
νSolve-0.7.6: User Guide

Sergei Bolotin, Karen Baver, John Gipson, David Gordon, Daniel MacMillan

July 13, 2022

Contents

1 Introduction 2
1.1 VLBI data analysis software . 2
1.2 Requirements . 2

1.2.1 Hardware requirements . 2
1.2.2 Software requirements . 2

1.3 Changes from previous versions . 3
1.3.1 Changes in version 0.7.6 . 3
1.3.2 Changes in version 0.7.5 . 3
1.3.3 Changes in version 0.7.4 . 3
1.3.4 Changes in version 0.7.3 . 4
1.3.5 Changes in version 0.7.2 . 4
1.3.6 Changes in version 0.7.1 . 4
1.3.7 Changes in version 0.7.0 . 5
1.3.8 Changes in version 0.6.4 . 5
1.3.9 Changes in version 0.6.3 . 5
1.3.10 Changes in version 0.6.2 . 5
1.3.11 Changes in version 0.6.1 . 5
1.3.12 Changes in version 0.6.0 . 5
1.3.13 Changes in version 0.5.0 . 6

2 Installation 7

3 Invoking νSolve 10

4 Con�guring the software 13
4.1 The software preferences . 13

4.1.1 Specifying directories, external �les . 13
4.1.2 Software options . 15
4.1.3 User's identities . 16
4.1.4 Con�guration of logging subsystem . 17

4.2 Con�gurations of data analysis process . 18
4.2.1 General options . 19
4.2.2 Run time options . 20
4.2.3 Applying di�erent models and using external a priori information 22
4.2.4 Con�guring post import actions . 24

1

5 Plotting subsystem 26
5.1 Plotter controls . 26

5.1.1 Axes to plot . 26
5.1.2 Branches . 27
5.1.3 How to plot data . 28
5.1.4 Altering colors . 28
5.1.5 Range controls . 29
5.1.6 Scale and output controls . 29

5.2 Canvas . 29

6 Overview of the Session Editor window 31
6.1 Reading a session . 31
6.2 Session Editor . 33

6.2.1 Tab �General Info� . 34
6.2.2 Tab �Options� . 35
6.2.3 Tab �Bands� . 35
6.2.4 Tab �Stations (List)� . 38
6.2.5 Tab �Sources (List)� . 41
6.2.6 Tab �Baselines (List)� . 43
6.2.7 Tab �Stations (Plots)� . 45
6.2.8 Not used observation window . 46

7 Selected practical issues of using νSolve in a GUI mode 49
7.1 Processing a regular VLBI session . 49

7.1.1 Reading the session and preparing for processing . 50
7.1.2 Processing single band delay . 52
7.1.3 Resolving ambiguities . 52
7.1.4 Processing a clock break . 55
7.1.5 Ionosphere correction . 61
7.1.6 Obtaining a full solution . 62
7.1.7 Reweighting of observations . 64
7.1.8 Outlier processing . 65
7.1.9 Saving the results . 66

7.2 Using a source structure model . 66

8 Scripting support 68
8.1 ECMAScript in νSolve . 68
8.2 Software set up in scripts . 68
8.3 Solution con�guration in scripts . 69
8.4 Set up estimated parameters in the scripts . 72
8.5 Manipulations of input/output operations for a VLBI session . 74
8.6 The object �session� . 76

8.6.1 The object �Band� . 79
8.6.2 The object �Station� . 81
8.6.3 The object �Baseline� . 85
8.6.4 The object �Source� . 86
8.6.5 The object �Observation� . 88

8.7 Passing arguments to a script . 94
8.8 Control of the log output . 95

2

9 Selected practical issues of using νSolve in a script mode 100
9.1 Converting data format of a VLBI session . 100

10 Concluding remark 101

3

Chapter 1

Introduction

1.1 VLBI data analysis software

This document describes how to use the geodetic VLBI software νSolve. If a term �geodetic VLBI� is unfamiliar
to you, you probably confused νSolve with some other software. It is designed for processing of a single geodetic
VLBI session.
νSolve is a replacement of the interactive mode of SOLVE. In this case it works in cooperation the with

CALC/SOLVE system. It can also work in standalone mode, in which case it is independent of CALC/SOLVE,
and CALC/SOLVE do not need to be installed on your computer. The standalone mode could be useful for VLBI
data analysis centers that use their own software and want to generate their own version 4 database.

This is an initial version of the user guide, so many things are not covered and we assume that a user is
familiar with CALC/SOLVE. Later, we will extend its content. Additional information on νSolve can be found
in [1], [2] and [3].

The guide covers 0.7.6 version of the software. In the older versions, perhaps, not fully implemented all features
described here. On the other hand, if you use newer version of νSolve it is worth to �nd an updated version of
the guide too (if it exists).

As it was stated above, νSolve is designed to process a single session of VLBI observations. The main purpose
of the software is to prepare a newly available VLBI session for further analysis. In general, this preliminary
analysis needs to be done only once for a particular session.

1.2 Requirements

1.2.1 Hardware requirements

There is no special requirements to the hardware. Though, a good monitor with decent resolution will be helpful,
νSolve uses GUI to display and let a user to edit VLBI observations.

1.2.2 Software requirements

The software was developed using GNU/Linux operating system, however it does not use any Linux-speci�c
functions, so it should be easily adjusted to work with other POSIX compatible operating systems.

Speaking about Linux, we would suggest to use modern distribution (and make updates on a regular basis),
but νSolve can be compiled and run on an ancient systems too.

The software uses several external packages: Qt, netCDF and, optionally, HOPS.
The library Qt provides graphical user interface and basic tools. Modern Linux distributions provide Qt, a

user have to add development �les (C++ header �les, utilities, etc.) from the corresponding packages. Consult

4

your system administrator for details. Currently, the version 5 of Qt library, Qt5, is necessary to compile and
link the software. The previous version of Qt, Qt4, was used in earlier versions of νSolve distributions but is not
supported any more.

Since most of modern distribution ship Qt5 as a default library, no additional keys are required to use the
library with νSolve.

The netCDF package provides access to �les in netCDF format. This representation of data was chosen to
store data in vgosDb format. The netCDF library also is available with modern Linux distributions. As an
alternative, a user can install it from the sources available at

ftp://ftp.unidata.ucar.edu/pub/netcdf/

Neither νSolve nor CALC/SOLVE use features that appeared in version 4 or higher of the netCDF library.
The software Haystack Observatory Postprocessing System (HOPS) is required for vgosDbMake utility. You

can skip it if you do not want to compile this utility. The distribution package of HOPS is at

ftp://gemini.haystack.mit.edu/pub/hops/

The software is distributed in sources. Version 3.12 or higher of HOPS distribution should be used.

1.3 Changes from previous versions

This section was added in 0.5.0 version of the distribution (version 0.5.0 of the νSolve user guide). It covers
changes in the software and the user guide.

1.3.1 Changes in version 0.7.6

The release contains few bug�xes: update of con�gure script and sources to work with GCC 12.1 (thanks to
Leonid Petrov); proper designation of CDMS cable calibration type when the data were extracted from FS log
�les; changing of a name of vgosDb variable that accumulates cable calibration of di�erent types.

1.3.2 Changes in version 0.7.5

This version introduces multi-thread matrix triangulation. For multi-core CPU such parallel computations will
decrease time of processing a session. See Chapter 3 Invoking νSolve for the details.

GUI is added to plot all available cable calibration corrections. Also, a user can control what type of the
correction should be used in a solution. It can be set up for a whole session or on a per station basis. The
subsection 6.2.4 Station Attributes Editor discusses how the type of cable calibration corrections can be changed
using GUI mode of the software. The script mode support of this feature is covered in subsections 8.3 Solution
con�guration in scripts and subsections 8.6.2 The object �Station�.

A station attribute "bad meteo parameters" is added. If it is set, then a "standard" values of temperature,
pressure, and relative humidity are using in a solution. This option is discussed in subsection 6.2.4 Tab �Stations
(List)� for GUI mode and in subsections 8.6.2 The object �Station� for script mode.

Sources of the plotter subsystem has been modi�ed so the software can be compiled with Qt5 version 5.12 or
older.

The spool�le �le output was updated: a name of reported database now does not depend on a primary band
(will work for databases with names like 22MAY16MH).

1.3.3 Changes in version 0.7.4

Various bugs have been �xed.
The command line arguments parser has switched to ARGP from GNU C Library.

5

The plotting subsystem now can save plots in raster formats (JPG, PNG, PPM). The subsection 4.1.1 Speci-
fying directories, external �les, 4.1.2 Software options, 4.1.3 User's identities and 4.1.4 Con�guration of logging
subsystem were refreshed.

For testing purposes the following options were added. The �y-by mapping function can be calculated as
MTT or NMF mapping function. The software can read external EOP �les (implemented formats: USNO and
IERS EOP). For details see 4.2.3 Applying di�erent models and using external a priori information.

The Chapter 8 Scripting support was updated to refresh changes in the script mode.

1.3.4 Changes in version 0.7.3

The con�gure script has been reworked. A mandatory option --with-calc-datadir= is added, see details in
Chapter 2 Installation.

The script that converts vgosDb to and from vgosDa format, vgosDxConvertor, has been reworked, Section
9.1 Converting data format of a VLBI session was refreshed.

1.3.5 Changes in version 0.7.2

A new utility, log2ant, is added to the distribution. It extracts various sensors readings from a station log �le
and stores them in ANTCAL format. See log2ant User Guide for details.

The utility vgosDbProcLogs extracts and stores in vgosDb format tsys data (if available).
The software now requires Qt5, the realization of regular expressions in Qt4 is too slow.
An option to generate a list of commands to refringe selected by a user observations is implemented. It should

be useful to deal with subambiguities.
The General Con�gure Editor was modi�ed to allow a user to control using of observations with four�t error

codes �G� and �H�.
In Preferences, Logger Options, an option to print full date in the log output is added.

1.3.6 Changes in version 0.7.1

The distribution has switched to Qt5 as a default version of Qt library. The old version, Qt4, is still supported.
It simpli�es software compilation. See details in Chapter 2 Installation.

Format of the �le �nuSolve_unused_observations_??� was slightly changed, two columns with four�t error
codes are added.

In a script mode a user can add comments in a script, these comments will be printed in corresponding
spool �le (in a case if it is created), see addUserComment2Report() in Section 8.5 Manipulations of input/output
operations for a VLBI session.

In addition to CALC a priori �les, starting with 0.7.1 distribution version the SOLVE external a priori �les
are shipped to. The �les are:

ECCDAT.ecc a �le with eccentricities of stations
glo.sit external a priori of station positions
glo.vel external a priori of station velocities
glo.axis external a priori of station axis o�sets
glo.src external a priori of source coordinates
glo.ssm parameters of the multipoint source source structure model
last.erp a �le with Earth rotation parameters
glo_baseline.wgt a �le with baseline weights
gsfc_dao_9095.mgr a �le with average atmospheric gradients
jmg96.hf a model of diurnal/semidiurnal ERP variations

The �les are used by νSolve, they have to be placed in the proper directory and the software should be
con�gured correspondingly, see 4.2.3 Applying di�erent models and using external a priori information.

6

1.3.7 Changes in version 0.7.0

The version contains two signi�cant new features: a point like source structure model has been added (GUI and
script modes) and dealing with vgosDa �les was implemented. Various bugs have been �xed.

The section 6.2.5 Tab �Sources (List)� has been extended with using the source structure model and source
attribute editor.

A per source view of data was added, see the subsection 6.2.3 Tab �Bands�.
The subsections 4.2.1 General options, 4.2.2 Run time options and 4.2.3 Applying di�erent models and using

external a priori information were refreshed to re�ect updates.
A section 7.2 Using a source structure model has been added.

1.3.8 Changes in version 0.6.4

This update contains minor bug �xes.
An option to import a default wrapper �le was added, see the subsection 6.1 Reading a session.

1.3.9 Changes in version 0.6.3

This update contains bug �xes.
A number of scans was added to the list of sources, see the subsection 6.2.5 Tab �Sources (List)�.

1.3.10 Changes in version 0.6.2

A sign that was applied to extracted from log �les cable calibration measurements for each station is added to
the list of stations, see the subsection 6.2.4 Tab �Stations (List)�.

In this version νSolve is capable to exclude some baselines from weight correction procedure. A user can
manually select such baselines, see the subsection 6.2.6 Baseline Attributes Editor.

The subsection 4.2.2 Run time options has been updated: a user can add initial and minimal values for
additional weights for delays and rates.

Two short-cut were added to the Session Edit window: Ctrl+h (makes output of estimated stochastic parame-
ters into ASCII �les) and Ctrl+z (exports total zenith delays into ASCII �les). See the Section 6.2 Session Editor
for details. These operations are available in a script mode too, see the Section 8.5 Manipulations of input/output
operations for a VLBI session.

1.3.11 Changes in version 0.6.1

The chapter 3 Invoking νSolve has been modi�ed with description of using system-wide settings.
The section 8.2 Software set up in scripts is added to discuss software set up alternating in a script mode.
The table 6.1 Shortcuts of Session Editor window of the section 6.2 Session Editor has been extended with

Ctrl+a shortcut action (export aposteriori source coordinates and station positions in the format of a priori �les).
The �gure 4.8 Con�guration: use of contributions and external a priori information of the section 4.2.3

Applying di�erent models and using external a priori information has been updated to show addedGPS ionosphere
correction contribution.

The URL of software distribution has been updated in the chapter 10 Concluding remark.

1.3.12 Changes in version 0.6.0

The subsection 6.2.5 Tab �Sources (List)� was refreshed for modi�ed content of source view list in a session
mode.

A description how to highlight all observations with a particular source was added to the subsection 6.2.3 Tab
�Bands�. Also, description of an observation info window was added to the subsection.

7

The subsection 6.2.8 Not used observation window is added, it describes the Not used observation window.
The chapter 3 Invoking νSolve has been updated to re�ect the changes in command line arguments � the

option �-t� was added to run in a script execution mode.
A chapter 8 Scripting support was added. It describes how to use scripting engine in νSolve.

1.3.13 Changes in version 0.5.0

The subsections 7.1.3 Resolving ambiguities and 7.1.4 Processing a clock break have been modi�ed to re�ect the
latest modi�cations of the software.

In this version the graphical user interface of lists of stations, sources and baselines has been improved. The
subsections 6.2.4 Tab �Stations (List)�, 6.2.5 Tab �Sources (List)� and 6.2.6 Tab �Baselines (List)� were updated
to re�ect changes in the GUI.

The software can display three subsets of observations: all, usable and good. This feature is discussed in 6.2.3
Tab �Bands�.

The ability to read only one database or databases that have alternative names was added to νSolve. This
feature is covered in the section 6.1 Reading a session.

Description how to apply a contribution from the tropospheric refraction is added to the subsection 4.2.3
Applying di�erent models and using external a priori information.
νSolve is capable to process phase delays and delay rates. Notion about it is added in the subsection 4.2.1

General options, as well as peculiarities of the automatic switching of observable types are described there. Also,
description of the �Novice User� mode is updated in the subsection.

The subsection 4.2.2 Run time options has been updated: an option Downweight delays was added.
The software is able to read an alternative version of master �les. The use of the local master �les is described

in the section 4.1.1 Setting paths to data.
The sections 1.2 Requirements and 1.3 Changes from previous versions were added to the chapter 1 Introduc-

tions.

8

Chapter 2

Installation

The source codes of νSolve is distributed as a part of CALC/SOLVE release. Also, the latest stable version of the
software is at https://sourceforge.net/projects/nusolve/ with a name like nusolve-1.2.3.tar.gz. Since
the software is still in an active development phase, we recommend you use the latest version.

The distribution package nusolve-0.7.2.tar.gz and later versions, contains �ve utilities: νSolve, vgosDb-
Make, vgosDbCalc, vgosDbProcLogs and log2ant. The utility vgosDbMake extracts some data from fringe �les
and creates a vgosDb set of �les for a VLBI session. vgosDbCalc calculates theoretical values and partials, stores
these information in the vgosDb format. The utility vgosDbProcLogs extracts additional information (cable cal-
ibration and meteorological parameters) from stations log �les and adds it to a vgosDb set of �les. The utility
log2ant extracts various sensors readings from station log �les and stores them in ASCII �les in ANTCAL or
ANTAB format. By default, only νSolve, vgosDbCalc, vgosDbProcLogs and log2ant will be compiled and in-
stalled. To build the utility vgosDbMake it is necessary to have HOPS (Haystack Observatory Post-processing
System) software installed.

Each of utilities as well as the core library has its own versions number. The version numbers and the
distribution version number not necessary be the same.

Before installing the software you should check for two external packages which νSolve depends on. The Qt
library provides the graphical user interface. The netCDF library deals with I/O operations in Common Data
Form format. Practically, all modern Linux distributions contain both libraries. There is a good chance that Qt
library is already installed on your computer (check your package manager or ask a system administrator). If,
for some reason, you cannot or do not want to install these packages system-wide, you can download the sources
and and install them in your home directory. In this case (also, if the system installation put the library(ies) in
non-standard places) you will need to provide paths to include �les and libraries to the con�gure script.

Optionally, if you want to compile vgosDbMake utility, you need to install Haystack Observatory Postprocess-
ing System, HOPS. The HOPS software should be installed manually, it is available from the ftp site of Haystack
Observatory, ftp://gemini.haystack.mit.edu/pub/hops.

