-
ence from 1990s micro-kernel research (e.g., Mach), and more re-
cently in application software compartmentalisation, suggests that
current hardware-based protection techniques impose significant
obstacles to successful mapping of software compartmentalisa-
tion into virtual-memory-based process models [1, 3, 15, 22]. This
has led to increased interest in software-based static and dynamic
enforcement techniques, such as SFI and Google NativeClient,
which side-step hardware primitives, supporting continuous en-
forcement without recourse to CPU memory management units
(MMUs) [21, 27]. However, these techniques efficiently address
only hierarchical protection models: untrusted domains make fast
“system calls” to trusted domains, rather than non-hierarchical
models, such as communication between mutually untrusting soft-
ware components within the same application. Recent attempts to
employ software-based protection in non-hierarchical TCB envi-
ronments (such as LXFI [10]) have seen substantial (even pro-
hibitive) overhead.

Our work is motivated by our own experiences with software
compartmentalisation in Capsicum, where we experienced first-
hand the limitations of system software compartmentalisation:

e OS-provided process isolation scales poorly in the presence of
tightly coupled (but mutually suspicious) application compo-
nents. Shared memory leads to poor MMU behavior due to
translation look-aside buffer (TLB) entry aliasing and high TLB
miss rates. CPU vendors have optimised for hierarchical secu-
rity domain transition (i.e., system call performance) rather than
non-hierarchical relationships (inter-process communication).

Programmability suffers as a result of unnecessarily virtual-
izing software structure when using processes. Multi-process
programming leads quickly to distributed systems bugs due to
error-prone IPC and data replication issues. Multi-process de-
signs also limit debuggability, as current debugging tools oper-
ate poorly on distributed programs.

While virtual-machine- and language-derived protection mod-
els (such as those in Java) have proven effective for some purposes,
the continuing lack of scalable protection techniques for low-level,
C-language software trusted computing bases (TCBs)—such as op-
erating system kernels and language run-times—is concerning. In
single-user computer systems, even web browsers and office suites
become part of the TCB, and have resisted migration to safer lan-
guages. Performance concerns are often cited as the primary objec-
tions to migrating from C and C++, but multi-million LoC legacy
code bases are also an important factor.

We believe that the need for fine-grained compartmentalisation
is clear: lack of robustness and resilience to attacks causes our
most trusted software components (operating system kernels, lan-
guage run-times, web browsers) to be seriously untrustworthy. Pro-
viding fine-grained compartmentalisation technology that is imme-
diately accessible and incrementally deployable—i.e., compatible
with current legacy C-language code bases—in the system soft-
ware space is critical, even if we believe that type-safe, managed
languages and formal methods will provide a longer-term solution.

3. Approach

Capability Hardware Enhanced RISC Instructions (CHERI) extend
conventional RISC instruction set architectures (ISAs) with fine-
grained protection independent of virtualization—i.e., from mem-
ory management units (MMUs). We draw on over forty years of
architecture and security research into capability systems, starting
with Multics [17] and CAP [24], and including PSOS [13], Hy-
dra [26], Mach [1], Java [7], Joe-E [12], Eros [19], seL.4 [8], and
Capsicum2 [22].

CHERI adopts Capsicum’s hybrid capability system approach
in order to blend conventional ISA compatibility with capability
system functionality. This provides an incremental adoption path,
allowing capability-oblivious conventional code to run both around
and within capability-aware code. CHERI is deeply influenced by
ideas from the programming language community, with obvious
parallels between notions of hardware-supported typed objects and
programming language-level versions of the same. The key design
hypotheses in our work are:

1. Deconflating virtualization and protection will improve protec-
tion scalability, programmability, and debuggability.

2. Hardware protection features can directly support compart-
mentalisation of low-level TCBs, such as hypervisors, oper-
ating system kernels, and language run-times, to improve resis-
tance to attacks—just as type-safe languages and higher-level
language-based security features support high-level applica-
tions.

3. A hybrid capability model can capture both desired non-
hierarchical security relationships and compatibility require-
ments to facilitate deployment with large existing code bases.

4. Retaining virtualization features in the presence of a capa-
bility model improves software compatibility, and also brings
the recently explored benefits of full-system virtualisation to
capability-based systems.

5. The judicious application of formal methods in hardware and
low-level software design can provide a firm foundation for
current and future systems.

6. Scientific exploration of protection features requires an experi-
mental platform spanning hardware and software.

2 Levy provides an excellent survey of capability-based systems; however,
his work leaves off prior to later work emphasising micro-kernels and
language run-time approaches [9].

2012/2/8

Our hardware approach may be briefly summarised as differing
from prior approaches in that it (a) adopts a RISC rather than
microcode-centric philosophy, (b) occurs in the context of multi-
threaded and multi-core processor design, (c) reflects contemporary
concerns about software risk, (d) is able to build on (and hence
respond to) a massive open source OS, programming language,
and application corpus, and (e) adopts a hybridised design targeting
incremental adoption in the context of existing software systems.