The �rst step in installing νSolve and accompanying utilities is to extract the �les in a temporary directory
and cd to it. Run a con�gure script in the root directory of the package:

> ./configure <options>

Where a list of options of the con�gure script can be retrieved issuing

> ./configure --help

Several options are worth mentioning here. The place where to install the software:

--prefix=[PREFIX]

9

By default, it is /usr/local. If you do not have permissions to write there (which is a sign of a properly con�gured
system), a user can install the software into his/her home or somewhere else. In this case, it is useful to add
PREFIX/bin to your PATH environment variable. Also, you may need to add PREFIX/lib to your LD_LIBRARY_PATH
variable.

Starting version 0.7.1 of the distribution, the package is tailored to work with Qt library of version 5 that is
shipped by default by most of Linux distributions. The con�gure script supposed to �nd all necessary �les without
any special commands. If you previously installed Qt4 from sources, remove path to its executable binaries from
your PATH environment variable and verify if it works: run a command

qmake -version

and check the output, the version of Qt library should be 5. In this case the con�gure script have to �nd all
necessary �les (if they are installed, of course) without additional options.

The con�gure script searches for Qt's �les using output of qmake utility, make sure it is installed and is in
your $PATH.

The software uses the following modules of Qt: QtCore, QtGui, QtWidgets and QtScript. Make sure that
these packages and their development counterparts (*-dev packages) are installed on your computer.

Starting with version 0.7.2, the Qt library of version 4 is not supported.
To point out on non-standard places of netCDF �les, use the following options:

--with-netcdf-include =[PATH_TO_NETCDF includes]

--with-netcdf-lib =[PATH_TO_NETCDF libraries]

to specify where the include �le and the libraries are.
By default, the utility vgosDbMake is not compiled. To trigger on the compilation of vgosDbMake, the

con�gure script expects one of the following options:

--with-hops-dir=[PATH_TO_HOPS]

or

--with-hops-include=[PATH_TO_HOPS include files]

--with-hops-lib=[PATH_TO_HOPS libraries]

--with-hops-share=[PATH_TO_HOPS shared data]

Even if your HOPS library was con�gured with --prefix=/usr/local and all �les are in standard places, you
need to provide the option --with-hops-dir=/usr/local to turn on compiling vgosDbMake utility.

Starting with version 0.7.3 of νSolve distribution, there is no need to edit CALC source �les manually. Instead,
an option of con�gure script --with-cal-datadir= is added:

> ./configure [...] --with-cal-datadir=[/path/where/CALC/files/are] [...]

Currently, this option is mandatory, if it is not provided the con�gure script will stop to work. The option
points at a directory where vgosDbCalc should looks for CALC a priori �les. The �les (DE421_little_Endian,
blokq.c11.dat, tilt.dat and ut1ls.dat) are shipped with the distribution and can be found in a directory
data of the distribution.

Some of �les should be updated on a regular basis. At the time of writing these �les are available at:

https://cddis.nasa.gov/archive/vlbi/gsfc/ancillary/solve_apriori

If you do not going to use vgosDbCalc, con�gure it as --with-cal-datadir=./ or --with-cal-datadir=/dev/null.
In the �le INSTALL.local in the root of the distribution tree one can �nd details about specifying con�gure's

options to assemble the software with Qt and netCDF libraries1.
If the configure script �nished without errors, type the following commands:

1Do we need to duplicate that information here?

10

> make

> make check

> make install

and the software will be installed in the PREFIX directory. The command make check is optional, it is a
placeholder for checking suite that will be developed later. Please ignore any errors reported during make check.

In addition to the executable �les, the software puts �les with a priori information into ($datadir)/nuSolve,
where $datadir is PREFIX/share (if it is not overwritten by a user). These �les are a priori �les for CALC (see
vgosDbCalc User Guide) and external a priori �les for nuSolve, see subsection 4.2.3 Applying di�erent models and
using external a priori information. User should put these �les in the directory that is speci�ed in the software
preferences, subsection 4.1.1 Specifying directories, external �les. Both groups of �les, a priori for SOLVE and
external a priori �les for nuSolve, needs to be updated with time. Use the URL

https://cddis.nasa.gov/archive/vlbi/gsfc/ancillary/solve_apriori/

to maintain SOLVE a priori �les. The external a priori �le for nuSolve a user can modify by him/herself.

11

Chapter 3

Invoking νSolve

To invoke νSolve just type (specifying if necessary the full path to the executable):

> nuSolve

νSolve also accepts command line arguments. The arguments consist of two groups of options and a name of
a database to open by the software. The �rst group of options is related to Qt library and controls how the applica-
tion will appear and behave. See Qt documentation about details, (e.g., https://doc.qt.io/qt-5.14/qguiapplication.html).
The another group of options is used by νSolve itself. To get the list of these arguments, type

> nuSolve -help

Here are command line arguments that are available at the time of writing:

Con�guration control:
-a, --alt=STRING Use an alternative con�guration STRING.
-d, --default-setup Use default setup (WARNING: existing con�guration will be overwritten).

Script mode:
-t, --script=STRING Execute a script STRING.

Automatic processing (GUI mode):
-m, --force-automatic Force executing of automatic processing.
-n, --no-automatic Do not run automatic processing even if a session is eligible for it.

Input control:
-c, --catalog Force run in the catalog aware mode (opposite to '-s').
-f, --format=STRING Set the data storage format of the provided session to STRING (either

"dbh" or "vgos").
-l, --read-all Read all databases, even that that lack of essential information.
-s, --standalone Force run in the standalone mode (opposite to '-c').

Invocation of startup wizard:
-w, --wizard Force call of the startup wizard.
-W, --sys-wide-wizard Run startup wizard for the system-wide settings.

12

Execution control:
-i, --no-interruptions Do not catch interruptions.

Operation modes:
-?, --help Give this help list.
--usage Give a short usage message.
-V, --version Print program version.

Most of these are used either to override the current software con�guration or for the debug purposes.
If a user invokes -t option, νSolve will run in execution script mode. In this case all other arguments will pass

to a script. It is up to a user how to deal with arguments in a script, however, the arguments should not start
with ��� character, otherwise they will interfere with νSolve's argument parsing. Example of invoking a script:

> nuSolve -c -t export2ngs.js 18JAN03XU

Here a script �export2ngs.js� exports a VLBI session into an ASCII �le in NGS format. The name of the session,
18JAN03XU, is provided as a command line argument. The option -c is added to override the default mode of
use local �les and to run νSolve in the catalog aware mode. The �le export2ngs.js is available in the distribution
package in a directory scripts.

Without -t option, an optional command line argument is considered as a name of a session that should be
processed in a non-interactive mode. Invoking the software with a session name turns νSolve into a �command-line
mode�: no user graphics interface will be issued (and no X-server connections required), the software processes a
session according to the con�guration of post import actions (see 4.2.4). In the case of successful analysis the new
version of the database will be saved as well as a separated log �le (if it is not disabled by software preferences).
Executing the software in this mode is designed to process INT type sessions only. Invoking it for 24-hr sessions
will produce unpredictable results.

The data format of an input session is controlled by -f option. If the option is missed, the vgosDb format of
VLBI observations is assuming.

The session name can be either a �le name of a one of the bands (in the standalone mode) or a name of
database with or without version (in the catalog aware mode). For example, if νSolve is con�gured to work in
the standalone mode to process a new INT session I can invoke it as

> nuSolve -f dbh /home/slb/500/databases/17APR09XK_V003

assuming that two database �les, 17APR09XK_V003 and 17APR09SK_V002 are in the directory /home/slb/500/databases.
With the same software set up I can process the same session using catalog I/O typing

> nuSolve -c -f dbh 17APR09XK_V003

or

> nuSolve -c -f dbh 17APR09XK

The last invocation will pick up the database with the latest version. If you specify a version number that is not
the latest one, the software will refuse to save results.

It is convenient for routine analysis of VLBI sessions to set up separate con�gurations for di�erent types of
VLBI networks. For example, for test or debug purposes I invoke the software just typing

> nuSolve

To make a routine analysis of newly available IVS-R4 session I call it

> nuSolve -a R4

13

where R4 is a name of a con�guration set that will be used for the analysis. And to process intensive sessions I
call it as

> nuSolve -a INT

When nuSolve is invoked the �rst time or new alternative con�guration name has been provided, it calls a
setup wizard. The wizard is a small application that asks a user few questions about the con�guration.

On a system with several users it is useful to set up common software settings, like path to observations, data
�les, and so on. To set up such settings, invoke it with -W option. Obviously, you have to have write access to
the directory with system-wide settings. By default, the system-wide settings directory is derived from ${pre�x}
variable of the configure script and is set to ${pre�x}/etc/xdg. It can be overwritten using �sysconfdir option
of the configure script.

The system-wide settings take an e�ect if user settings do not exist (e.g., �rst run of the software), changing
the system-wide settings will not a�ect existing user's settings.

Combination of the option -W with the option -a AltCfg discards using the system-wide settings, the setup
wizard will use the alternative setup instead.

Starting with version 0.7.5 of the distribution, νSolve can perform parallel computations of matrix triangular-
ization (one of the most time consuming part of solving normal equations). The parallelization is implemented
with Linux threads. An environment variable NUSOLVE_NUM_THREADS is controlling the parallel computa-
tion. If the variable is set to a natural number, νSolve will use this number as a number of threads. If the variable
is not set, νSolve calls sysconf(_SC_NPROCESSORS_ONLN) to �gure out the number of processors and uses the
obtained value as a number of threads.

For testing purposes, if NUSOLVE_NUM_THREADS is set to zero, νSolve will use sources that are not
parallelized (i.e., from the previous versions), the number of thread 1 or greater cause νSolve to use new source
tree that performs parallelization.

For example, if you are running νSolve and suspect something wrong due to parallel computations, you can
turn o� parallelization using your POSIX compatible shell:

> NUSOLVE_NUM_THREADS=0 nuSolve [options]

In this case the software will use the old piece of the code.
The goal of using the parallel computations is to reduce the time of session processing. The actual reduction

depends on a number of CPU cores of your computer. For example, a processor i7-10750H has six cores, so using
the parallel computations can reduce time of execution in approximately six times.

14

Chapter 4

Con�guring the software

The software stores its preferences using Qt's QSettings class. There are two types of settings. One re�ects on
how the software will behave in general, speci�es paths and �le names, keeps user name, etc. This part is called
"preferences" in this guide. Another part, which we call "con�guration", determines: 1) which models and how
they will be applied in the data processing, 2) lists a set of estimated parameters, 3) etc, etc. In the next section
we will overview the preferences. The section 4.2 will deal with the con�gurations.

4.1 The software preferences

To open a dialog window with preferences, select menu Edit�>Preferences or press Ctrl+r keys.

4.1.1 Specifying directories, external �les

The �rst tab, Directories, displays �le names and paths to various directories. An illustration of the tab is shown
on Figure 4.1.

The νSolve's home directory is de�ned in the �eld Home (non-absolute paths count from it). The software
can read and write many �les in di�erent formats. To keep all output in one place we made this home directory.
All other directories for input and output are relative to the home directory unless they star with the slash �/�
symbol, in which case they are assumed to be absolute paths. There is one exception from this rule � the directory
to CALC/SOLVE binaries (the next �eld). Usually, CALC/SOLVE software is installed in one common place on
the computer and it is assumed that all users have access to the software and its �les. So, there is no sense to
expect its binaries in νSolve's home directory. If a user wants to specify a directory that is outside from νSolve's
home, it can be done in the absolute form.

The �eld Executables of Catalog <�> nuSolve Interface speci�es a path to the couple of executables, catnu_find_db
and catnu_update_cat, that are necessary to communicate with CALC/SOLVE's catalog. If you do not have
CALC/SOLVE on your computer, you can ignore this �eld.

The path to �les in the database handler format (DBH) is given in the �eld Observations (DBH) �les. The �eld
Observations (vgosDb) �les displays the path to �les with observations in the new VLBI data format, vgosDb.
Files in vgosDa (also known as AGV) format are in a directory Observations (vgosDa) �les.
νSolve can work with �les in DBH format in two modes. One mode, standalone, assumes that CALC/SOLVE

software is not installed, or the results of data processing will not be used in CALC/SOLVE. In this case it opens
user speci�ed �les and saves results in the same directory in a �le with a similar name, but with the increased
version number. In the second mode, interaction with CALC/SOLVE catalog subsystem, it calls the executable
catnu_find_db of CALC/SOLVE to inquire about a user-speci�ed database name. After processing the database
is stored with the increased version number, and the CALC/SOLVE catalog is informed about the new �le by
calling catnu_update_cat executable.

15

Figure 4.1: GUI to set up paths and �le names.

The �eld A Priori �les speci�es where to look for �les with alternate a priori information about site positions,
source coordinates, antenna axis o�sets, etc. All this �les are in CALC/SOLVE format. You can ignore this if
CALC/SOLVE is not installed.

The directory which contains the master�les is pointed to by Master�les �eld. Master�les are contain infor-
mation about VLBI session and are necessary to produce correct output. There is one master�le for each year.
You can download the master�les from

https://cddis.nasa.gov/archive/vlbi/ivscontrol/

The master�les are updated if the VLBI master schedule changes and you should periodical get the latest versions.
In addition to the standard master �les, a user can use its own "local" master �le. The format of the local master
�le should be the same as the standard one, its name have to be in the form "masterYY-loc.txt", where "YY"
� two digits of the year. This feature is designed for testing purposes or processing non-standard VLBI sessions.
The software �rst checks for the local master �les, if it found a record there it stops the search, so records in the
canonical master �les can be overwritten using the local master �le.

The directory in the �eld Spool�le output is used to store a report about results of data processing in
CALC/SOLVE spool�le format. The �le name is �SPLF??� where the last two chars are user's initials (see
the next section). This �le is used in routine data processing by other parts of CALC/SOLVE system.

The �eld List of not used observations output speci�es a place where νSolve will put a �le with a list of
observations that are not in a solution. The list is created at the same time when the report in a spool�le format
is written. The �le name has a form of �nuSolve_unused_observations_??� where the last two chars are user's

16

initials.
If a user desires, a copy of the spool�le may also be be saved in the directory pointed by the �eld Reports

output. (See Copy spool�le reports into "Report" directory on the next tab.) In this case a �le name will be
altered from the general �SPLF??� to the form of �[database name].SFF�, e.g., 13SEP12XE.SFF.

The software νSolve can export a VLBI session in the ASCII NGS format. The �eld Save observations in NGS
format points to the directory to put the this output.

The plotting subsystem can save data as ASCII �les or graphics (in PS or PDF format). All output will go
into a directory speci�ed in the Plotter output (PS, PDF or ASCII �les) �eld.

The �eld State and intermediate results speci�es a path to �les with saved intermediate results, editings and
sets of parameters.

When software is invoked in the command line mode, it, in addition to the standard log �le, can save logging
information into a separate for each session �le. The �eld Path to the auxiliary logs points to the directory with
such logs.

4.1.2 Software options

The tab Options contains the following selections (Fig. 4.2).
If the checkbox Database operations are going through the catalog is �on�, νSolve will use the CALC/SOLVE

catalog subsystem.
The option Saving a database with alternate session code (for tests purposes) is used for tests. If it is �on�

the name of the database will be altered so it will be possible to have di�erent solutions for comparisons.
If the option Copy spool�le reports into "Report" directory is selected, νSolve will make a copy of the report

in spool�le format as a separate �le (see above).
The checkbox Warn me when closing Session Editor Window switch �on/o�� determines if νSolve will issue

a warning when a user closes the Session Editor Window. This is because a click on Close button of the window
would destroy your work if you are not done with your analysis.

For some displays with small resolution the Session Editor window will not �t on the screen. In this case turn
theMake horizontal layout in the Session Editor checkbox �on�. It will put a series of buttons on the right instead
of bottom of the window. The software is still in developmental mode and in future releases we will redesign the
window to overcome this problem.

In general, when a user speci�es a �le name with a database, νSolve automatically looks for �les of the session
with other bands and reads them too. E.g., if a user asks to open 13SEP12XE �le, it will pick up 13SEP12SE
too (if it exists). To override this behavior uncheck the Autoload all bands checkbox. If this box is not checked
only one �le will be opened.

Running in the command line mode the software will save per session log �les if the checkbox Save a log �le
for each session (command line mode only) is set to �on�, otherwise the logging information will be lost.

If the checkbox After saving execute a command is set to �on�, νSolve will run a command that is speci�ed
in the next �eld every time when it saves a session in a new database or vgosDb �les. The command can be
either a binary executable or a script, it have to be in the user's PATH or a full path have to be provided. Five
arguments are passed to the command: a database name, an o�cial session code and name (the both �elds are
from a master�le), network ID and user's initials. For example, assume I have a script testExternalCommand in
a place that is listed in my $PATH environmental variable and the script consists of a simple instruction

#!/bin/bash

echo $1 $2 $3 $4 $5

Then, when I have processed a session $17FEB23XE and pressed Save button the following string will also be
sent to the standard output:

$17FEB23XE R4780 IVS-R4780 IVS-R4 SB

17

Figure 4.2: GUI to set up νSolve's options.

The checkbox Per source view of band plot controls an option to plot data for a selected (or a set of selected)
source on the Band/Data plot of the session editor. If the check box is �on�, a listview with names of sources
will appear next to the plot, a user can select sources for which data should be displayed. However, for displays
with small resolution all elements of the session editor window could not �t to a screen, in such case a user can
turn o� the checkbox.

The option Output �le format for plots tells νSolve in what format plots should be saved. Currently, the
following formats are supported: PDF (vector) format and JPG, PNG, PPM (raster) formats.

And the last option, State and intermediate results autosave mode, speci�es how frequently a procedure of
autosaving have to be performed. There are three modes, None, On Exit and Always. The procedure stores the
intermediate results and the parameterization in a separate �le in the corresponding directory.

4.1.3 User's identities

To generate proper report �les and re�ect history of changes in the data �les, a user has to provide the corre-
sponding information. It is collected in the User Identities tab of the Preferences window, Fig. 4.3.

If you make data processing and submit your results to the IVS, you have to provide correct information in
the �les.

There are two groups, User and Analysis Center, that contain �elds that describe a user and an analysis
center.

The �rst group has full user name, user's e-mail address and initials. The name and the e-mail address

18

Figure 4.3: GUI to set up identities of an analysis center and a user.

will appear in the report in spool �le format. The two-letter initials are the 'solve-initials', and historically are
appended to a pre�x SPLF to generate the spool�le name, e.g., SPLFSB in the case as shown on the �gure.

The second group contains full name of analysis center, its abbreviated form and three-letter abbreviation.
The latest attribute for your analysis center can be found at

https://cddis.nasa.gov/archive/vlbi/ivscontrol/ac-codes.txt

If your analysis center does not have a three-letter code and you are going to participate in IVS activities, please
contact mail-to:ivscc@ivscc.gsfc.nasa.gov to request the code.

4.1.4 Con�guration of logging subsystem

The last tab, Logger Options, controls the logger behavior. All parts of the software communicate with a user
through logger. The logger is a small object that accepts messages from other parts of the software and prints
them on the main (=log) screen. Depending on log facility and log level a message will or will not appear on the
log screen.

The group Logger's Options speci�es a �le name of the log output (Log �le name), number of lines that will
be kept on the screen (Log capacity), whether the log outputs should be saved at all (Save log to the �le) and if
it is desired to add a time stamp to the message (Put time stamps). If you want in addition to time stamp add
a date too, set the checkbox Use full date format to �on�.

WARNING: If the logger is instructed to save data in the log �le, the size of the �le will grow up. νSolve
does not check the size of the �le (it does not know about your intentions), and eventually the �le could take all

19

free space on your computer! If you do not need the log output from previous runs, please, remove the �le on a
regular basis.

Figure 4.4: GUI to set up logger options.

Currently, there are four log levels: error, warning, informational and debug. Error messages are generated
when something wrong happens and νSolve's behavior is unstable or unpredictable. Examples include missing
essential �les (e.g., �le with VLBI observations), or an inconsistency in the data. Warnings are issued if something
unexpected happened but the software is able to deal with it. For example, if a VLBI station that participates in
the session was not found in the �le with the external a priori coordinates. In this case νSolve will use coordinates
from the database as a priori, and it notify the user about this issue. The last two log levels, informational and
debug, are interesting mostly for developers.

In the group Log Levels one can �nd a table of log levels (Er � error, Wn � warning, In � informational and Db
� debug) and facilities. The log facility is an integral part of the software that generates the message and most
routines use this facility. Two examples are the graphical user interface or evaluation of ionospheric correction.
Separation of logging output by levels and facilities allows developers to focus on some particular topic without
altering other parts of the software.

4.2 Con�gurations of data analysis process

The second set of options, con�guration, is more VLBI-centric. To get an access to the con�guration, select menu
Edit�>Edit General Con�g or press Ctrl+g keys. A dialog window that allows to change the options will appear

20

on the screen. A similar widgets will be available on Session Editor window too with some exceptions. Some of
these options specify what and how software have to act when it reads a VLBI session, these options will not be
available on Session Editor window.

4.2.1 General options

The �rst tab of General Con�gure Editor window, General, shows general options (Fig. 4.5).
The groups Delay type and Rate type allow a user to switch between the types of observables. Currently,

νSolve process single band delays, group delays, phase delays and delay rates. The use of the last two types,
phase delays and delay rates, is in a preliminary stage and should be used for testing purposes mostly.

Figure 4.5: Con�guration: general options.

Another widget group, Bands, will appear on Session Edit window (see Section 6.2.2). It will display available
for a particular session bands and allows a user to select an active band.

However, in practice it is not convenient to go every time to the tab Options of the Session Edit window and
change the current observable or the active band manually. νSolve can do it automatically depending on what
the user is looking at. If the check box Active band follows tab of the group Interactions with GUI is checked,
then the active band will always be the band which is currently visible on the tab Bands. If the check box
Observable follows plot is checked and the delay rates are not in a solution, then when a user selects single band
delay residuals as the Y-axis of the plot on the tab Bands, νSolve will automatically set the observable to single
band delays. The same is true for the group or phase delays. If a user chooses any other column as the Y-axis of
the plot, the previously selected observable will not change. If delay rates are in the solution (i.e., Rate types are
not None), the feature of the automatic switching of the observables is suppressed. These two check boxes are
checked by default.

21

The software does not include in data analysis the observations with low quality code. The spin box Obser-
vation Quality Code threshold (use obs of this code or higher) speci�es this threshold.

The check box Interactive SOLVE compatible assures that all calculations are done in interactive SOLVE
compatible mode. It is recommended to turn this mode on.

The next check box Estimate clock break parameters in common solution switches a mode of treating the
clock breaks. If the checkbox is �on�, νSolve will estimate parameters of clock break(s) in a common solution (as
interactive SOLVE does). If the checkbox is �o��, the parameters of clock break(s) are estimated once and then
are applied as a step wise function to the clocks of a station.

To take into account stored in a database observation elimination �ag keep the check box Use SOLVE's
observation elimination �ag turned on.

There is also an option to use observations only with de�nitely good quality codes and then later, at the
stage of outlier restoration, to add all other observations with all acceptable quality codes. This option mimics
interactive SOLVE and can be modi�ed with Initially use observations with Quality Code of or higher check box
and the associated spin box.

The Novice user mode check box turns on �Novice user� mode. The di�erence of the mode and the normal
operation is in veri�cation of the "accomplishments" that were done for the session before exporting data. Cur-
rently, if the mode is �on� the software checks for existence of the ionosphere corrections and reweighting before
save a session. If these operations were not performed, a warning message will be issued. A user can override the
warning answering Yes. Also, a warning message will occur if a user will try to calculate ionosphere corrections
before resolving group delay ambiguities or attempt to resolve the ambiguities if the the ionosphere corrections
are already evaluated.

If the checkbox Make output of a covariance matrix in an ASCII �le is �on�, a covariation matrix will be
stored in the directory with spool �le output in an ASCII �le �PALL??� with the last two characters of user
initials.

The check box Testing (for debug purposes only) is designed to turn on some part of code that performs a
debug procedure. Do not use this feature unless you are intending to debug the source codes.

4.2.2 Run time options

This tab, Operation collects options that are most demanding during data analysis, Fig. 4.6.
The �rst group, Parameters to Estimate, speci�es the parameters that will be estimated during data processing.

The group consists of a table with the parameter names in the �rst column. The next �ve columns of radio buttons
specify the type of parameter. The �rst type, No means "do not estimate a parameter". The type Lcl speci�es
estimation of the parameter based on the whole set of observations of the session. The type Arc treats a parameter
as an arc parameter, where unbiased estimates of the parameter are made for user speci�ed time intervals that
are smaller than a whole session length. Usually, the lengths of arcs are 1, 2 or 3 hours. A user can change the
arc length for the parameter by pressing the Edit button in the last column (see Fig 4.7). The next type, Pwl,
treats a parameter as a piecewise-continuous function. It is similar to the arc type but the model requires the
parameter to be continuous. There are three models implemented in νSolve to deal with piecewise-continuous
parameters. Two of them, incremental rates and linear B-Splines, came from CALC/SOLVE. The third model is
quadratic B-Splines.

A user can change the mode of PWL parameters in the group Piecewise-continuous parameter model just
below the Parameters to Estimate group. The realization with B-splines needs much less CPU time while the
incremental rates mode produces results that are same as obtained with interactive SOLVE. The last parameter
type is a stochastic parameter, given in the last column, Stc. Currently, the 2nd order Markov process and its
two extreme cases, white noise and random walk, are realized in νSolve. Modeling a time varying parameter as
a stochastic parameter has some restrictions; this type cannot be combined with arc or PWL. Do not mix these
types in a solution as the results will be unpredictable.

The checkbox Downweight delays by 1.D9 turns on "downweighting" of the delays. When delays and delay
rates are processed in one solution and this checkbox is turned �on�, then e�ective standard deviations of delays

22

Figure 4.6: Con�guration: operational options.

are multiplied by 104 to reduce the in�uence of the delays in the solution. This option is taken from interactive
SOLVE.

Figure 4.7: Parameter options editor: local (leftmost), arc, piecewise and stochastic (right) parameters.

The group Outlier Processing determines the response of νSolve when a user presses the button Outlr of the
Session Edit window. If Outlier Action is set to Elimination, then when the user clicks the button, the software
will check the residuals and mark the outliers that are not to be used in further solutions. If the type of action
is set to Restoration, then previously eliminated observations will be included in next solutions.

The procedure of outlier elimination or restoration is performed in the following way. Normalized residuals are
calculated for a set of observations determined by the Processing Mode setting (for a whole band, Band-wide, or
for each baseline, Baseline dependent). Then, an observation with normalized residual greater than or less than
a speci�ed threshold (speci�ed by the Threshold for outliers (in sigmas) line editor) is marked for exclusion or

23

inclusion. In the elimination process, the software removes the observation with the largest normalized residual.
Then νSolve makes an estimate of parameters and recalculates the residuals. The whole procedure is repeated
several times until no observations exceed the threshold or the number of iterations exceeds the speci�ed user
limit, Number of iterations limit. In the restoration process, observations that were not initially included in
the solution (typically because they had quality codes less than 8-9) are considered for restoration. The software
includes observations of this type with the smallest normalized residuals as long as their normalized residuals were
less than the speci�ed threshold. Then νSolve estimates parameters and recalculates the residuals. The whole
procedure is repeated until all observations of this type have been included. The elimination and restoration
processes are repeated until no observations can be eliminated or restored. The procedure of outlier elimination
is performed in conjunction with the procedure of weight corrections. To minimize the time of data processing,
weight correction calculations can be skipped between iterations. This option is controlled by the Suppress weight
correction in outliers processing check box. The check box Process outliers in the SOLVE compatible mode assures
that the normalized residuals are evaluated in the same way as interactive SOLVE does.

The Reweighting group controls the process of weight correction. The weight correction calculations are
performed on the �y, after the user presses the Process button, at the stage when new residuals are available.
These calculations are relatively time consuming and by default they are turned o�. Usually, we turn on evaluation
of additional weights after clock breaks are �xed, ambiguities are resolved, ionospheric corrections are evaluated
and large outliers are removed. The check box Evaluate weight correction is responsible for this. Instead of
performing the reweighting computations, it is possible to use additional weights from an external �le in a
solution. This option is implemented mostly for compatibility with interactive SOLVE and testing purposes.
There are two widgets in the Reweighting group: the check box Use external weights, which turns �on� or �o��
the use of the external weights, and the External weights �le name line editor, which allows the user to specify
the �le. The weight corrections can be evaluated for a whole set of observations over all baselines, which is the
Band-wide mode, or for each baseline separately, which is the Baseline dependent mode. In addition, a user can
specify values for initial additional weights (for delays and rates) and for minimal values of these parameters.

4.2.3 Applying di�erent models and using external a priori information

The third tab, External a priori and models, speci�es how the software will apply di�erent available models and
use a priori information from external �les. This tab is shown on Fig. 4.8.

The group Use external �les with a priori info allows a user to use a priori values of various parameters from
external �les. In general, the theoretical values and partial derivatives of observables with respect to parameters
are evaluated by CALC software and stored in databases. The a priori which were applied in these calculations
are also stored in the database. Sometimes it is convenient to use a priori values that are di�erent from the initial
ones. For example, suppose a station has moved due to an earthquake but CALC used station positions from an
ITRF solution. In this case the actual station position will di�er from the a priori position and this di�erence
will cause an increase of residuals. Depending on the shift, the large residuals will make it impossible to resolve
ambiguities (at the S-band especially) correctly and to eliminate outliers. Another case when we need external
a priori values is when observations of new sources are included in VLBI analysis. Prior to analysis of the �rst
few sessions with a new source, it is impossible to determine its coordinates with the necessary precision without
using an approximate external a priori position.

All �les but one mentioned in the widget group are ASCII �les in the format that is used by CALC/SOLVE.
If CALC/SOLVE is not installed on your computer and the user wants to apply external a priori values, he/she
should get the corresponding �le(s) from somewhere else or consult the source codes. The �les are expected to
be in the directory speci�ed in References by A Priori �les �eld. However, a user can overwrite this assumption
specifying an absolute path there. The Site Positions and Site Velocities check boxes turn �on� or �o�� using the
external a priori for the corresponding parameters. The �le names are entered in the corresponding line editor
box. The check box Source Positions controls using external a priori values for sources coordinates. The Source
structure model check box speci�es an external �le with parameters of source structure models see section 7.2
Using a source structure model for details.

24

Figure 4.8: Con�guration: use of contributions and external a priori information.

The checkbox Earth rotation parameters refers to polar motion (px, py) and Earth rotation d(UTC − UT1).
The software can read �les of three types: the Earth rotation parameters (polar motion and dU1) in "ERP" �le
format (generated by eopkal utility from CALC/SOLVE package), the Earth orientation parameters (ERP plus
the nutation angles) generated by USNO and IERS. The EOP �les from USNO should be available at

https://www.usno.navy.mil/USNO/earth-orientation/eo-products/weekly

and mirrored at

https://cddis.nasa.gov/archive/products/iers

The �le is called ��nals2000A.data�. The IERS EOP �le(s) is available at

https://www.iers.org/IERS/EN/DataProducts/EarthOrientationData/eop.html

it is called �EOP_14_C04_IAU2000A_one_�le_1962-now.txt�. All three types of �les are ASCII �les and do
not contain marks to identify the type of a �le. The software assumes that �le extension �.erp� speci�es "ERP"
format (output of eopkal), the extension ".data" means USNO generated EOP �les and the extension ".txt"
is for EOP IERS C04 solution. Using external a priori EOP �les from USNO and IERS is in testing mode.
Unfortunately, EOP from both institutions have nutation angles that are not smoothed. That make them useless
in interpolation. Though, it should be ok to use such �les for processing a new INT session, when the nutation
angles are derived not from VLBI observations, but is a prediction.

Axis O�sets and Mean Site Gradients are self explanatory. The check box External model of subdiurnal ERP
variations speci�es the use of an external model of the diurnal and semidiurnal oscillations of Earth rotation
parameters. If the check box is �on�, νSolve will apply the external model of subdiurnal ERP variations entered
in the line editor box. The last row of the widgets group allows a user to specify a �le with stations eccentricities.

25

The next group, Apply the following contributions, speci�es which e�ects should be used in data analysis.
By contribution we mean the impact of some geophysical e�ect on the predicted values of observables. The
CALC software evaluates delays and delay rates by applying some standard models. Other standard models
are also evaluated and stored in the database, but are not added to the precalculated values. Moreover, some
alternative models are evaluated and stored in the database. CALC/SOLVE (and νSolve) takes into account a
model by adding the corresponding contribution. To apply an alternative model, the applied contribution should
be subtracted and an alternative contribution added to precalculated observables. Some of contributions listed
in Apply the following contributions are necessary to obtain a solution, e.g., polar motion or solid Earth tides.
Others are required to get a �standard� solution. Few contributions are added for testing purposes or should be
used in rare cases. One of the contributions, GPS Ionosphere corrections is provided by external software. The
list of available contributions is determined by current version of CALC. Two checkboxes, Refraction: hydrostatic
atmosphere and Refraction: wet atmosphere, works in a di�erent way: if a checkbox is turned �on�, then the
contribution stored in a database will be used. If the checkbox is set to �o��, the corresponding values will be
calculated by the software on �y.

The widget group Apply the following �y-by models allows to a user to control models that will be calculated
by νSolve and applied during analysis of observations (on the �y). A user can specify what zenith delay mapping
function should be used: NMF [6] or MTT [5]. To use or not a model of source structure e�ect is controlled
by a check box Apply source structure e�ect. For the source structure e�ect a particular source should have
parameters of the model in the corresponding external �le (see above) and the source needs to be con�gured to
use the model (see below, subsection 6.2.5 Tab �Sources (List)�).

4.2.4 Con�guring post import actions

The rightmost tab, Post import actions, speci�es what procedures should be called after successful reading of a
VLBI session. Con�guration of the procedures are network dependent. The software separates all existing VLBI
sessions by �network� type. For each type of network a user can set up its individual con�guration. νSolve
determines the network type of a session by consulting an appropriate master�le. If νSolve is unable to determine
the network type of a session, it will use DEFAULT set up, as it shown on Fig. 4.9. Also, if a con�guration for
the network type of the session was not set, the DEFAULT set up will be used. Currently, the set of network
types and theirs attributes are hard coded into the software and cannot be modi�ed by a user.