3.1 The capability system model

Capabilities are unforgeable tokens of authority that connote rights
to underlying memory and objects. A capability system is one
in which there is no ambient authority: rights of executing code
are entirely captured by the set of capabilities explicitly delegated
to it. The object-capability security model co-evolved with ideas
about language type safety, object orientation, and particularly,
encapsulation: access to private data associated with an object can
be accessed only through invocation of its methods.

In a capability system, method invocation represents controlled
security domain transition from caller to callee, and back—both
parties may limit the sets of capabilities that flow in either direc-
tion, allowing both symmetric and asymmetric mistrust to be im-
plemented. The mechanics of invocation vary dramatically by sub-
strate, but fall into two general categories: an underlying message-
passing substrate (micro-kernels and distributed systems), or a se-
cure local method invocation mechanism grounded in type safety
(hardware architectures and language run-times).

3.2 The CHERI architecture

In order to implement a hybrid capability system based on a re-
vised hardware-software model, we have made a number of design
choices, in many cases transposing similar choices from Capsicum
to hardware:

1. Capability models are local to address spaces, placing a focus
on implementing fine-grained compartmentalisation within ap-
plications and programming language run-times.

2. A capability register file supplements the general-purpose regis-
ter file by representing a security context’s working set of mem-
ory and object rights.

3. Instructions manipulating capabilities preserve safety proper-
ties such as memory protection. Wherever possible, capability
inspection and manipulation is performed using safe but unpriv-
ileged hardware instructions without recourse to a supervisor.

4. CHERI supplements, rather than replaces, the 64-bit MIPS ISA
and memory model, in order to support existing hypervisors,
operating systems, language run-times, and applications. MIPS
ISA instructions implicitly indirect through capability registers,
as does instruction fetch. Hybrid applications are therefore sup-
ported: capability-aware libraries can be transparently invoked
by capability-oblivious applications, and capability-aware ap-
plications can sandbox capability-oblivious code.

Figures 1 and 2 illustrate the high-level CPU and software ar-
chitectures for CHERI. CHERI introduces an additional capabil-
ity coprocessor’ along-side the current CPU pipeline, which trans-
forms MIPS ISA-originated operations, and implements new capa-
bility coprocessor instructions, prior to memory management unit
(MMU) translation from virtual to physical addresses.

3 In the parlance of MIPS, coprocessors are simply reserved portions of the
ISA, and imply nothing about the implementation of packaging of addi-
tional logic. The MIPS ISA reserves coprocessor 0 for system control (con-
figuration, MMU, and exception handling), and coprocessor 1 for floating
point. We use the coprocessor 2 portion for the capability mechanism.

Capability Coprocessor

¥]

[I
! h

Figure 1. Placement of the CHERI capability coprocessor with
respect to conventional CPU design elements

Memory ‘

CHERI capability registers can describe both memory segments
(bounded regions of virtual address space with controlled access
properties) and object capabilities, which provide, with assistance
from the compiler and software run-time, transitions between mu-
tually untrusting protection domains. A hardware context’s instan-
taneous rights are defined by the set of capabilities held in its regis-
ter file; a software thread’s protection domain is therefore described
by the transitive closure of capabilities in its register file, capabili-
ties it can fetch directly or indirectly via those capabilities, and the
further capabilities it can retrieve through calls to the supervisor or
invocations of object capabilities it can obtain.

We anticipate that a single UNIX process will contain many
threads, each potentially executing with their own protection do-
main. A thread context switch is a security domain context switch
within the capability model, and object capability invocation can be
implemented as a supervisor exception handler in software, a dedi-
cated instruction, or as inter-thread message passing. We argue that
this correspondence between thread contexts and object invocation
(previously observed in software capability systems such as Mach
and Java) is particularly important in the hardware context, where
recent work in processor design has provided low-latency hardware
message passing techniques.

CHERI employs tagged memory, which allows the capability
coprocessor to ensure the integrity of capabilities stored to, and
fetched from, general-purpose memory*. CHERI capabilities are
256 bits long, plus a one-bit tag indicating whether a particular 256-
bit line contains a capability, leading to a 0.4% space overhead.
Capabilities may be intermingled with other memory, allowing
them to be inserted (for example) into C data structures, or pushed
onto and popped off of the stack.

3.2.1 Protection vs. virtualisation

CHERT’s incremental adoptability goals require a clean composi-
tion not only between existing MIPS user applications and CHERI-
aware code, but also between the existing MMU-based protection
model and the capability model. With these goals in mind, and with
explicit hopes to apply capability-based techniques in OS kernels,
language run-times, and web browsers, we have selected a compo-
sition that places capability evaluation before virtual address trans-
lation. As a result, capabilities are interpreted with respect to spe-
cific virtual address spaces; i.e., within, rather than between, UNIX
processes. When memory fetches and stores are issued via mem-
ory capabilities, they are bounds-checked, and then transformed
into ambient virtual addresses for processing by the MMU. Con-

41t is possible to imagine a version of CHERI in which tagged memory is
unsupported, and instead memory segments either hold capabilities or data.