To select a type of a VLBI network, click on a combobox labeled Set up for network ID. All available VLBI
network names will appear in a list of the combobox.

The checkboxes in the widget group Actions to perform specify what procedures will be automatically called
after a session has been read.

The �rst action, Perform set up of the session, assigns a reference clocks status to one of the stations, turns
o� a �estimation of station positions� �ag for one of the stations (by default this �ag is �on� for all stations)
and checks the history part of a database trying to �gure out for which station manual phase calibrations were
applied and, if found, turns the attribute use cable calibration �o�� for such station.

The second action performs calculation of ionospheric corrections for the single band delays only.
The �rst two post-import actions are useful for data analysis of practically any session, therefore they are

turned �on� for DEFAULT set up.
The rest of actions are designed for automatic process of intensive sessions (e.g., IVS-INT1, IVS-INT2, IVS-

INT3). We do not recommend use them for other type of VLBI sessions. These actions are self explanatory.
The last action, Print a list of not used observations in a �le, toggles creation of a �le with a list of all

observations that are not in the last solution. The �le has a name �nuSolve_unused_observations_??� where the
last two chars are user's initials, it is placed in a directory speci�ed in software Preferences (see Subsection 4.1.1).

The group Make Final Solution allows a user to select which type of solution should be used for evaluation
of weight corrections. The standard practice for processing intensive sessions is to estimate clock parameters and
zenith delays of observing stations and changes of Earth rotation, d(UT1−UTC). However, there are cases when
either Earth orientation parameters are not known correctly or a priori station positions di�er form the actual

26

Figure 4.9: Con�guration: set up of post import actions.

ones. In these cases it is possible to estimate baseline vectors instead of d(UT1−UTC). This type of solution will
absorb deviances of a priori EOP or station positions so it will make possible to deselect outliers and evaluate
realistic weight corrections.

The software does not keep con�gurations for all networks. In the beginning, there are two sets of con�gura-
tions, one is for INT sessions and another one is DEFAULT. A user can add a set up for some particular VLBI
network by choosing the network in the combobox Set up for network ID and then clicking a button Create. After
that, when a con�guration has been created, a user is able to modify the actions. To delete existing set up, press
a button Destroy. The DEFAULT con�guration is not possible to delete.

27

Chapter 5

Plotting subsystem

To visualize and edit sets of data we developed a small and simple plotting subsystem (or plotter). Since the
plotter appears in various parts of data analysis procedure and has the same controls, we discuss it in this separate
section.

The plotter (Fig. 5.1) consists of a canvas, where the data are plotted, and controls, that are widgets that
allow a user to modify how and what part of data will be plotted. In addition, a user can interact with the canvas
too to make selections or deselections and get information about the data. Also, the plotter emits signals as a
reaction to the user pressing keys, so it is possible to plug in external functionality.

In general, the plotter accepts multiple sets of data in the same format. Each set of data (called here branch)
is plotted with the same color. If the user decides to make a plot with connected lines, points of each branch
will be linked separately. Each point on the canvas is represented by a vector of dimension 2 or higher. Each
element in the vector is considered as having the same property (physical meaning, units, etc.) for all points. For
examples, one vector could consist of delay and sigma. Not all data is expected to have corresponding sigmas.
Some of elements can be assigned a special property and will have special treatment. E.g., if the software sets a
Type_MJD attribute, then the plotter will treat that data as time in MJD scale and put proper labels (if this
element is set to be the x-coordinate).

The current distribution of νSolve has the ability to test the plotting subsystem. Select menu Test�>Test
Plotter to invoke a window with some arti�cial data. On the plot there are four branches labeled Branch #1,
which consists of time-tags, Branch #2, Branch #3 consist of data with corresponding sigmas, and Interpolation
#2 is a cubic spline interpolation of Branch #1.

5.1 Plotter controls

The plotter controls (Fig. 5.2) are the following widgets: selection of axis to plot, list of branches, selection of
how to plot the data (with points, lines, errorbars or impulses (lines from the X-axis to the point), modifying
colors of the branches (hue, saturation and value), altering ranges on the plot, scaling and output controls.

5.1.1 Axes to plot

The widget Axis to plot allows user to select X- an Y- axis from provided data. There are two comboboxes which
show labels of the available data. A user can select each of elements of data format as X- or Y-axes on the plot.
As an example, on the Fig. 5.3 the left screenshot demonstrates user selection of Y-axis the third column of data
format. On the right screenshot one can see a function of the third column, titled Value #2, as a function of the
second column, Value #1.

28

Figure 5.1: Test plot.

Figure 5.2: Plotter controls.

5.1.2 Branches

The list of branches makes possible to select or deselect on the plot some particular branch. The Fig. 5.4
demonstrates a selection of various branches on the plot. Also, there are two buttons: -* unselects all branches;

29

Figure 5.3: Selection of axis to plot.

and *+ selects all branches. There are a couple of other buttons, � and �, that allows a user to traverse through
branches going forward or backward one branch at a time.

Figure 5.4: Selecting branches at the plot.

5.1.3 How to plot data

The group Plot data as contains several checkboxes that specify how to plot the data. Now it is possible to
display data as points, lines, errorbars and impulses. All modes are independent and can be mutually combined.

5.1.4 Altering colors

Branch colors are assigned automatically, using HSV scheme. To modify hue phase, saturation and value of the
colors, use the slide bars from the group Colors (H,S,V).

30

5.1.5 Range controls

The group Plot Ranges controls how the plot ranges are calculated. The check box User de�ned becomes available
if a user speci�es the plot ranges manually. To return back to automatic plot range mode, uncheck this button.
Current data model assumes that there are two kind of points, �good� and �discarded�. By default, only �good�
points are plotted. To display all points on the plot, check on the box All Data. In this case all data will be
displayed and the plot ranges will be adjusted to make the �discarded� data visible too. The check box Relaxed
turns on calculation of the plot ranges only for selected branches. And the check box w/ StdVar includes standard
variations of the values in the calculation of the plot ranges.

5.1.6 Scale and output controls

The last group of plotter controls contains a set of buttons that perform the following functions. The rightmost
top and leftmost bottom buttons, Z'+ and Z'- change the scale of whole plot in one or another direction. The
user can perform the same operations using their mouse wheel (if their mouse has a wheel, of course.)

The rightmost and leftmost middle buttons, Z'X+ and Z'X- change the scale of X-axis on the plot. The keys
Ctrl+RightArrow and Ctrl+LeftArrow do the same.

The middle top and bottom buttons, Z'Y+ and Z'Y- (as well as keys Ctrl+UpArrow and Ctrl+DownArrow)
change the scale of Y-axis on the plot.

The central button, O, restores the altered scales.
Pressing the button >�le, a user can save data (only selected branches) as ASCII �les for further processing.

The format of the �les is simple, three columns, X, Y and standard variations of the Y column. The button
>PS/PDF makes an output of the plot in Postscript or PDF format.

5.2 Canvas

The canvas also provides user controls. The communication between user and canvas is performed by processing
signals from a pointer device (a mouse).

Figure 5.5: Selection of
points on the plot.

Clicking the left mouse button when the cursor is on a point selects this point. The
selected points are displayed as open circles. A click on a selected point discards the
selection.

Clicking the right button of the mouse pointing anywhere on the canvas displays
the plot coordinates of the pointer location.

To select a group of points, hold the left mouse button down and drag the mouse
over the points, generating a rectangular area containing the selected points (see
Fig. 5.5). All points that appear inside this area will be marked as selected points. To
remove selection marks from a group of points, �rst, press the Shift key and then hold
down the left mouse button and drag the mouse to create the area where all marked
points will be deselected. In both cases, the status of already altered points does not
change. For instance, if you make a selection, all previously selected points will not
became unselected and vice verse.

Figure 5.6: Selection of
points on the plot.

By pressing and holding the Shift key, clicking the right mouse button, and dragging
the mouse, you can measure a distance on the plot between two points. The Shift
modi�er is necessary only when you press right mouse button, you can release the
Shift key, it does not a�ect the measurement mode. Fig. 5.6 shows how a user can
acquire the distance between two points on the plot.

Using the Ctrl key and holding the right mouse button allows the user to select a
plotting range by dragging the mouse over a selected area, thereby switching to manual
range mode. When the user releases the right mouse button, the ranges will be taken
from the selected area and applied to the plot. In contrast to the previous mode, the

31

Ctrl key must be pressed when the mouse button is released, otherwise the operation
will be discarded. The Fig. 5.7 displays the operation of changing the ranges. In the
left panel, a user selects the new ranges by dragging the mouse. The right panel shows
the plot with new ranges.

Figure 5.7: Changing ranges of the plot. Selecting new ranges (on left) and resulted plot with the new ranges (on
right).

When the plotter switches to the manual range mode, the checkbox User de�ned in the group Plot Ranges
on the plot window page becomes available for user interaction and its status becomes �on�. To return back to
the automatic range mode (where the software will evaluate ranges from the available data), just uncheck the
checkbox.

32

Chapter 6

Overview of the Session Editor window

The Session Editor window is a primary tool for processing a VLBI session. In this section we will review the
essential parts of the window and describe its interface with a user.

6.1 Reading a session

To invoke the Session Editor, the user must open an existing VLBI session.

Figure 6.1: Opening a VLBI session in the standalone mode.

The software can import a VLBI session in three formats, DBH, vgosDb and vgosDa (formerly known as AGV
format, see http://astrogeo.org/gvh/vda.html).

33

To read a session in DBH format, press Ctrl+e or select menu Edit�>Edit Session (DBH). Depending on the
software operation mode, standalone or working through catalog, a dialog window will pop up.

In the standalone mode the dialog window is a Qt's standard �le selection dialog window, Fig. 6.1.
The directory where it starts is taken from the preferences, Observations (DBH) �les, however, a user can

search through whole �le system to pick up a �le. The user selects a �le for the session to be opened. Since a
multiband VLBI session is represented by at least two databases, generally, one for X-band and another one for
S-band, the software will automatically pick up a corresponding �le with another band (if it exists). If several
�les of the appropriate band exist, the software will pick the �le with the closest (but not larger) version number
of the �le speci�ed by a user.

In the catalog aware mode, the user enters the database name in a simple window (see Fig. 6.2).

Figure 6.2: Opening a VLBI session in the CALC/SOLVE catalog aware mode.

A database name is expected to follow the standard IVS naming convention. Optionally, a version (in the
standard form) can be speci�ed. If a �le for a di�erent band exists in the catalog, it will be loaded automatically.
To prevent automatic loading of the second band database, set the checkbox Load 2nd �le to �o��. If a second
band database has an alternate name, you can specify it in the �eld of Load 2nd �le. If the �eld is empty, the
name of the second band database will be �gured out by the software using the IVS naming convention.

The software will check database for the available versions and if the next version is already registered in the
catalog, it will issue a warning about the inability to save the database as a new version. In this case, the user can
save his work, but before saving it, he should remove the database with new version from the catalog manually
before saving the data.

There are two options to read a session in vgosDb format. The �rst one allows a user to chose a wrapper
�le manually. The main menu option Edit->Open Wrapper �le (vgosDB) or key combination Ctrl+o invokes a
standard �le dialog to select a desired wrapper �le.

The second option chooses the latest wrapper �le from a database name. Press Ctrl+Shift+o keys or select
Edit->Open Session (vgosDB) from the main menu, a simple dialog window will appear and a user can provide
a name of a database. If the desired session exists in the standard place, νSolve will read it.

To read a �le in vgosDa format, press Ctrl+Shift+a keys or select Edit->Open VDA �le.

34

6.2 Session Editor

After reading a database for a VLBI session, a Session Editor window will appear, as in Fig. 6.3. This is a central
window for processing a VLBI session. The user can open as many windows as his/her computer virtual memory
allows. The user can open the same session in several windows since the windows do not share the same data.
However, in the catalog aware mode saving the data will be possible only if the corresponding version is available
in the catalog. In the standalone mode, if a database with new version already exists, the �le name of the saved
data will be altered.

Figure 6.3: Session Editor window, general info.

The Session Editor window consists of several tabs along the top of the window and a row of buttons along
the bottom. The General Info tab provides general information about the session. From the Options tab the
user can �nd controls to choose options for how to process a session. The Bands tab refers to separate bands in
order to display of selected data as plots, allow control of band-speci�c parameters, etc. The tabs Stations (List),
Sources (List) and Baselines (List) make it possible to manipulate data using the stations, sources or baselines
attributes. The Stations (Plots) tab displays station-dependent data. The last tab, Session (Plots), is designed
to test Earth rotation parameters that are estimated as arc, PWL or stochastic parameters. It is currently in a
test mode and will be discussed in the next release of the software.

Pressing one of the buttons causes νSolve to perform some particular action. The button Process performs one

35

iteration of parameter estimation. IonoC evaluates ionospheric corrections and Iono0 discards these corrections
(sets them to zero). The button CBreak initiates a procedure of clock break detection. To perform an outlier
processing action the user should press the Outlr button. To resolve ambiguities,the user would press the Ambig
button. The button AuxSig0 sets to zero any previously evaluated weight correction sigmas.

The user saves an updated session in a �le on the hard drive by pressing the button Save. The button Close
will close the Session Editor window. If the preferences check box Warn me when closing Session Editor Window
is �o��, the window will close without any warnings and if there were unsaved data (the autosave mode in
Preferences was set to None), it will be lost.

The button Reset clears all editing information. A VLBI session will look like newly arrived from a correlator.
In addition to buttons, there are shortcuts (combinations of keys) that invoke actions. For example, if the

user presses the Ctrl+r keys, νSolve will generate a report in a CALC/SOLVE spool�le format (by default, such
a report is generated when a user saves a processed VLBI session). The list of available key combinations is in
Table 6.1. Some of the shortcuts will be discussed later.

Shortcut Action
Ctrl+a Exports estimated source positions and station coordinates (aposteriori info) with

applied velocities in a format of the a priori �les.
Ctrl+b Process a clock break for the marked observation.
Ctrl+f Generate a list of commands to refringe marked observations.
Ctrl+g Store a VLBI session in vgosDa format.
Ctrl+h Creates ASCII �les with results of estimation the stochastic parameters.
Ctrl+i Displays a window with lists of unusable and excluded observations.
Ctrl+n Exports a VLBI session in NGS format.
Ctrl+r Generates a report in a CALC/SOLVE spool�le format.
Ctrl+Shift+r Generates a report in a CALC/SOLVE spool�le format. In addition, prints the

residuals and other information to the spool�le.
Ctrl+s Saves the intermediate results in a �le.
Ctrl+t Performs a test of an action, for test purposes only.
Ctrl+z Creates ASCII �les with values of total zenith delays.
Alt+2 Makes two consecutive iterations of parameter estimation. The same as two clicks on

Process button.
Alt+3 Makes three consecutive iterations of parameter estimation.
Alt+4 Performs outlier processing and then calls three iterations of parameter estimation.

Equivalent to click on Outlr button and then Alt+3 shortcuts.

Table 6.1: Shortcuts of Session Editor window.

6.2.1 Tab �General Info�

From the General Info tab, the user can �nd various attributes of the session. In most cases, the names of
attributes are self explanatory, see Fig. 6.3. A user should ignore User Flag (in Parameters group) since this
refers to future features that have not been implemented.

The group Bands displays available bands, their parameters, the number of all and processed or �good�
observations (the column #Total/Used), the number of estimated parameters and applied constraints (the column
#Par/#C), and the overall weighted root-mean- squared (the column WRMS(ps)) of the delay residuals for each
band. The last two columns of the group show the sigma for weight correction (the column σ0), where this value
is non zero if weight corrections have been performed in the band-wide mode, and a value of the reduced χ2 of
the residuals for each of the bands.

36

6.2.2 Tab �Options�

The tab Options was discussed in details in Section 4.2. There are few exceptions: some widgets have di�erent
layout and the tab Post import actions of Options is not shown.

6.2.3 Tab �Bands�

The tab Bands consists of several embedded tabs (Fig. 6.4), that allow the user to display a relatively large
amount of data on one screen. The main purpose of this tab is represent observations and baseline dependent
values as plots. It also allows the user to edit data.

Starting with version 0.7.0 of the distribution the tab has an ability to �lter data on per source basis (if the
corresponding option of Preferences is selected). On the right of the tab there is a listview widget that contains
names of sources. A user can select or deselect sources, the plot displays data only for sources that are highlighted
in the listview widget.

Figure 6.4: Session Editor window, band dependent plots and attributes.

At the bottom of the plot there are tabs that display information about the particular band. The tab Data
shows plots. The tabs Stations, Sources and Baselines displays statistics (number of total observations, number of
used observations, dispersions, additional sigmas and residuals for delay and rate) per station, source and baseline

37

respectively. In addition, in the tab Stations, the user can add or modify band-dependent clock breaks for some
particular station. Also, the tab Baselines displays ambiguity spacings and typical numbers of channels.

The interface of the last three tabs are the same as for corresponding objects of the whole VLBI session. They
will be discussed later.

Figure 6.5: Session Editor window, history records for the band.

The tab History, Fig. 6.5, presents the history records from the history part of a database �le. It also allows
the user to add comments about processing a session (history records) manually.

Plots in the Data tab display baseline dependent values, such as residuals, ionospheric corrections, etc. Each
baseline on the plot is represented by a branch of the plotter system. In the list of branches there are two
additional buttons, �F and F+. The buttons activate �lters that will be applied to the list of baselines to select,
F+, or deselect, �F, some particular baselines.

A left mouse click on the button invokes a local menu with a list of stations. By selecting one of the stations,
the user can select or deselect all baselines with this station.

The right mouse click invokes a menu with stations as the �rst or second station in the baseline. For example,
if the user makes a right mouse click on the button F+ and selects KOKEE: from the menu, then all baselines
where the KOKEE station is the reference site will be selected.

A left mouse click on the button F+ when a Shift key is pressed invokes a menu with a list of sources. If a
user selects a source from this menu, all observations (currently visible or not) will be highlighted as open circles

38

(selected). The same click on the button �F will deselect previously selected observations with the source from
the menu.

The radio buttons at the bottom of the widget group Plot Ranges control ranges of plots to display data: used
in the latest solution (G � good observations), potentially usable but deselected by a user or outlier elimination
procedure (U � usable observations) and all available (A) observations. What subset of data to display on plots
is switched by radio buttons in the widget group Data to plot.

The plotters of the Data tabs have their own sets of shortcuts. When the user selects one or several points,
pressing the Ctrl+x key combination removes the marked point(s). Removing points means that these observations
will not be used in data analysis. In this case a �ag �do not use� is raised for the points. To discard the �ag,
user should turn on the checkbox All Data of the group Plot Ranges of plotter; then all unselected points will
appear gray. Then, select the points and press the Ctrl+y key combination. The latest operation does not force
an observation into analysis, there can be other criteria that remove observations from analysis (e.g., low quality
factor).

Another operation that can be applied to selected points, are for increasing (key �=�) or decreasing (���)
the number of ambiguities. In these cases the number of ambiguities are increased or decreased by one and the
residuals for the group band delays are adjusted using values of the ambiguity spacing.

The key combination Ctrl+b is used to process a clock break in a semi-automatic mode (see the next section).
A double click on an observation point opens an observation information window, Fig. 6.6. The window is

modal, i.e., it blocks access to other windows of the software. To continue, press the button �Ok�.

Figure 6.6: Session Editor window, the observation info window.

This window displays source and stations names, statistical information (numbers of good, usable and pro-
cessed observations and WRMS for delays) for the baseline, the source and each of stations. Also, there are
information on delay residual value, its standard deviations, and the applied standard deviations (which is usu-
ally bigger than the standard deviation of the delay). If an observation considered as �unusable�, there will be
a reason of such decision: low quality code, deselected station, source or baseline, missed observation on another
band (if ionospheric corrections are evaluated), and so on.

39

6.2.4 Tab �Stations (List)�

The tab Stations (List) shows properties of the stations. It organizes them as a table, as in Fig 6.7. A mouse
click on the header of the table sorts the whole table by �elds in this column.

Figure 6.7: Session Editor window, list of stations.

The following station attributes are available: The total and processed number of observations made by a
station, Tot.Obs and Prc.Obs. Scans is the number of scans at a station. Residuals of group, single band or phase
delays for a station are in WRMS(ps) column. The column ACM indicates the stations with a priori clock model.
Sometimes, station clocks could have a large o�set, one or more seconds. It is recommended to add a priori clock
model for such case otherwise global SOLVE will be unable to process a session. The column Clk:Brk represents
numbers of clock breaks per each station.

The number of polynomials in the polynomial model for the clock function are in the column Clk:n. The left
mouse button click decreases the number and the right button increases it. The user can click and drag the mouse
pointer to decrease/increase the number of polynomials for a group of stations.

The reference clock �ags are displayed in the column Clk:Ref. A mouse button click toggles this �ag. If you
do not assign a reference clock status to any stations, the standard deviations of clock parameters will be on the
level of their a priori sigmas (i.e., very big). Also, you can set the number of polynomials of a reference station
to zero, in this case the clock model for that station will not be estimated. If the Clk:n is greater than zero and

40

the reference clock �ag is set, then νSolve will apply constraints to clock parameters of the station. Usually, for
a regular VLBI session there should be only one reference clock station. However, in rare cases a network can
contain two separate subnetworks. In such a case, you have to assign two reference clocks, one from each separate
subnetwork.

The column Omit displays a �ag if a station is deselected from data analysis. The user can set this �ag by
clicking the mouse button with the mouse pointer in this column. If the station is turned o�, a char X will appear
in this column. The user can click and drag the mouse pointer to select/deselect a group of stations.

Version 0.7.5 of νSolve introduces a new column: the origin of cable calibration corrections, Cab.Orig. There
can be the following values in the column: Default, FSLog, CDMS and PCMT. If more than one type of data are
available, a user can change the origin of cable calibration corrections using the station attributes editor window
(see below).

The next column, Cab.Sgn, shows what sign has been applied to cable calibration readings for each station
(see vgosDbProcLogs User Guide).

The column Cab.Cal shows whether the cable calibration data from each each station are used or not. In
general, we use cable calibration data. However, if the correlator applied manual phase calibration, then we
normally do not use the cable calibration data. Also, some stations provide cable calibration data that degrade
the solution. To turn o� cable calibration data for some station, click the mouse button in the column.

The Flags column is designed to display various station �ags. This column currently shows the following
station �ags: "do not estimate zenith delay" and "wrong meteo parameters". For test purposes there is the
ability to turn o� zenith delay estimation for some particular station (see below). In this case a -Z will be shown
in the column. If a �ag "wrong meteo parameters", m, is set, νSolve uses standard atmospheric temperature,
pressure and relative humidity instead of what is present in a database.

It is possible to override parameters set up for clock and zenith delay of a station. In general, a user con�gure
estimated parameters in the tab Options. Sometimes, it is necessary to alter the con�guration of the parameter
for some particular station. Most frequent use of this feature � large variations of clocks during one session. In
this case we loose the constraints that are applied to the piecewise-continuous parameter of the estimated clocks
of the station. The columns LC and LZ show �ags of use of local clocks and local zenith. If for some station one
of the columns has the character Y, a station speci�c con�guration of the estimated parameters will be applied
for the station. A user can adjust parameters of local clocks or local zenith delay with the station attributes
editor window (see below).

The column R:Est displays which station positions will be estimated if the user decided to estimate station
positions on the Options tab. The character Y means that the particular station's coordinates will be estimated
if the user set the radio button of Station Coordinates on the Options tab to anything except No. This column
only sets the status of this �ag; it does not turn �on� or �o�� the estimation of station positions.

A mouse click in the R:C column triggers the �ag for a station to participate in the equations of constrains.
For example, if the user wants to estimate EOP, source coordinates and station positions, then he/she must apply
the No-Net-Translation and No-Net-Rotation constraints to the stations coordinates. All stations that have a
* mark in this column will be involved in equations of constrains. If no stations are marked, the equations of
constrains will not be applied.

And the column AxO:Est controls for which station(s) the axis o�set will be estimated if a user decided to
estimate axis o�sets (on the tab Options). By default, for all stations this �ag is turned �on�.

Station Attributes Editor

A double mouse click in the area bounded by columns Idx and Clk:Brk invokes a station attributes editor window
(see Fig. 6.8). This window allows a user to add, modify or delete clock break events and turn �on� or �o�� all
available stations attributes (some of them are accessible from the station list, some are not).

The upper group of widgets allows the user to edit clock break data for stations. The group consists of the
list of clock breaks and three buttons. In general, clock breaks occur infrequently and the list is often empty. But
if there is a break, νSolve can apply it in automatic, semi-automatic and manual modes. The �rst two modes will
be discussed in the next chapter. In manual mode, the user must explicitly specify the information about clock

41

Figure 6.8: Station attributes edit window.

breaks. To do so, click the Add button and a clock break editor window will appear (it will be described latter).
To alter the parameters of a clock break, highlight the break in the clock break list and press the Edit button.
The last button, Delete, removes a selected clock break from the list.

The lower group represents all available station attributes (some of them can be altered by interacting with
the stations list). Currently there is just one station attribute that can be altered only with this window, Do not
estimate tropospheric refraction parameters. If the corresponding check box is �on�, then the tropospheric zenith
delay and its gradients for this particular station will be excluded from the list of estimated parameters when the
user tells the software to estimate them.

The widget group Source of cable calibration correction allows a user to change a type of cable calibration
correction (if data are available). Using the value "Default" corresponding to data that are in the corresponding
Cal-Cable.nc netCDF �le.

To add a priori clock o�set and rate, turn �on� the checkbox Use user speci�ed a priori clocks and provide
values of the o�set and the rate in the corresponding �elds. This option is implemented for consistency with
global SOLVE.

The check boxes Use local setup of parameters for clocks and Use local setup of parameters for zenith delays
indicate that νSolve should apply a unique parameter set up for station clocks and zenith delays. To change the
set up (by default it is the same as for all stations), click the button Edit Clocks or Edit Zenith.

Clock Break Editor

Currently, there are two approaches to deal with clock break e�ects in νSolve. The �rst one, dynamic, is in
introducing additional polynomial terms of a clock function after the break has happened. The terms are estimated
along with other parameters in a common solution. In this case we need only an epoch of the clock break. This
method is realized in CALC/SOLVE too.

The second approach consists in applying piecewise-continuous function to clocks of a station. The parameters

42

Figure 6.9: Station clock break parameters edit window.

of the function are estimated in a separate solution. Breaks between steps of the function absorb the e�ect of
clock breaks. Currently, only an o�set is used in the clock break function. In contrast to the previous approach,
it requires the determination not only of the approximate epoch of the clock break, but, also its magnitude. On
the other hand, in some rare cases, when a station has multiple clock breaks over short intervals, it allows such
observations to be used in the data analysis.

The clock break editor is invoked when a user clicks the Add or Edit button in the widget group List of
Clock Break Events (see above). The edit window, Fig. 6.9, allows a user to add or edit the epoch of the clock
break (year, month, day, hour, minute and second) and the its magnitude. The checkbox Estimate clock break
parameters in a common solution switches the type of a clock break. A user can modify a type of a particular
clock break, it is ok for the software to have di�erent types of clock breaks for one session.

6.2.5 Tab �Sources (List)�

The tab Sources (List) shows the attributes of the sources that were observed during a VLBI session. The list
has the same organization as the station list. The following source attributes are displayed: names of sources
are shown in the column Name. The second column, Scans, shows total number of scans of a radio source.
The column Tot.Obs represents the total number of observations of a source. The numbers of potentially good
observations for each source are represent in the column GoodObs. The number of analyzed observations of a
source is in the column Prc.Obs. Residuals of the group or single band delays for the source are in theWRMS(ps)
column.

In the same way as for the stations list, the user can exclude particular sources from the analysis by clicking
in the Omit column. If the source is marked for exclusion, the X character will appear in the column.

The column k:Est represents the "estimate the source position" attribute. Again, as for stations, this �ag does
not turn on or o� the estimation of source coordinates. It only tells whether a source's position will be estimated
or not. Now, by default, all sources are turned o� from the estimation.

Also, a combination of estimated parameters may require applying constraints for the estimated source po-
sitions (e.g., when positions of all available stations, coordinates of sources and EOP are turned on). To select
which source will be included in No-Net-Rotations constraints click in the column k:C for the selected sources.
The character * will mark sources that will be constrained.

Traditionally, interactive SOLVE and νSolve use source coordinates from external a priori �les. If a source is
not present in such �le, the a priori values that were provided by CALC will be used. If the column E.A. contains
a char "Y", the corresponding source is present in the a priori �le. The column E.A.Status contains a comment
string from the a priori �le.

A length of arc between source a priori position that was used by CALC and the value from the a priori �le
is displayed in the column 2E.A.. The units are milliarcseconds.

A length of arc between source a priori position and its estimated coordinates (if source positions were
estimated) is shown in the column 2Estd.

43

Figure 6.10: Session Editor window, list of sources.

The last two columns characterize use of a source structure model. The column UseSSM displays for which
source the model should be applied (a character �Y�). A number of secondary components of the model is shown
in the column #SSMpts. The section 7.2 Using a source structure model discuss details of the model application.

Source Attributes Editor

A source attribute editor can be invoked by a double mouse click in the area bounded by columns Idx and
Wrms(ps). In the same way as for a station it allows a user to adjust available source attributes and edit
parameters of the source structure model (see section 7.2 Using a source structure model for details).

The upper group of widgets allows a user to edit the source structure model. The group consists of the list
of model components and three buttons. If no model was de�ned for a speci�ed source, the list will be empty.
To add a component of the model, click the Add button and a component editor window will appear (see next
subsection). To alter the parameters of a component, highlight it in the list and press the Edit button. The last
button, Delete, removes a selected component from the list.

The lower group represents all available source attributes (they can be altered by interacting with the source
list too).

44

Figure 6.11: Source attributes edit window.

Point like source structure model component Editor

Figure 6.12: Source structure model edit window.

The component editor of the point like source structure model is a simple window that allows a user to provide
a relative position of a component (x(mas) and y(mas) �elds), ratio of component brightness with respect to the
central component, k, and a di�erence of spectral indices, b.

A user can specify which parameters of the source structure model should be estimated. The corresponding
check boxes are provided for this purpose.

6.2.6 Tab �Baselines (List)�

The tab Baselines (List) displays the attributes of the baselines. As for the previous two tabs, it includes
statistical information: the baseline name, total and processed numbers of observations, length of a baseline

45

Figure 6.13: Session Editor window, list of baselines.

(meters), residuals and correction of weights (Sig0(ps)) for delays. Also, the column Omit allows a user to
deselect some particular baseline from the solution.

The column, Est.Clk, marks baselines where clock o�sets need to be estimated. Depending on the procedures
performed by the correlator, there are cases when a baseline can have a constant clock o�set with respect to other
baselines (i.e., triangles do not close). To deal with such cases, CALC/SOLVE and νSolve adds an additional
parameter, a baseline clock o�set. A mouse click in this column turns on the estimation of the o�set for the
baseline. The character Y means �on�. By default, when a new VLBI session is read in, this �ag is �o�� for all
baselines. But when a previously processed session is read in (e.g., version 4 of the Mk-3 DBH format), the �ags
are set according to the baseline clock information stored in the database.

In general, the need for baseline clock o�set estimation is relatively rare. At the Goddard we apply the
following procedure to the baseline clock o�set. First, after all detected anomalies (clock breaks, ambiguities,
outliers, etc.) are resolved, then baseline clock o�sets are added to the list of the estimated parameters. Then, all
baseline clock o�sets with values less than three times their standard deviations are removed and the estimation
process is repeated. We also do not estimate baseline clock o�sets for baselines with a small number of good
observations (say, less than 10 points) and for o�sets where the estimated values are very small (e.g., less than
10ps). After reweighting and outlier elimination are performed, we will repeat the check of baseline clock o�set

46

values. As a result, baseline clock o�sets are usually estimated for only a few baselines.
The columns ClkVal and ClkSig show o�sets and theirs standard deviations (in picoseconds) for baselines

which clocks o�sets were estimated in the last solution.
To make the process of selection of the baseline clock o�sets faster, the symbols Y in the column Est.Clocks

are colored (see Fig. 6.13). The red color means that the absolute value of the estimate is less than its standard
deviation. The orange color means that the estimate is greater than one but less than three standard deviations.
The black color indicates that the estimated o�set is greater than three standard deviations, but less than 10ps,
or was not estimated yet. And the blue color means that the estimation is signi�cant.

The columns IonGrd and IonPhd represent �ags of taking into account ionospheric corrections (if available)
for the group and the phase delays. By default, we use the ionosphere corrections for the group delays. If you
are not sure, keep it as is.

Baseline Attributes Editor

A double mouse click in the area bounded by columns Idx and Sigma_0 invokes a baseline attributes editor
window (see Fig. 6.14). This window allows a user to turn �on� or �o�� all available baseline attributes and set
a value of additional weight manually for the baseline.

Figure 6.14: Baseline attributes edit window.

The baseline attributes editor window allows to alter the additional sigma for the group delay and delay rates.
Also, it displays the estimated baseline clock o�set and its standard deviations.

The checkbox Bind the zenith delays of the two stations is for tests purposes, do not turn it �on�.
If the last check box, Do not perform weight corrections for this baseline, is checked on, observations obtained

on this baseline will not be used in a procedure of weight corrections to have chi2 = 1. The values of the additional
weights, if they are not zeros, will be applied in data analysis.

6.2.7 Tab �Stations (Plots)�

The tab Stations (Plots) displays various station dependent data from either measurements or estimations. The
Fig. 6.15 shows an example of cable calibrations as a function of time.

Currently the following measurements are displayed: cable calibration values (if di�erent types of cable cali-
brations are available, they are plotted as separate data), meteorological parameters (atmospheric temperature,

47

Figure 6.15: Session Editor window, station dependent plots: cable calibration data.

pressure and relative humidity) and antenna pointing (azimuth and elevation, parallactic angle). In addition,
the following estimations and their standard deviations are displayed: model of clock function (if time-varying
parameters were estimated, e.g., PWL function or stochastic parameters, then polynomial model is not shown),
zenith delay and its gradients. Also, a total zenith delay is displayed on this plot.