2012/2/8

g T | Java i Java

= 1 Script | Script

:‘j’ Classic Chromium Classic Hybrid o

S UNIX web ” UNIX Chromium capl_abllgty O Legacy application code compiled for
2 application browser £ application web appl u:aklon Pure general-purpose registers

3 £ browser Sl capability

|| o I e il S . .

3 U zib ! {CreRT ! < 0S and [Hvbrid code blending genoral-

S| b | £ icati purpose registers and capabilities

4 libc malloc libc malloc 3 libc executive libc executive Address space executi ive software

o R ©

3 <

$ poommonae) pooooooe #] Hybrid - stack D High-assurance capability-only code;
F : Network ! Capsicum : Device | z Network Capsicum Device stand-alone or "pools of capabilities"

2 | stack 1 kernel 1 drivers | 3 stack e drivers

3 e 2

5 2 O Per-address space memory

® v Kemel VM and allocator 3 ! Kernel address space executive ‘Adcress space sxecutve management and capability executive
S = Xen hypervisor with conventional VM

E Xen hypervisor and capability interfaces

> ‘Separation kemel executive

Commodity CPU

CHERI

Figure 2. Before and after CHERI: a high-level system software architecture

3130 1615 0
u perms |

otype/eaddr (64 bits) 256

bits

base (64 bits)

length (64 bits)

Figure 3. Contents of a capability

ventional MIPS ISA fetches and stores are automatically indirected
via capability zero, and CPU instruction fetches are indirected via
the program counter capability. This allows capabilities to be used
to relocate and constrain unmodified MIPS code.

3.2.2 Capabilities

Each CHERI capability is a structured 256-bit entity, as shown in
Figure 3. Each capability contains an unsealed bit (u), access per-
missions (perms), object type (otype/eaddr), base virtual address
(base), and length in bytes (length). perms bits include general-
purpose register fetch and store, object invocation and return, and
capability register fetch and store. Capabilities may be held in ca-
pability coprocessor registers, or in tagged memory with 32-byte
alignment. Programmers may reasonably think of capabilities as
fat pointers referring to regions of memory or objects.

Memory capabilities have the u bit set, and describe a region of
virtual address space and its protection properties using the perms,
base, and length fields. General-purpose and capability registers
may be fetched and stored via memory capabilities, subject to
permissions and bounds. On a violation, an exception is triggered.

Object capabilities have the u (unsealed) bit cleared, and em-
ploy the perms, otype/eaddr, base, and length fields to describe
a class and its instance data. Direct memory access to instance data
is not permitted; instead, methods must be invoked using a special
instruction. The otype/eaddr field allows the hardware to check,
atomically, that an object and its class are linked; it may also be
used for software type enforcement. However, hardware-level types
should not be confused with language types, as they describe only
the linkage between instance data and code to interpret it—there
are no provisions for language-level concepts such as “inheritance”,
which are left to higher-level run-times.

Capability operations fall into several categories:

e manipulating capability registers, including copying fields to
and from general-purpose registers,

e fetching and storing general-purpose and capability registers
via a memory capability, and

e creating, invoking, and returning from object capabilities.

Instructions manipulating capabilities enforce a critical prop-
erty: monotonically decreasing rights. Likewise, tagged memory
prevents in-memory capabilities corrupted by accidental (or inten-
tional) manipulation from being loaded into capability registers.
Attempts to increase the rights on a capability, load a capability
from non-capability memory, or improperly invoke a capability,
lead to a hardware exception being thrown.

Object invocation is an operation for transitioning between two
different protection domains, where the object capability reference
held by the caller is a name for the callee. Callee instance data is
unsealed during invocation, and may include additional capabilities
to be used by the class. There are similar (but inverted) semantics
for return. The compiler and linker must construct safe call and
return code paths that not only save and restore rights, but also
flush them appropriately in order to prevent undesired leaks of
capabilities between caller and callee. We have spent a substantial
amount of time exploring possible behaviours at object capability
call and return, debating the split between hardware and software,
whether or not to provide call-return semantics, and how the stack
should behave.

3.3 Software models for capability use

CHERI supports a broad range of potential operational uses, from
conventional hypervisor and OS designs to “pure” capability sys-
tems. However, its greatest strengths lie in the incremental deploy-
ment opportunities presented by its hybrid capability model. To this
end, we have thus far investigated two software models:

1. Selective deployment of capabilities within a commodity code
base: minimal changes to a commodity OS support application-
layer use of capabilities, such as in the Chromium web browser.