6.2.8 Not used observation window

The Session Editor window is capable to list observations that are not in a solution. There are two groups of
such observations: unusable and deselected observations. The �rst group are observations that have either quality
code that is lower than the threshold or a source, a station or a baseline has been deselected. Also, in some rare
cases, when an observation has only one good channel it will be considered as unusable too.

The last group of observations are the observations that were explicitly marked for deselection either by a user
or the outlier processing procedure.

At any stage of data analysis a user can press a key combination Ctrl+i to invoke Not used observation
window, see Figs. 6.16�6.17. The window has two tabs, each for each type of not used observations.

The �rst tab, Unusable Observations, displays a list of unusable observations � station and source names,

48

Figure 6.16: A list of observations that are not in a solution: unusable observations.

time of observation, quality factors and a reason why the observation cannot be used. The list can be sorted by
content of each column with left mouse click on a header of a column.

The second tab, Deselected Observations, lists observations that were explicitly removed from a solution. In
addition to station and source names and quality factors, the list displays residuals of delays, their standard
deviations and the corresponding normalized residual of deselected observation.

The software is capable to save the list of observations with indication of their usability and residuals as
an ASCII �le. Such �le is designed to be used by external utilities, like anl_comments, and are generated
automatically when a user press Save button of the Session Editor window. To create the �le manually, a user
can click the button Export of the Not used observation window. The �le will be written in the directory speci�ed
by the �eld List of not used observations output of the software Preferences (see the section 4.1.1).

49

Figure 6.17: A list of observations that are not in a solution: deselected by a user observations.

50

Chapter 7

Selected practical issues of using νSolve in

a GUI mode

7.1 Processing a regular VLBI session

In this section we overview the operations necessary to analyze a regular 24-hour VLBI session. In general, we
start with simple parameterization, only clock shifts and rates, and perform an analysis of the single band delays.
At this stage we check for possible clock breaks at stations. Then, we process to the group delays to resolve
2π ambiguities and, again, possible e�ects that look like clock breaks. Before ambiguities and clock breaks are
resolved, there is no sense in estimating other parameters except the polynomials of the clock functions.

When these two phenomena, clock breaks and unresolved ambiguities are �xed, we add zenith delays and
station positions to the list of estimated parameters and check for outliers. Also, we calculate ionospheric correc-
tions.

Time-varying models of clock and tropospheric parameters are introduced in the last stage. Also, other
parameters are added: the rate of Earth rotation, angles of nutation, and baselines clock o�sets. At this stage
we also do a reweighting of the observations and process the outliers. The last two operations are performed in
conjunction.

Figure 7.1: GUI: use of external a priori �les.

Before you make any analysis, verify that you have all the necessary �les with a priori data. Check the tab
Options, the subtab External a priori and models, Fig. 7.1. If you do not have the �les, turn the corresponding

51

checkboxes �o��. Some of the �les can be obtained from

https : //cddis.nasa.gov/archive/vlbi/gsfc/ancillary/solve_apriori/

It is recommended to use the a priori �les at least for station positions, station velocities and source coordinates.
Also, keep information in these �les updated, it will save you time.

7.1.1 Reading the session and preparing for processing

For a demonstration of data analysis we use IVS-R4 session 13SEP05XE. This is a regular VLBI session, it has
one clock break e�ect at SVETLOE in the S-band and mixed value of ambiguity spacings in the S-band. The
clock break e�ect is caused by applied manual phase calibration in two parts.

First, the user has to read the session into νSolve. If the session is in the database format, two �les (S- and
X-band) are expected.

Figure 7.2: The session 13SEP05XE: the history records.

After the �les are imported and the Session Edit window has appeared on the screen, check the history part
of the session (preferable the X-band), see Fig. 7.2. To do so, select the Bands tab of the Session Editor and then
select the History tab of the X-band.

52

The highlighted text on the �gure history record says:

+MANUAL PCAL Bd, Sv, Tc

It is a part of the correlator report and means that manual phase calibration was applied for BADARY, SVETLOE
and TIGOCONC. Also, the correlator comments on station performance are in a section above this record.

Normally if the correlator applied manual phase calibration, we should not use the cable calibration data. On
the tab Stations (List), Fig. 7.3, we deselect the use of cable calibration data for these stations. Also, KOKEE
is known to have incorrect cable calibration measurements, so for this station use of the cable calibration data is
turned o� too.

Figure 7.3: The session 13SEP05XE: attributes of the stations.

If the checkbox Perform set up of the session of the con�guration tab Post import actions is �on� for a network
of the session (see subsection 4.2.4), νSolve will check the history records and will turn o� the cable calibrations
automatically for these stations (in this case you can see a note in the log, as it shown on Fig. 7.4). Since there is
no �xed format of reporting use of manual phase calibrations and correlator reports are written by humans, the
procedure of analysis of history records can misinterpret the records and assign a wrong �ag for a wrong station.
We would suggest to check history records manually even if the procedure of session setup is scheduled after the
data were read.

53

Figure 7.4: The session 13SEP05XE: part of the log, νSolve detected manual phase calibration for BADARY,
SVETLOE and TIGOCONC and turned o� the use of cable calibrations for these stations.

We chose KOKEE as the reference clock station. We set the number of its polynomial terms to zero (in this
case the clock parameters will not be estimated at all) and set the �ag Clk:Ref (a station with this �ag will be
declared a �reference clock station� in the output, database or vgosDb format; also, if the number of polynomial
model is not set to zero, a constraints will be applied to the clock parameters of the station) for the station, see
Fig. 7.3. Also, for station NYALES20 the �ag "Estimate position" is not set, we consider it to be the reference
station.

Before processing the session, check the data collected at the stations, Stations (Plots) tab of the Session
Editor. For this session there is a break in the cable calibration data for MEDICINA, see Fig. 7.5.

Such e�ects are relatively rare and, sometimes re�ect actual cable behavior. To �gure out is this is a real
change in cables or some arti�cial e�ect, we need to make an analysis of the session and check for residuals of
station MEDICINA. If there is a clock break of about 12ns when the MEDICINA cable calibrations are applied,
then we would need to tun o� the cable calibration data for this station.

7.1.2 Processing single band delay

To obtain a solution, press the Process button at the bottom of the Session editor. By default, we begin data
analysis using the single band delays. If the user did not switch to another type of observables, a single band
delay solution will be obtained using a simple model � only clock o�sets and rates will be estimated. To see the
results of this solution switch to residuals, the tab Bands, subtab Data, see Fig. 7.6.

On these plots only the residuals for MEDICINA are displayed. As one can see, there is an expected clock
break, so we need to turn o� the use of cable calibration for MEDICINA. Switch to Stations (List) and turn
o� the proper �ag. Repeating the estimation of clocks shows that there is no longer a visible clock break for
MEDICINA after the cable calibration is turned o�.

Since the single band delay residuals do not reveal any other clock break e�ects, we can switch to the group
delays and continue the analysis. At the Band tab of the window, select the Data tab, then click on the combobox
of the Y axis in the Axis to Plot group of the plotter. Select the Res: GR delay, ns option to plot the group delay
residuals (see Fig. 7.7).

On the plot one can see the group delay residuals calculated using a solution for the single band delays.
Di�erences from these two observables are caused by contribution from the ionosphere and unresolved ambiguities.
If you add lines to the plots (checkbox Lines in the group Plot data as of the plotter) or display each baseline one
by one, you can see the e�ect of the unresolved ambiguities.

7.1.3 Resolving ambiguities

νSolve has two modes for �xing the ambiguities � manual and automatic. In the manual mode, a user marks
one or more points and presses either the �-� key or the �=� key to adjust ambiguity multipliers. To invoke the
automatic mode, press the Ambig button of the Session Editor window. Usually, the automatic mode should be
used to resolve the ambiguities, and adjustments should be made using the manual mode when it is necessary.

The group delay ambiguities have to be resolved for each band separately and before including the ionosphere
corrections for the group delays.

54

Figure 7.5: Session 13SEP05XE: cable calibrations data.

So, press the button to resolve the ambiguities. Then make a new solution. The residuals for the X-band will
be in the range of 20ns, which is smaller than the ambiguity spacing. After that, switch to the S-band (select the
tab S-Band in the top right part of the window) and repeat the procedure. For the S-band, the scatter is usually
much bigger. Also, it often happens that, due to lost channels at one or more stations, the ambiguity spacing
can vary depending on the stations that form a baseline. The typical value of the ambiguity spacings for each
baseline is showed on Baselines tab in the bottom of the tab Bands.

A left mouse button click on the header Ambig.Spc of the Baselines tab sorts the column in numerical order,
Fig 7.8. For our session the baseline MEDICINA:YEBES40M has ambiguity spacing equal to 25ns, all other
baselines with MEDICINA as well as the baselines with FORTLEZA and ZELENCHK have ambiguity spacings
of 50ns, and all remaining baselines have ambiguity spacings of 100ns.

The combination of large scatter and small ambiguity spacing makes it hard to resolve the ambiguities in
automatic mode. You will need to repeat the operation several times. If necessary, roll back to the single band
delay solution and repeat the operation or adjust ambiguities manually.

The following algorithm could help in complicated cases: turn o� stations with clock breaks; deselect all
baselines but one of stations which ambiguity spacings less than the nominal value (usually, keep selected a
baseline with the reference clock station). Resolve ambiguities. Manually adjust ambiguities for deselected

55

Figure 7.6: Session 13SEP05XE: single band delay residuals.

baselines � on the plot press -* button, than highlight only one particular baseline, turn on plotting all or usable
observations (the radio button A or U in the Plot Ranges widget group). and adjust the ambiguities manually for
all observations of the baseline. If everything is ok, turn on the stations with clock breaks and resolve ambiguities
for these stations. It should be noted also, if a station is deselected, all its baselines will be deselected too by the
software. The software deselects a station if all its baselines are deselected too. So, if you turn on a station (on
the Stations (List) tab) you have to turn on its baselines also (on the Baselines (List) tab).

As one can see, the station SVETLOE has a clock break e�ect at S-band. The reason for this break in the
residuals is a manually applied phase calibration that consists of two parts. There are records in the correlator
report (see the history part):

SVETLOE (Sv/S): Low phasecal amplitudes in X and S-band leading to 'H' codes.

Manual phasecal applied in 2 parts at SVETLOE.

Part one ends at scan 249-0551, part two continues to

the end of the experiment.

56

Figure 7.7: Session 13SEP05XE: group delay residuals.

After all ambiguities are resolved, the residuals should look like the ones shown in Fig. 7.9. The clock break
at SVETLOE is clearly visible.

7.1.4 Processing a clock break

In the software there are two approaches to take into account a clock break. The �rst one is to estimate clock
break magnitudes in a solution (as interactive SOLVE does). The second approach is to add a stepwise linear
function to compensate for the break. Both approaches have their own pluses and minuses. For the �rst type of
clock breaks we do not need to know a magnitude of the break, on the other hand, if a time interval between two
breaks is short, global SOLVE will fail to obtain a solution due to high correlations.

The user can add a clock break to observations on one particular band or to all data. Clock breaks that
are set up for a band can be only of one type, a stepwise linear function. Clock breaks that are applied to all
observations could be of both types. When the software adds a clock break and the check box Estimate clock
break parameters in common solution on the sub-tab Options �> General is �on� (see section 4.2.1), then the
clock break will be added to whole session and will be of the second type.

The description of the clock break event consists of the station name, the epoch of the break, and the magnitude

57

Figure 7.8: Session 13SEP05XE: Ambiguity spacings on the S-band.

(for the �rst type of clock breaks) of the break. There are three options for processing a clock break. With the
�rst option, manual, the user speci�es the parameters of the break explicitly in a special window (see Fig. 6.9).
With the second option, semiautomatic, the user provides to νSolve the station name and the epoch of the break,
and νSolve evaluates the magnitude of the break. This option will be discussed in detail later. With the last
option, automatic, the software searches for a clock break and evaluates parameters by itself. To invoke this
procedure, press the CBreak button in the bottom of the Session Editor window. It should work �ne for this
session (with proper a priori �les and correctly resolved ambiguities), but the procedure for clock break detection
currently is in the embryonic stage, and there are cases where it will not work.

Here we will describe how to deal with clock breaks in semiautomatic mode. If you already pressed the CBreak
button and the break has vanished, just delete the clock break record. To do it, follow the instructions:

� if the option Estimate clock break parameters in common solution is turned �o��, in the tab Bands select
sub-tab Stations (at the bottom of the tab). Otherwise, select the tab Stations (List);

� double click on the station SVETLOE � a station parameter editor will appear;

� highlight the clock break entry in the List of Clock Break Events and press the Delete button;

58

Figure 7.9: Session 13SEP05XE: group delay residuals on the S-band. A clock break e�ect is on baselines of
SVETLOE.

� answer with the Yes button on the prompt about deletion;

� close the window with the Ok button;

� return back to the Data sub-tab;

� press the Process button to recalculate the residuals.

As a result, you should get the same distribution of residuals as before in Fig. 7.9. To process a clock break
in semiautomatic mode, we need to highlight the rightmost points before the break in the few baselines where
the break has occurred. Here is a step-by-step instruction of how to do it. First, press the -* button above the
list of baselines of the plot to unselect all the data. Then, click with mouse right button on the button F+ above
the baseline list and select from the menu the entry SVETLOE:. The plotter will select only those baselines in
which SVETLOE is the �rst station. Mark the points before the clock break by pressing the left mouse button
and drag the marking area to include the points (see Fig. 5.5). At the end, you should get a plot such as the one
shown in the top part of Fig. 7.10.

59

Figure 7.10: Session 13SEP05XE: group delay residuals. Processing a clock break.

Unselect all baselines by pressing the -* button, and click mouse right button on the button F+ again. This
time, choose the entry :SVETLOE to select the baselines in which SVETLOE is the second station. Again, mark
the rightmost points before the break. You should get a plot such as the one shown in the middle part of Fig. 7.10.

Left click on the button F+, and choose station SVETLOE. All baselines with SVETLOE will be visible (see
the bottom part of Fig. 7.10).

Press the Ctrl+b key combination. The software will use the marked points to �gure out the station at which
the clock break occurred and when it occurred. Also, the software will estimate the magnitude of the clock break
and adjust the residuals for its value.

Select all baselines using the button *+, and press the Process button to refresh the residuals. At this stage
you should get a distribution such as the one shown in Fig. 7.11.

If necessary, recalculate the ambiguities (using the Ambig button), update the residuals (using the Process
button) and re-estimate the magnitude of the clock break (using the Ctrl+b key combination).

60

Figure 7.11: Session 13SEP05XE: group delay residuals on the S-band. The clock break at SVETLOE is taken
into account.

Because the station and the epoch of the clock break is known, every time a user presses the Ctrl+b keys,
νSolve will use these pieces of information to calculate the magnitude of the break; no other point selection is
necessary. Also, sometimes it happens that several stations have clock breaks or that a station has several clock
breaks. In this case you need to mark and then press the Ctrl+b keys to notify νSolve about each clock break.
One by one, all known clock breaks will be included in the estimation procedure.

You do not need to perform the procedure of selecting points as described above. The software checks the
marked points to �gure out the station name (it uses the most frequent name) and the epoch of the break (it
takes the latest epoch from the marked points). So, if you are sure, it is enough to mark just two baselines with
a clock break without any operations of baseline selection and deselection.

Because we resolved the group delay ambiguities and �xed the clock break at SVETLOE, we can extend our
parameterization model and include zenith delays and station positions as local parameters as shown in Fig. 7.12.
Select the X-band sub-tab and press the Process button to obtain a new solution. You should get a distribution
of residuals similar to the top plot of Fig. 7.13. As one can see, there are several points that have residuals on the
level of 13− 15ns. These are examples of large outliers. Before continuing, we want to remove them. Mark these
points, as shown in the middle plot of the �gure, and press the Ctrl+x key combination. Repeat the solution to

61

Figure 7.12: Estimated parameters

refresh the residuals. You should get a picture as shown in the bottom plot of Fig. 7.13.
Check the residuals for every baseline, repeatedly clicking on the ��� button above the baseline names of the

plot, to be sure that there are no any other e�ects that look like clock breaks.
When you done with X-band, switch to S-band. When a user estimates parameters for a speci�ed type of

observable (single band delay, group delay, etc.) and selected band, νSolve evaluates residuals for all bands and
observables with respect to the obtained parameters. Therefore, when you switch to the S-band data, the residuals
should look completely di�erent, see Fig. 7.14. The reason for this is the in�uence of the ionosphere. We did
not calculate the ionospheric corrections yet; therefore the parameter estimations for the two di�erent frequency
bands are di�erent.

Press the Process button to recalculate the residuals for this band. If necessary, repeat the procedure for
ambiguity resolution.

Now we can set a �standard� number of polynomial coe�cients for the clock model. Go to the Stations (List)
tab and right click in the column #Clk.Terms to increase the number of polynomial coe�cients to three for each
station except the clock reference station. To decrease the number, left click in the column. Usually, we set the
number of polynomial clock terms to three to be compatible with CALC/SOLVE. However, sometimes a station's
clock behavior can have strongly expressed higher polynomials. In this case you can set up higher polynomial
orders. Also, you can set the standard polynomial order during the early stages of data processing. There are no
restrictions � just use common sense.

Again, recalculate the residuals and, if necessary, repeat the procedure for ambiguity resolution. Check the
residuals for every baseline (using the ��� and ��� buttons) for e�ects that look like clock breaks. At the end you
should get residuals as shown in Fig. 7.15.

Also, for S-band it frequently happens that for some baselines the ambiguity spacings are less than the
nominal 100ns value. For this session they are: baseline MEDICINA:YEBES40M (25ns) and other baselines
with MEDICINA and baselines with FORTLEZA and ZELENCHK (50ns). We strongly recommend inspecting
the residuals at these baselines for unresolved ambiguities and �xing them, if necessary, manually. To check the
ambiguity spacings of baselines, you can plot ambiguity spacings as a function of time. Click on the combo box
next to the Y label of the Axis to plot group of the plot and choose Ambig spacing, ns to display the data. A
double click on a point will open a window with information about the corresponding observation.

62

Figure 7.13: Session 13SEP05XE: group delay residuals. Removing large outliers.

7.1.5 Ionosphere correction

To evaluate the ionosphere corrections, press the IonoC button at the bottom of the Session Editor window and
recalculate the residuals. After this procedure the residuals for X-band will look as shown in Fig. 7.16.

At this stage, when the ionospheric corrections are added to the model, the residuals for X-band and S-band
look similar; the di�erence is only in the standard deviations of observations. In fact, for both cases we have an
�ionosphere free combination� of dual frequency observations.

It is worth noting that if there are some unresolved ambiguities or clock breaks, they will a�ect the ionosphere
corrections and, as a result, the residuals of both bands at this stage. Check the baselines one by one. If you
notice one of these e�ects, remove the ionospheric corrections by pressing the Iono0 button, �nd the band where
the e�ect appears, and �x it. Then, repeat the procedure of calculating the ionosphere corrections.

Once the ionospheric corrections have been calculated, all other solutions are made using the observations at

63

Figure 7.14: Session 13SEP05XE: group delay residuals on the S-band.

X-band.

7.1.6 Obtaining a full solution

Now we can set up the �standard� set of parameters. Usually, we estimate clocks and zenith parameters as
piecewise-continuous functions, and we treat the station positions, rate of Earth rotation, angles of nutation, and
baseline clock o�sets as local parameters, see Fig. 7.17.

To con�gure a piecewise-continuous (PWL) function, press the Edit button (see the �gure). For the PWL
mode, there are two values � the interval of a piece and the magnitude of the constraints that have to be applied
to the variations of the parameter. By default, the interval for the clocks and for the zenith delays is one hour.
The constraints for clocks are 72 ps/hr and for zenith delays are 1.1992 cm/hr. These values conform to the
default values of interactive SOLVE, 2.00 D-14 and 40.00 ps/hr, respectively. For the atmospheric gradients, the
default value for the interval is 28.8 hr, which is supposed to be greater than the length of a session. In this
case, νSolve, as well as interactive SOLVE, will adjust the PWL interval to the length of the session. The default
constraints for the gradients are loose; currently, they are 109 m/hr.

If you turned on the baseline clock o�sets, you need to select the baselines for which the clock o�sets will

64

Figure 7.15: Session 13SEP05XE: group delay residuals on the S-band.

be estimated. In contrast to the �ags for other estimated parameters, the �estimate clock o�set� �ag for each
baseline is turned o� by default. To turn these �ags on, go to the tab Baselines (List) and turn on the proper
�ag as described in the subsection 6.2.6. Not all baselines require estimation of a clock o�set. Use this parameter
only for baselines that reveal signi�cant clock o�sets.

Press the Process button to estimate parameters. Check for large outliers. Fig. 7.18 displays the residuals.
As one can see, there are a few observations that have large residuals. We exclude them from the solution. It
is (relatively) safe because later we will add into the analysis all observations that were previously excluded or
were never included at all, if they have residuals less than three sigmas. On the other hand, manually exclude
observations that are really large outliers (i.e., that have residuals of, perhaps, eight sigmas and higher, see plots
of Normalized residuals).

Also, it is worthwhile to check the obtained solutions. The estimations of the local parameters are printed
in the log output. The estimations of time varying clock and troposphere parameters are plotted on the plot of
the Stations (Plots) tab. Select Est.Clocks, ps as the Y axis to check the estimations of clocks, Est.Zenith, ps to
check the wet zenith delays, and Est.AtmGrd:N, cm and Est.AtmGrd:E, cm to check the tropospheric gradients
in the north and the east directions.

65

Figure 7.16: Session 13SEP05XE: group delay residuals.

7.1.7 Reweighting of observations

To make a reduced χ2 close to unity, νSolve (as well as interactive SOLVE) calculates additional sigmas that
will be added to the standard deviations of the observations to compute the weights of the observations. The
algorithm of calculation of the additional sigmas is described in [8].

Since these calculations are made during data processing, to turn on the procedure of reweighting, check the
Evaluate weight correction box of the Reweighting group at the Options tab. When you press the Process button
next time, the weight corrections will be evaluated. To put them into e�ect, a user needs to repeat data analysis.
This is a converging process. Usually you need to make three to four iterations to obtain the proper additional
sigmas.

The weight corrections are calculated in two modes: independently for each baseline and for the whole band
(see the Reweighting mode radio button in Options). Depending on the mode, the user can check the evaluated
weight corrections either in the column Sigma_0 at the tab Baselines (List) or in the column σ0 of the group
Bands at the tab General Info.

There are two shortcut keys, Alt-2 and Alt-3. Pressing these keys are equivalent to clicking the Process button
two and three times respectively.

66

Figure 7.17: Estimated parameters.

Figure 7.18: Session 13SEP05XE: group delay residuals.

7.1.8 Outlier processing

When the procedure of reweighting is completed, we can remove outliers. By �outlier� we mean an observation
with an absolute normalized residual greater than a user-speci�ed threshold. The residuals are normalized either
by a dispersion, as it is described in [7], or by WRMS. The normalization with the dispersion is done if the
checkbox Use SOLVE compatible mode is �on�, otherwise, the WRMS are used.

By default, the threshold is set to three (the normalized residuals are unitless; with some assumptions, this
corresponds to 3σ for non-normalized residuals). The procedure is iterative. νSolve searches for the observation
with the largest normalized residual, deselects it from the data analysis and obtains a new solution. Then it

67

repeats the procedure. The user can change the maximum number of iterations. By default, this value is equal
to 40 (see the Options tab).

To initiate the procedure for outlier processing, press the Outlr button at the bottom of the Session Editor
window. νSolve will start to deselect outliers and recalculate the solution. It can take some time.

By default, when the software recalculates the solution after the elimination of an outlier, the reweighting
coe�cients are not calculated. After the iterations have �nished, make several solutions to refresh the reweighting
corrections and keep reduced χ2 close to unity.

There is also a shortcut, Alt-4, that is equivalent to clicking on the Outlr button and then pressing the Alt-3
key combination.

When you get to the stage where there are no outliers to remove, change the action of outlier processing from
Elimination to Restoration at the Options tab, in the Outliers Action group of radio buttons. Repeat the outlier
processing. With the restoration action, νSolve includes in the data analysis all observations that have normalized
residuals less than the threshold.

Repeat the elimination and restoration actions. At the end, there should not be any observations that can be
either eliminated or restored.

At this stage, check the baseline clock o�sets again. When the reweighting is done, the estimations will not
be so optimistic, and the number of signi�cant clock o�sets will decrease. If necessary, repeat the procedure of
outlier processing.

7.1.9 Saving the results

To save the edited session, press the Save button at the bottom of the Session Editor window. The session will
be saved in the corresponding format. Also, a �le in the interactive SOLVE spool�le format will be generated.

7.2 Using a source structure model

The recent VGOS observations showed that the e�ect of source structures becomes detectable in the broadband
group delays. To take into account this e�ect a simple multi point source structure model is implemented in
νSolve, see [4] for details.

To turn on using the model, a user should check on the checkbox Apply source structure model of the "General
con�gure editor" or "Options" tab of the "Session editor". A source for which the model should be applied have
to have the attribute "Apply the multi point source structure model" set to �on�. It can be done with the source
attribute editor (see 6.2.5 Source Attributes Editor) or clicking at the corresponding row of the column UseSSM
of the sources list, 6.2.5 Tab �Sources (List)�).

Components of the model should have non-zero position and ratio of brightness. To edit the parameters of a
component manually, use the source structure model component Editor (see Fig. 6.12).

Another option to provide parameters of the model is to set up a �le with a list of sources and their source
structure model components. Using of such �le is con�guring in the tab External a priori and models (see the
subsection 4.2.3 Applying di�erent models and using external a priori information). If the �le is exist and the
checkbox Source structure model is on, then the �le will be read after loading a session.

The �le has the following format. Any string that starts with a char �$�, �#�, �*� or �/� is considered as a
comment line. Each line consist of a token (case insensitive) and its value pairs:

Token:Value

A line that has a token-value pair Src:<SourceName> speci�es a source and a �rst component of the model. A pair
SSM_T:MP determines that the type of a source structure model is the multi point model. Tokens x and y provide
relative coordinates of the component. A token K sets the brightness ratio and a token B � a di�erence of spectral
indices. Tokens ER , EK and EB specify which parameters should be estimated: position of a component, ratio
k or di�erence of spectral indices β correspondingly. A token T speci�es an epoch since that the model is valid.
The tokens x , y and k are mandatory if the model type is MP . If other parameters are not speci�ed, they will

68

be zero (β), �no� (ER , EK and EB) and some very early epoch for T . If a source structure model has more
than one secondary component, the token Src: should be omitted.

For example, the records

Src:0016+731 SSM_T:MP i:1 x:-0.5970 y: 0.0894 K:0.1850 B: 4.2510 ER:No EK:No EB:No

i:2 x:-0.7031 y: 0.7141 K:0.0852 B: 0.8741 ER:No EK:No EB:No

Src:0016+731 SSM_T:MP i:1 x:-0.5231 y: 0.0627 K:0.5320 B:-0.4592 ER:No EK:No EB:No T:2018/01/01

speci�es that if a �rst epoch of observations is before January 1, 2018 then the model with two secondary
components will be used, otherwise a model with one secondary component will be applied.

If the brightness ratio, K, is not fall into realistic interval,]0..1[, or both coordinates, x and y, are zeros, then
the model will be turned o�. It can be useful when you have a time tag �T:� to specify since when the model
should not be applied.

Number of spaces between tokens can be arbitrary. The tokens :1 }, {\verb :2 , etc. are not used, they are
added mostly for user convenience.

An example of such �le is distributed along with the software, see data/glo.ssm �le. Starting with the
distribution version 0.7.1, this �le contains results of estimation of the parameters of the source structure model
from available at this time VGOS sessions. Currently, the estimations are available for several radio sources:
0016+731, 0059+581, 0119+115, 0552+398 and 3C371. In future, this list, perhaps, will be extended.

To estimate parameters of a model component, a user should set to "Lcl" the corresponding checkbox, Source
structure model of the widget group Parameters to estimate of the tab Operation. In contrast to other estimated
parameters, the components of the model are accumulating the estimated values. It means that after each iteration
the obtained estimations are added to their a priori values. It is done to �nd out how meaningful the estimations
are. The model is highly non linear, it is strongly depend on initial (a priori) values. If a model is real, than with
each iteration the estimations will go smaller and smaller, the positions of a component will be in a circle of tens
mas, the k ratio will be bigger than 0 and less than 1. Everything else should be considered as mis�tting.

69

Chapter 8

Scripting support

8.1 ECMAScript in νSolve

The scripting abilities in νSolve are in development stage. The software uses the script engine that is provided
by Qt library (QtScript module). This is a realization of ECMAScript, a standardized version of JavaScript �
simple, powerful and �exible object oriented scripting language. Documentation and user guides are available on
the Net, one of the link is:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

To realize scripting in νSolve we made some classes and objects accessible to the script engine. Since this
feature of the software is in active development phase, the list of available for script objects will be extended in
the future.

To invoke a script in νSolve a user should provide a �le name of the script with �-t� option, e.g.:

> nuSolve -t pia4INT.js

Here the �le pia4INT.js is a script that executes all post import actions for INT type of a VLBI session, see 4.2.4.
This �le is a part of nusolve distribution and can be found in a directory scripts of the distribution.

If a �le cannot be found in the current directory, νSolve will search a �le with the provided name in the system
wide directory (can be altered during execution of configure script, see Chapter 2 Installation). This feature
allows a user to skip path to the scripts that are provided by the distribution.

When a user invokes νSolve to execute a script, the software uses the standard or altered con�guration.
However, it does not save changes to the con�guration that were made in a script. So it is safe to modify options,
models, parameters, etc.

In the following sections we discuss the internal objects that are accessible to the script engine.

8.2 Software set up in scripts

Changing the software setup (see Chapter 4) in a script is done through an object setup. The properties of the
object are shown on the table Tab. 8.1.

The properties have read/write access, so user can change them. After end of script execution, the modi�ed
properties will not be saved (in contrast to the interactive mode). An example of using the object setup:

setup.path2SpoolFileOutput = 'spoolfiles-tests';

setup.have2KeepSpoolFileReports = true;

print('Path to spool files: ' + setup.path2SpoolFileOutput);

print('Have to keep spool files: ' + setup.have2KeepSpoolFileReports);

70

will generate the following output:

Path to spool files: spoolfiles-tests

Have to keep spool files: true

Type Property Access Meaning
String path2Home Read/Write a path to software home directory
String path2CatNuInterfaceExec Read/Write a path to the Catalog <�> nuSolve Interface
String path2DbhFiles Read/Write a path to VLBI sessions in DBH format
String path2VgosDbFiles Read/Write a path to VLBI sessions in vgosDb format
String path2VgosDaFiles Read/Write a path to VLBI sessions in vgosDa format
String path2APrioriFiles Read/Write a path to search for a priori �les
String path2MasterFiles Read/Write a path to read master �les
String path2SpoolFileOutput Read/Write a path to write a spool �le
String path2NotUsedObsFileOutput Read/Write a path where to put observations info
String path2ReportOutput Read/Write a path where to save reports in the spool �le format
String path2NgsOutput Read/Write a path where to store NGS �les
String path2PlotterOutput Read/Write a path to plotter's output
boolean have2UpdateCatalog Read/Write if true the software will use the catalog
boolean have2MaskSessionCode Read/Write save a session with alternative database name
boolean have2KeepSpoolFileReports Read/Write copy a spool �le into path2ReportOutput directory
boolean have2LoadImmatureSession Read/Write load a session that does not have all data
boolean have2AutoloadAllBands Read/Write automatically load all available bands
String pwd Read an absolute path of the current directory

Table 8.1: Execution control properties of setup object.

8.3 Solution con�guration in scripts

To modify the con�guration of a solution an object con�g is available in a script. The properties of the object are
shown on the tables Tab. 8.2 � 8.6. All properties have read/write access, so user can inquire or modify them.
For example, the commands in a script

config.qualityCodeThreshold = 4;

print('QC threshold = ' + config.qualityCodeThreshold);

will generate the following output:

QC threshold = 4

The �rst group of properties controls how a solution will be obtained. They are shown on Tab 8.2 and
correspond to the general options of software con�guration (see subsection 4.2.1 for details).

The �rst column of the tables displays type of a property. ECMAScript has one primitive type for integers
and doubles, �Number�. In the table instead of type Number the two C++ types are shown (int or double)
to make a user easier to �gure out what values are expected by the software. Another set of types are provided
by the metaobject �CFG� (like CFG.VlbiDelayType on the Tab. 8.2), these types will be discussed later.

The Tab. 8.3 and Tab. 8.4 shows properties that a�ects processing of outliers and weight correction (as it
described in the subsection 4.2.2).

Manipulations with external a priori data (discussed in subsection 4.2.3) are displayed on Tab. 8.5.
The next table, Tab. 8.6, shows properties that specify which contributions will be used in a solution. The

contributions were discussed in subsection 4.2.3.
In the last table, Tab. 8.7, there are properties that specify which �yby models should be used in a solution.

The �yby models can be adjusted for the two e�ects: tropospheric zenith delay mapping function and source of
cable calibration corrections.

The �yby tropospheric zenith delay mapping function can be switched o�, or a user can chose which model to
apply: Niell [6] or MTT [5] mapping function. To use the �yby model, the properties �have2ApplyNdryContrib�

71

Type Property Access Meaning
int qualityCodeThreshold Read/Write Quality Code threshold
int goodQualityCodeAtStartup Read/Write initial Quality Code threshold for non-processed yet

session
boolean useGoodQualityCodeAtStartup Read/Write for new session initially use observations with Quality

Code of goodQualityCodeAtStartup or higher
CFG.VlbiDelayType useDelayType Read/Write type of delay to use
CFG.VlbiRateType useRateType Read/Write type of rate to use
int activeBandIdx Read/Write index of the band to process
boolean isSolveCompatible Read/Write run in interactive SOLVE compatible mode
boolean useDynamicClockBreaks Read/Write estimate clock break parameters in a common solution
boolean useSolveObsSuppresionFlags Read/Write use SOLVE observation elimination �ag
CFG.EstimatorPwlMode pwlMode Read/Write mode for piece-wise continuous function for parame-

ters estimated as PWL

boolean doDownWeight Read/Write downweight delays
boolean have2outputCovarMatrix Read/Write controls output of a covariance matrix in a spool �le

Table 8.2: Execution control properties of con�g object.