2. Prototyping “pure” capability systems, which eschew MMU
hardware, using capability features to sandbox capability-
oblivious library and application code.

An important aspect of the CHERI model is that it is efficiently
virtualizable, unlike ring-based schemes. A capability system in
ring 0 is almost identical to running capability-based code on top
of a hybrid operating system.

3.3.1 Memory model

With CHERI, memory capabilities name and connote rights to vir-
tual address space—an intimate intertwining of memory model and
protection model that implies, as with many managed language
run-times, that the memory allocator is part of the TCB. Further,
the CHERI model is optimised for enforcement without additional

2012/2/8

memory indirection, and so contains no explicit support for revoca-
tion. We anticipate several software memory models being viable
on CHERI, possibly even within a single address space:

® Non-reuse of heap address space. This model, proposed by
Akritidis, relies on the effectively unbounded size of 64-bit
address spacesS, and has demonstrated security benefits [2].
Conventional virtual memory techniques can be used to enforce
eventual revocation, subject to granularity and book-keeping.

Garbage collection of heap address space. While CHERI has
not specifically been designed for garbage collection, it should
be supportable. Certain further ISA additions, such as forward-
ing pointers, might improve GC efficiency.

Limited pointer flow control enforcement. An ephemeral bit in
the perms mask allows for limited (two-colour) information
flow control, added in anticipation that it would be used to tem-
porarily delegate capabilities when invoking untrusted object
capabilities. For example, this feature might be used to tem-
porarily delegate caller stack references, ensuring that refer-
ences could not subsequently be used from an asynchronous
context.

Distinguishing allocation of memory for code, heap, and stack
will be important in providing compatibility with existing code.
Fortunately, widespread use of segment-centric memory models
on x86, well-supported by current compilers and tool chain, will
provide some assistance.

3.3.2 Future of the memory management unit (MMU)

As suggested by our hybrid capability system goals, we hope to
support a diverse set of software models. At the low end of the spec-
trum, we wish to run entirely unmodified applications. Software
will have a strong expectations of conventional virtual memory be-
haviour, and we anticipate that low-level hypervisors and operating
systems, even if capability-aware, will continue to support conven-
tional OS and process models. Here, the MMU remains central.

Moving along the spectrum, we are interested in hybridised li-
braries and applications that might be embedded within capability-
unaware applications, and similarly, capability-based applications
that sandbox capability-oblivious libraries. This model seems ap-
propriate for application to our most risky software components,
such as network stack packet processing and device drivers in the
OS kernel, and data processing libraries (such as image decompres-
sion and video CODECs) in high-level applications such as web
browsers and office suites. The MMU will continue to implement a
process model, but with a decreased emphasis on protection. This
should lead to greater virtual memory efficiency: use of the MMU
to set up shared memory will be minimised, and page sizes will be
able to grow due to avoidance of finer-grained protection.

At the high end of the spectrum, we anticipate code generation
solely using CHERI instructions, with notions of ambient access to
the address space entirely eliminated from most (or all) executing
code. The TLB will retain three functions: enabling non-protection
uses of virtual memory (e.g., swapping), revocation of portions of
the virtual address space, and virtualised capability machines. TLB
aliasing should rarely or never occur, and most page sizes should
be extremely large, improving memory access performance.

3.3.3 C language model

Source code and binary compatibility with existing C-language
TCBs are key design goals for CHERI. We have formulated ini-
tial C bindings for capabilities, with the awareness that C cur-
rently omits language-level support for threads—a striking omis-

5 “[64 bits] ought to be enough for anyone.”

sion even without our thread-centric security model. We plan to
define a capability-aware ABI and calling conventions, and allow
data types to be annotated at a language level for code generation
using memory capabilities. Arbitrary pointer arithmetic cannot be
expressed on capabilities themselves, but can be expressed within
a capability-named region of memory. We hope to use annotations
along the lines of __capability._. to request use of memory capa-
bilities, and __ephemeral__ to specify ephemeral arguments.

We must then determine how to capture the notion of object ca-
pabilities within C. Other capability-esque, managed programming
language run-times, such as Java and for CLR, have opted to align
language-level object features with bytecode protection models. As
C does not have language-level support for objects, we instead plan
to make use of an explicit API for object invocation and return,
although with compiler support in order to ensure appropriate in-
teractions between language and hardware features.

4. Implementation

We are now beginning the second year of the CTSRD project,
which includes BERI and CHERI. In this section, we discuss, our
implementation work, and results, to date.

4.1 Bluespec Experimental RISC Implementation (BERI)

In order to scientifically answer the question, “does protection
belong in hardware or software”, we first need a hardware re-
search platform capable of expressing a variety of protection mod-
els. We also require an experimental software stack that captures
the complexity of real-world compartmentalised applications span-
ning operating systems, programming languages, and applications.
Open source software systems such as FreeBSD, Linux, X.org,
Apache, Python, Chromium, OpenOffice, etc, offer realistic prov-
ing grounds for software experimentation. However, there is a clear
gap with respect to experimental hardware platforms.

To this end, we have developed a Bluespec Experimental RISC
Implementation (BERI)—a parameterisable 64-bit MIPS FPGA
soft core. BERI has many of the attributes of a contemporary CPU
design, including:

e A pipelined processor design with multiple levels of cache

e 64-bit MIPS ISA-compatible registers and full range of ALU,
branch, and control instructions

e System control coprocessor including an MMU, exception han-
dling, and multiple CPU protection rings

We have omitted certain features that do not pertain directly to
this research, including 32-bit MIPS compatibility mode, little-
endian mode, and a floating-point coprocessor. Whereas we have
an immediate interest in multi-threaded and multi-core designs,
we have not implemented superscalar features. This both reduces
the complexity of our implementation, and reflects a trend in hard-
ware design towards exposing parallelism explicitly through multi-
threading and vector instructions, rather than speculative execution.
Unlike existing research soft cores, BERI is implemented in
Bluespec, a high-level hardware description language (HDL) based
on Haskell [4]. In contrast traditional HDLs (such as Verilog and
VHDL), Bluespec allows for typed modular abstraction and highly
parameterisable designs, as well as easier design space explo-
ration; among other features, Bluespec design specifications de-
scribe atomicity rather than timing properties of logic. As a result,
we are able to easily change key parameters of the processor, and
able add new features with (relative) ease. For example, we can
experiment with different TLB sizes, introduce features such as
multi-threading and hardware page table walking, add a capability
coprocessor, or even omit the MMU entirely—all key experimental
variables to explore the balance between hardware and software.

2012/2/8

0: Sandbox 1: footer bar

~90 lines of conventional C code
compiled to 64-bit MIPS

~140 lines of conventional C code
compiled to 64-bit MIPS

Sandboxed user library code

~600 lines of conventional C code compiled to 64-bit MIPS:
memcpy, memset, strlen, printf, framebuffer, touch screen

~40 lines of inline MIPS and CHERI assembly:
framebuffer, touch screen

Deimos microkernel

~1800 lines of conventional C code compiled to 64-bit MIPS:
trusted path, device drivers, diagnostics

~700 lines of CHERI-specific C code:
capability management, context switching

~450 lines of MIPS and CHERI ISA assembly:
bootstrap, exception handling, capability management

CHERI prototype

~10,500 lines of Bluespec

Figure 4. Deimos: demonstration operating system from Mars

We are able to run a significant quantity of 64-bit MIPS code,
and are porting the FreeBSD operating system and Chromium web
browser to provide a more complete experimentation platform.
Strong support for open source software is key; we will merge any
changes required in order to provide a long-term research platform
upstream to FreeBSD. We plan to open source BERI in 2012; this
will not only allow our experiments to be reproduced, but also
facilitate hardware-software interface research elsewhere.

4.2 The CHERI prototype

‘We have been quite successful in the development of a Bluespec-
based research platform. We began with an experimental multi-
threaded MIPS system (MAMBA) developed by Gregory Chad-
wick, and have significantly fleshed out its functional completeness
and correctness. We have pipelined the CPU, added a system con-
trol coprocessor, and developed an extensive test suite. The current
prototype can be run in pure software simulation, or synthesised
to two different Altera-based FPGA teaching boards, the Terasic
DE-4 and tPad platforms.

We have implemented a prototype capability coprocessor, and
extended the GNU assembler, gas, to support these features.
We have not yet implemented tagged memory, nor hardware-
accelerated object capability invocation. MAMBA'’s multi-threading
support has been temporarily removed during pipelining work, but
we hope to restore this in the near future, at which point we will
be able to investigate a variety of techniques for accelerating non-
hierarchical protection domain transition.

4.3 Deimos: demonstration operating system from Mars

In order to explore our ideas about hybrid capability models early
in the project, we have constructed a prototype capability-based
micro-kernel operating system, Deimos. Deimos uses the capabil-
ity coprocessor (CP2) to implement sandboxing and delegation,
rather than the MMU, exercising memory capabilities, exception
handling, and a broad range of general-purpose MIPS features—
all within the CPU’s kernel protection ring.

We have constructed a demonstration scenario based on the
Terasic tPad. The demo executes in three protection domains: a
fully privileged micro-kernel, and two sandboxes, one implement-
ing a touch screen-based drawing application, and a second present-
ing independent image content to the user on another portion of the
screen. Screen access is delegated to applications using memory
capabilities for portions of a hardware frame buffer, illustrating the
flexibility of the capability model. As shown in Figure 4, roughly

85% of demonstration code is general-purpose C code compiled us-
ing an unmodified MIPS gcc. The remainder consists of capability-
aware C source code using inline assembly.