Type Property Access Meaning
CFG.OutliersProcessingMode opMode Read/Write outlier processing mode, band-wide or for each

baseline
CFG.OutliersProcessingAction opAction Read/Write outlier processing action: remove an outlier

from a solution or include it back
double opThreshold Read/Write threshold for residuals to specify an outlier
int opIterationsLimit Read/Write limit for a number of iterations
boolean opHave2SuppressWeightCorrection Read/Write need to turn o� weight corrections while run-

ning iterations
boolean opHave2NormalizeResiduals Read/Write use normalized residuals to determine outliers
boolean opIsSolveCompatible Read/Write evaluate the normalized residuals in SOLVE

compatible mode

Table 8.3: Outlier processing properties of con�g object.

and �have2ApplyNwetContrib� should be set to false and the property ��ybyTropZenithMap� should be one of
�CFG.TZM_NMF� or �CFG.TZM_MTT�. The GUI mode of the software will not allow a user to apply both
the �yby model and the contributions. In the script mode it is a user responsibility to not use the e�ect two
times.

Starting with version 0.7.5 of the software νSolve is capable to accumulate cable calibration corrections from
di�erent sources (FS log �les, CDMS or proxy (PCMT) cable corrections). When these data are available,
the a user can specify what type of cable calibration corrections should be used by adjusting the property
��ybyCableCalSource�. The allowable values are listed in the table Tab. 8.8: �CCS_DEFAULT�, �CCS_FSLG�,
�CCS_CDMS� and �CCS_PCMT�.

The metaobject �CFG� provides types of for communication with the object con�g. Tab. 8.8 lists such types
and their values.

Below there are several examples of using the object con�g in scripts. To acquire information about current
control properties a user can run put into a script the following code:

Type Property Access Meaning
boolean doWeightCorrection Read/Write switches the evaluation of weight corrections
CFG.WeightCorrectionMode wcMode Read/Write weight correction mode, band-wide or for each base-

line
boolean useExternalWeights Read/Write use an external �le with precalculated weights
String extWeightsFileName Read/Write a name of the external �le

Table 8.4: Weight correction properties of con�g object.

72

Type Property Access Meaning
boolean useExtAPrioriSitesPositions Read/Write use external site positions
boolean useExtAPrioriSitesVelocities Read/Write use external site velocities
boolean useExtAPrioriSourcesPositions Read/Write use external source positions
boolean useExtAPrioriErp Read/Write use external ERP
boolean useExtAPrioriAxisO�sets Read/Write use external axis o�sets
boolean useExtAPrioriHiFyErp Read/Write use external model for subdiurnal ERP variations
boolean useExtAPrioriMeanGradients Read/Write use external mean atmospheric gradients
boolean useExtAPrioriSsm Read/Write use external �le with source structure models
String extAPrioriSitesPositionsFileName Read/Write a �le name for site positions
String extAPrioriSitesVelocitiesFileName Read/Write a �le name for site velocities
String extAPrioriSourcesPositionsFileName Read/Write a �le name for source positions
String extAPrioriErpFileName Read/Write a �le name for ERP
String extAPrioriAxisO�setsFileName Read/Write a �le name for axis o�sets
String extAPrioriHiFyErpFileName Read/Write a �le name for subdiurnal ERP variations
String extAPrioriMeanGradientsFileName Read/Write a �le name for mean atmospheric gradients
String extAPrioriSsmFileName Read/Write a �le name for external source structure model
String eccentricitiesFileName Read/Write a �le name for eccentricities

Table 8.5: Use of external a priori properties of con�g object.

Type Property Access Meaning
boolean have2ApplyPxContrib Read/Write apply contributions for the polar motion, X-component
boolean have2ApplyPyContrib Read/Write apply contributions for the polar motion, Y-component
boolean have2ApplyEarthTideContrib Read/Write apply contributions for solid Earth tides
boolean have2ApplyOceanTideContrib Read/Write apply contributions for ocean tides loading
boolean have2ApplyPoleTideContrib Read/Write apply contributions for pole tide deformations
boolean have2ApplyUt1OceanTideHFContrib Read/Write apply contributions for subdiurnal UT1 variations
boolean have2ApplyPxyOceanTideHFContrib Read/Write apply contributions for subdiurnal polar motion
boolean have2ApplyNutationHFContrib Read/Write apply contributions for libration in ERP (CALC 10)
boolean have2ApplyUt1LibrationContrib Read/Write apply contributions for libration in UT1 (CALC 11)
boolean have2ApplyPxyLibrationContrib Read/Write apply contributions for libration in polar motion (CALC 11)
boolean have2ApplyOceanPoleTideContrib Read/Write apply contributions for ocean pole tide loading
boolean have2ApplyFeedCorrContrib Read/Write apply contributions for feed horn rotation
boolean have2ApplyTiltRemvrContrib Read/Write apply contributions for axis tilt remover
boolean have2ApplySsm Read/Write turn on/o� using the source structure model
boolean have2ApplyAxisO�setContrib Read/Write apply contributions for axis o�sets
boolean have2ApplyNdryContrib Read/Write apply contributions for refraction, hydrostatic atmosphere
boolean have2ApplyNwetContrib Read/Write apply contributions for refraction, wet atmosphere
boolean have2ApplyOldOceanTideContrib Read/Write apply contributions for old model of ocean tides
boolean have2ApplyOldPoleTideContrib Read/Write apply contributions for old model of ocean pole tides

Table 8.6: Use of contributions properties of con�g object.

print('QC threshold : ' + config.qualityCodeThreshold);

print('Good QC threshold @startup : ' + config.goodQualityCodeAtStartup);

print('use QC threshold @startup : ' + config.useGoodQualityCodeAtStartup);

print('Type of delay to use : ' + config.useDelayType);

print('Type of rate to use : ' + config.useRateType);

print('Active band index : ' + config.activeBandIdx);

print('Run in SOLVE compatible mode: ' + config.isSolveCompatible);

print('Estimate clock breaks : ' + config.useDynamicClockBreaks);

print('Use SOLVE suppression flag : ' + config.useSolveObsSuppresionFlags);

print('PWL parameters model : ' + config.pwlMode);

print('Make downweighting : ' + config.doDownWeight);

The output is depend on the current con�guration, here how can look:

QC threshold : 5

Good QC threshold @startup : 8

73

Type Property Access Meaning
CFG.TropZenithMap �ybyTropZenithMap Read/Write Speci�es a model of mapping function;
CFG.CableCalSource �ybyCableCalSource Read/Write Speci�es a source of origin of cable calibration corrections.

Table 8.7: Properties of con�g object that control �yby models.

Type Values Meaning
VlbiDelayType VD_NONE do not use delays

VD_SB_DELAY use single band delays
VD_GRP_DELAY use group delays
VD_PHS_DELAY use phase delays

VlbiRateType VR_NONE do not use rates
VR_PHS_DELAY use phase rates

WeightCorrectionMode WCM_BAND band-wide weight correction
WCM_BASELINE baseline dependent weight correction

OutliersProcessingMode OPM_BAND band-wide outlier processing
OPM_BASELINE baseline dependent outlier processing

OutliersProcessingAction OPA_ELIMINATE remove outliers
OPA_RESTORE include back outliers

EstimatorPwlMode EPM_INCRATE incremental rates model of PWL parameters
EPM_BSPLINE_LINEA linear B-Splines model of PWL parameters
EPM_BSPLINE_QUADR quadratic B-Splines model of PWL parameters

TropZenithMap TZM_NONE do not use �yby mapping functions
TZM_NMF use Niell mapping function
TZM_MTT use MTT mapping function

CableCalSource CCS_DEFAULT use the default source of cable calibrations
CCS_FSLG use cable calibrations from FS log �le (if available)
CCS_CDMS use CDMS cable calibrations (if available)
CCS_PCMT use proxy (PCMT) cable calibrations (if available)

Table 8.8: Properties of metaobject CFG.

use QC threshold @startup : true

Type of delay to use : CFG.VD_SB_DELAY

Type of rate to use : CFG.VR_NONE

Active band index : 0

Run in SOLVE compatible mode: true

Estimate clock breaks : true

Use SOLVE suppression flag : true

PWL parameters model : CFG.EPM_INCRATE

Make downweighting : false

To switch type of delays from the single band to the group delay and set the realization of piece-wise continuous
parameters with linear B-splines a user can write:

config.useDelayType = CFG.VD_GRP_DELAY;

config.pwlMode = CFG.EPM_BSPLINE_LINEA;

print('Type of delay to use : ' + config.useDelayType);

print('PWL parameters model : ' + config.pwlMode);

The result of executing the code will be:

Type of delay to use : CFG.VD_GRP_DELAY

PWL parameters model : CFG.EPM_BSPLINE_LINEA

8.4 Set up estimated parameters in the scripts

Another object that is available in scripts is a parameter descriptor, parsDescript. The main purpose of the
object is to specify which parameters and how will be estimated in a solution. Its meta object in scripts is called

74

Parameters and have two properties, ParIdx and ParMode, that determine a type of a parameter and assumed
model. On Tab. 8.9 values of available models of a parameter are shown. The kinds of estimated parameters
are displayed on Tab. 8.10. The values of both properties of the metaobject, ParIdx and ParMode, are used as
arguments to set up the estimated parameters.

Type Values Meaning
ParMode EstimateNo do not estimate

EstimateArc estimate as arc parameter
EstimateLocal estimate as local parameter
EstimatePwl estimate as PWl parameter
EstimateStochastic estimate as stochastic parameter

Table 8.9: Property ParMode of metaobject Parameters.

Type Values Meaning
ParIdx Clocks station clocks

Zenith wet zenith delay
AtmGrad atmospheric gradients
Cable cable calibration coe�cient
AxisO�set axis o�set
StnCoo station positions
StnVel station velocities
SrcCoo source coordinates
SrcSsm parameters of a source structure model
PolusXy polar motion
PolusXyR polar motion rates
PolusUt1 d(UT1)
PolusUt1R d(UT1) rates
PolusNut nutation angles
PolusNutR nutation angles rates
Bl_Clk baseline clocks
Bl_Length baseline length
Test test purposes

Table 8.10: Property ParIdx of metaobject Parameters.

The object parsDescript allows a user to control the estimated parameters in his/her scripts. The estimated
parameters were discussed in subsection 4.2.2. To change a state of a parameter a user calls object related
functions, that in ECMAScript have a term �methods�. Currently the following methods are implemented:

unsetAllParameters(): turn o� all estimated parameters;

unsetParameter(ParIdx idx): turn o� a parameter of index idx;

setMode4Parameter(ParIdx idx, ParMode mode): sets a parameter of the index idx to the mode mode;

unsetParameters(ParIdx idxs[]): turn o� parameters from the array idxs[];

setMode4Parameters(ParMode mode, ParIdx idxs[]): sets parameters from the array idxs[] to the mode
mode;

setConvAPriori(ParIdx idx, double d): for the parameter idx sets the value of a priori standard deviation
to d for �local� or �arc� mode;

setPwlAPriori(ParIdx idx, double d): for the parameter idx sets the value of a priori standard deviation to
d for �PWL� mode;

setStocAPriori(ParIdx idx, double d): for the parameter idx sets the value of a priori standard deviation
to d for �stochastic� mode;

75

setWhiteNoise(ParIdx idx, double d): for the parameter idx sets the value of the ruled white noise to d for
�stochastic� mode;

setArcStep(ParIdx idx, double d): for the parameter idx sets the value of the interval between segments to
d [days] for �arc� mode;

setPwlStep(ParIdx idx, double d): for the parameter idx sets the value of the interval between segments to
d [days] for �PWL� mode;

setPwlNumOfPolynomials(ParIdx idx, int n): for the parameter idx sets the value of the number of poly-
nomial terms to n for �PWL� mode;

Examples of using parsDescript. To estimate only station clocks as local parameters a user can write

parsDescript.unsetAllParameters();

parsDescript.setMode4Parameter(Parameters.Clocks, Parameters.EstimateLocal);

To estimate clocks, zenith delays, station positions and baseline clocks as local parameters:

var idxArr = new Array(4);

idxArr[0] = Parameters.Clocks;

idxArr[1] = Parameters.Zenith;

idxArr[2] = Parameters.StnCoo;

idxArr[3] = Parameters.Bl_Clk;

parsDescript.unsetAllParameters();

parsDescript.setMode4Parameters(Parameters.EstimateLocal, idxArr);

If a user wants to estimate clocks and delays as �PWL� functions with an interval 30 minutes between nodes:

parsDescript.setPwlStep(Parameters.Clocks, 0.5/24.0);

parsDescript.setPwlStep(Parameters.Zenith, 0.5/24.0);

parsDescript.setMode4Parameter(Parameters.Clocks, Parameters.EstimatePwl);

parsDescript.setMode4Parameter(Parameters.Zenith, Parameters.EstimatePwl);

8.5 Manipulations of input/output operations for a VLBI session

An object that performs read/write operations with a VLBI session is called handler. It has three properties that
control which �les should be read and what software should expect in that �les. The Tab 8.11 these properties
are shown.

Type Property Access Meaning
String �leName Read/Write input �le name
String �leNameAux Read/Write the name of auxiliary �le (if necessary)
String inputType Read/Write type of input data: "DBH" (database handler for-

mat), "VDB" (vgosDb set of �les) or "VDA" (vgosDa
ASCII �le)

Table 8.11: Properties of handler object.

If νSolve is con�gured to read databases in the catalog aware mode (as it described in subsection 4.1.2 or by
the command line option �-c�), the property �leName can be either a database name (e.g., 17DEC08XU) or a a
database name with version (e.g., 17DEC08XU_V004). If a �le with the second database has a name that is not
following IVS naming convention, a user can provide it using the property �leNameAux.

To read a database from local �les it is necessary to provide full �le name with its path, either absolute or
relative to the path to database �les as it was set up in νSolve preferences, see subsection 4.1.1. The same is true
for non-standard name of the second band.

76

To read data in the vgosDb format, a user have to provide full �le name of the wrapper �le with either absolute
or relative (to precon�gured directory) path. A value of the property �leNameAux in this case is ignored.

To read data in the vgosDa format, a user have to provide a �le name with either absolute or relative (to
precon�gured directory) path. A value of the property �leNameAux in this case is ignored too.

The object handler has the following methods:

importSession(): reads a VLBI session in DBH, vgosDb or vgosDa format. The �le name and type have to be
de�ned;

performPia(): performs the post-import actions as it was set up by a user (see subsection 4.2.4);

generateReport(bool isExtended=false): generates a report in spool �le format, if an argument is present
and it is true, the report will include additional information on observations;

generateReport4StcPars(): creates ASCII �les with solutions for stochastic parameters;

generateReport4Tzds(): exports values of total zenith delays into ASCII �les;

generateAposterioriFiles(): stores estimated coordinates of sources, positions and velocities of stations in a
format of external a priori �les.

saveResults(): saves the editing information in a new version (either DBH or a wrapper �le);

saveDataAsVgosDa(): saves the session in the vgosDa format;

saveDataAsVgosDb(): saves the session in the vgosDb format;

exportDataToNgs(): exports available data into NGS format;

addUserComment2Report(String userComment): adds a comment string �userComment� to the spool
�le output.

For example, assuming νSolve works through catalog subsystem, to read a VLBI session in DBH format:

handler.fileName = "17DEC08XU";

handler.inputType = "DBH";

handler.importSession();

or, if a user wants to use local �les and specify an absolute path:

handler.fileName = "/home/slb/500/databases/ints/12MAY10XU_V004";

handler.inputType = "DBH";

handler.importSession();

The same code using a relative path:

handler.fileName = "ints/12MAY10XU_V004";

handler.inputType = "DBH";

handler.importSession();

In the last example the default path to database �les in the con�guration of νSolve software is set to �/home/slb/500/databases�
directory.

Reading a VLBI session in vgosDb format is similar:

handler.fileName = "/home/slb/500/vgosDb/2012/12MAY10XU/12MAY10XU_V006_iGSFC_kall.wrp";

handler.inputType = "VDB";

handler.importSession();

or, assuming the default directory for vgosDb �les is �/home/slb/500/vgosDb�:

handler.fileName = "2012/12MAY10XU/12MAY10XU_V006_iGSFC_kall.wrp";

handler.inputType = "VDB";

handler.importSession();

77

8.6 The object �session�

The object session represents a VLBI session. To access session data, it should be loaded �rst using the object
handler. The object session is a complex object, it provides access to other objects like band, station, etc.

The Tab. 8.12 lists basic properties of a session.

Type Property Access Meaning
boolean isOk Read only a status of the session
String name Read only a name of the session
String networkSu�x Read only a network dependent char of a database name
String sessionCode Read only a session code from a master �le
String networkID Read only VLBI network code, if known
String description Read only description of a session
String o�cialName Read only name of a session according to a master �le
String correlatorName Read only name of a correlator
String submitterName Read only a name of an agency that submits the session to IVS
String schedulerName Read only a name of an agency that scheduled the observations
String correlatorType Read only a type or a name of a correlator
String piAgencyName Read only PI agency responsible for a session

Table 8.12: Session properties.

For example, after reading data for the session 12MAY10XU_V004 the script commands

if (session.isOk)

{

print('