This experiment has proven interesting in a number of ways—
Deimos makes use of memory capabilities for the purposes of
relocating capability-unaware MIPS code within a capability-aware
operating system, exploring one of the more extreme ends of the
hybrid OS spectrum. It also illustrates that delegation of shared
memory resources, and even hardware resources, is straightforward
using a capability mechanism. Without hardware support for tagged
memory in our current Bluespec prototype (roughly 10,500 lines),
we do not allow storing and loading capabilities in sandboxes;
however, the OS saves and restores capability and general-purpose
register state when switching, and OS system calls carry capability
as well as general-purpose values using the CHERI ABI. In many
ways, the Deimos software environment resembles what an in-
process environment might look like on a UNIX system running
in a hybrid capability mode: a virtual address space containing
both capability code with ambient authority, and unmodified MIPS
code running in capability sandboxes, able to interact with other
components across security boundaries with minimal hybrid shims.

4.4 CheriBSD

We hope to use FreeBSD as a platform for larger-scale experiments
in fine-grained compartmentalisation, both within the OS kernel
(e.g., for device driver sandboxing), and within applications (e.g.,
within the Chromium web browser). As with conventional floating-
point coprocessors, we anticipate that a small set of changes to
detect use of the coprocessor, conditionally save/restore its state,
and ensure a consistent execution environment for the kernel, will
allow immediate userspace experimentation with capabilities while
leaving the kernel otherwise unmodified.

We will then deploy capability support in low levels of the
FreeBSD runtime linker and 1ibc. We will define ELF and linker
extensions necessary to set up appropriate linkage in and between
capability-aware and capability-oblivious code, allowing experi-
mentation with new protection features inside of critical code bases.

We anticipate a variety of interesting problems—not least how
to handle the relationship between a conventional OS kernel and
modified protection environment within processes it hosts. The
question, “What code is allowed to perform a system call?”” hints at
the subtlety in even initial experiments. Another interesting ques-
tion is how to safely and usefully handle exceptions in the presence
of multiple protection domains.

5. Proposed evaluation techniques

With prototyping efforts still underway, evaluation of the CHERI
approach remains premature. However, our early work in devel-
oping Deimos has proven begun to validate our hypothesis that a
hybrid capability model may meet our short-term and long-term
compatibility goals. In this section, we consider potential evalua-
tion approaches that we hope to explore in the coming year.

5.1 Viability of hybrid software models

Success of the CHERI approach will depend on providing software
models that are easy to program to, optimise for, and debug. One
key aspect of this is our hybrid design argument: if all current C
code can be reused largely unmodified, then CHERI will prove
at least as accessible as current systems. However, we presuppose
that some change is necessary in order to allow programmers to
declare software compartmentalisation properties—this is a known
hard problem, and one of the motivations for CHERI.

Easy-to-use C language bindings will be critical; we do not an-
ticipate achieving the simplicity of Java, in which substrate protec-
tion properties are derived directly from language-level properties.

2012/2/8

However, we hope that allowing generation of memory capability-
enabled code from C annotations, and providing explicit access to
protection domain transitions at the language level, will be a dra-
matic improvement over current MMU-based models of compart-
mentalisation. Providing a single address space for compartmen-
talised applications should ease debugging and program analysis.

A range of interesting questions might be asked given these
foundations. What sorts of changes are required to critical libraries
and applications to see security improvements? Are changes to ap-
plications sufficient simple and compatible that they can be main-
tained and upstreamed to application providers without encounter-
ing significant portability problems?

5.2 Performance comparison of protection approaches

A central research question being addressed by our work is whether
protection features for low-level TCBs are most efficiently imple-
mented via current CPU protection models, pure software enforce-
ment models, new capability-based models, or hybridisations of
these approaches. The CHERI hardware architecture is designed
specifically to allow testing such hypotheses through not only its
hybrid capability model, but also our ability to include and exclude
aspects of the CPU (such as the MMU, capability coprocessor)
from the design, as well as vary parameters (such as TLB size) in
our experiments. To this end, supporting a single source code rep-
resentation of protection and allowing back-end targets to be sub-
stituted for one another will be important. One possible direction
will be to implement a CHERI-like model using techniques similar
to Google NaCl and PNaCl in order to directly compare software
vs. hardware-assisted enforcement considerations.

5.3 Energy use of different protection models

RISC-derived systems see their greatest deployment in low-energy
environments, with power efficiency being a key argument for
ARM, and to a lesser extent MIPS, CPUs. A fascinating question is
how the distribution of protection and enforcement across compile-
time checking, run-time static analysis, dynamic enforcement us-
ing software, and dynamic enforcement using hardware protection
features, affects energy use. One intriguing argument is that dy-
namic checking associated with protection features is a closely in-
tertwined but parallel computation to the actual computation de-
sired by the programmer. If hardware parallelism can be exploited
to compute protection concurrently with the base computation, then
the clock rate could be reduced, improving power efficiency.

6. Future work

This workshop paper has captured CHERI at an intermediate
stage—one in which we have an increasingly viable research plat-
form for investigating issues in the hardware-software interface,
and early prototyping results for hybrid capability operating sys-
tems. Our immediate plans are to complete the prototype:

1. Fill remaining functional gaps in BERI and FreeBSD to allow
a mainstream mobile-, workstation-, and server-class operating
system to reach multi-user mode; port, as required, useful ap-
plication software such as Apache and Chromium.

2. Adapt FreeBSD to operate as a hybrid operating system able to
host capability-based libraries and applications. These changes
should be quite small: extensions to exception handling and
context switching in FreeBSD so that capability state is saved
and restored, and to allow the FreeBSD kernel to limit access to
system calls to authorised userspace components.

3. Complete development of a capability-enhanced ABI, excep-
tion model, and tool chain for 64-bit MIPS. Our informal ABI
must be formalised, and core system components (such as the

runtime linker and C library) must use this ABI effectively. We
hope to locally adapt first the 64-bit MIPS LLVM back-end, and
later the LLVM IR, to support CHERI features.

4. Begin a performance measurement and optimisation cycle, in
particular to explore efficient implementations of object ca-
pability invocation; for example, investigate whether observed
congruence between invocation and inter-thread message pass-
ing offers potential performance wins. Treating parameters such
as capability register namespace size, TLB size, cache size, and
other historically static elements of CPU design as independent
variables, enabled by the BERI processor design, will allow us
to explore a multi-dimensional space. We may also implement
an optional hardware page-table walker for BERI—a traditional
design element in x86 and ARM, but not MIPS, CPUs—in or-
der to more cleanly explore the design space.

The BERI research platform will allow us to grapple, for the first
time, with hardware-software interface research issues that have not
been easily accessible before. As such, we hope to apply it to a
broad range of research problems beyond security.

7. Related work

The question of placement of protection in hardware or software
has been considered at many times in computing history, and cer-
tainly bears further investigation at this moment in which secu-
rity risks have become so critical. Several recent efforts have ex-
plored alternatives, often grounded in protection look-aside buffers
(PLBs), which provide finer-grained protection controls than TLBs.
Designs such as the Mondrian model and Legba fall into this cat-
egory, and have largely been evaluated using simulation [23, 25].
CHERI takes a markedly different approach by making protection
an explicit part of the compiler’s model through capabilities.

Other recent research into alternative protection models in-
cludes the TIARA design, and a derived approach in the in-progress
SAFE architecture [5, 20]. These systems integrate notions of in-
formation flow and extremely granular tagging at a word level with
software-defined policy, in contrast to CHERI’s more fixed capa-
bility model using only a single bit per line for tagging. We hope
to perform more detailed comparisons of the CHERI and SAFE
architectures as they mature; while both can clearly express a full
range of protection models, key aspects for consideration are the
performance, ease of expression, and adoptability.

8. Conclusion

This paper summarizes the current design and development of
CHERLYI, the first hybrid capability model CPU architecture, able to
run both capability-based and commodity application and library
code side-by-side. In order to properly evaluate this approach, we
have designed and implemented BERI, a research platform for the
hardware-software interface. Despite the overall project being a
work-in-progress, initial results such as the development of a CPU
capability-based micro-kernel, Deimos, appear promising.

Using this platform, we hope to investigate more critical ques-
tions in computer architecture, requiring a whole-system view:
should fine-grained protection be differentiated from virtualization
in order to improve scalability, programmability, and performance?
Can a hybrid capability model (which combines hardware capa-
bility features with a commodity memory management unit design
offer) both performance and compatibility in order to provide an in-
cremental adoption path for fine-grained protection within current
C-language TCBs? More fundamentally, does fine-grained protec-
tion require hardware assistance for reasons of performance and
energy use? This paper provides some initial hints in this direction,

2012/2/8

and seeks the feedback of a large community to ensure that our
coming research results are of greatest use.

Acknowledgments

We would like to thank our colleagues—especially Gregory Chad-
wick, Rance DeLong, Steven Hand, Patrick Lincoln, Anil Mad-
havapeddy, Andrew Moore, Robert Norton, and John Rushby, our
summer students, Wojciech Koszek, Ilias Marinos, and Will Mor-
land, and members of our external oversight group.

The CTSRD Project gratefully acknowledges the support of
its research sponsors. This work was sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237.
The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing
the official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the Department of
Defense. Portions of this work were supported by Google, Inc.

References

[1] M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and
M. Young. Mach: A New Kernel Foundation for UNIX Develop-
ment. Technical report, Computer Science Department, Carnegie Mel-
lon University, August 1986.

[2] P. Akritidis. Cling: A memory allocator to mitigate dangling pointers.
In Proceedings of the 19th USENIX Security Symposium, 2010.

[3] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting
Applications into Reduced-Privilege Compartments. In Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation, pages 309-322. USENIX Association, 2008.

[4] Bluespec SystemVerilog Version 3.8 Reference Guide. Bluespec, Inc.,
Waltham, MA, November 2004.

[5]1 A. DeHon, B. Karel, J. Thomas F. Knight, G. Malecha, B. Montagu,
R. Morisset, G. Morrisett, B. C. Pierce, R. Pollack, S. Ray, O. Shiv-
ers, J. M. Smith, and G. Sullivan. Preliminary design of the SAFE
platform. In Proceedings of the 6th Workshop on Programming Lan-
guages and Operating Systems (PLOS 2011), October 2011.

[6] J. B. Dennis and E. C. Van Horn. Programming semantics for multi-
programmed computations. Commun. ACM, 9(3):143-155, 1966.

[7]1 J. Gosling, B. Joy, and G. L. Steele. The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1996.

[8] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. sel4: formal verification of an operating-
system kernel. Commun. ACM, 53:107-115, June 2009.

[9]1 H. M. Levy. Capability-Based Computer Systems. Butterworth-
Heinemann, Newton, MA, USA, 1984.

[10] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek. Software fault isolation with API integrity and multi-
principal modules. In SOSP 2011: Proceedings of the 23rd ACM Sym-
posium on Operating Systems Principles, 2011.

[11] S. McCanne and V. Jacobson. The BSD packet filter: a new archi-
tecture for user-level packet capture. In USENIX’93: Proceedings
of the USENIX Winter 1993 Conference, Berkeley, CA, USA, 1993.
USENIX Association.

[12] A. Mettler, D. Wagner, and T. Close. Joe-E: A Security-Oriented
Subset of Java. In NDSS 2010: Proceedings of the Network and
Distributed System Security Symposium, 2010.

[13] P. Neumann and R. Feiertag. PSOS revisited. In Proceedings of
the 19th Annual Computer Security Applications Conference (ACSAC
2003), Classic Papers section, pages 208-216, Las Vegas, Nevada,
December 2003. IEEE Computer Society.

[14] P. G. Neumann and R. N. M. Watson. Capabilities revisited: A holistic
approach to bottom-to-top assurance of trustworthy systems. In Fourth

Layered Assurance Workshop, Austin, Texas, December 2010. U.S.
Air Force Cryptographic Modernization Office and AFRL.

[15] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege Es-
calation. In Proceedings of the 12th USENIX Security Symposium.
USENIX Association, 2003.

[16] C.Reis and S. D. Gribble. Isolating web programs in modern browser
architectures. In EuroSys '09: Proceedings of the 4th ACM European
Conference on Computer Systems, pages 219-232, New York, NY,
USA, 2009. ACM.

[17] J. Saltzer. Protection and the control of information sharing in Multics.
Commun. ACM, 17(7):388-402, July 1974.

[18] J. Saltzer and M. Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63(9):1278-1308, September
1975.

[19] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability system.
In SOSP ’99: Proceedings of the seventeenth ACM Symposium on
Operating Systems Principles, Dec 1999.

[20] H. Shrobe, T. Knight, and A. de Hon. TIARA: trust management,
intrusion tolerance, accountability, and reconstitution architecture.
Technical Report MIT-CSAIL-TR-2007-028, Massachusetts Institute
of Technology, Computer Science and Artificial Intelligence Lab, May
2007.

[21] R. Wahbe, S. Lucco, T. E. Anderson, and S. u. L. Graham. Efficient
software-based fault isolation. In SOSP ’93: Proceedings of the four-
teenth ACM Symposium on Operating Systems Principles, pages 203—
216, New York, NY, USA, 1993. ACM.

[22] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway.
Capsicum: Practical capabilities for Unix. In Proceedings of the 19th
USENIX Security Symposium. USENIX, August 2010.

[23] A. Wiggins, S. Winwood, H. Tuch, and G. Heiser. Legba: Fast
hardware support for fine-grained protection. In A. Omondi and
S. Sedukhin, editors, Proceedings of Advances in Computer Systems
Architecture, 8th Asia-Pacific Conference, ACSAC 2003, volume 2823
of Lecture Notes in Computer Science, pages 320-336. Springer, 2003.

[24] M. Wilkes and R. Needham. The Cambridge CAP Computer and Its
Operating System. Elsevier North Holland, New York, 1979.

[25] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory isolation for
linux using mondriaan memory protection. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles, October 2005.

[26] W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and
F. Pollack. HYDRA: the kernel of a multiprocessor operating system.
Commun. ACM, 17(6):337-345, 1974.

[27] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox for
portable, untrusted x86 native code. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, pages 79-93, Washington,
DC, USA, 2009. IEEE Computer Society.

2012/2/8

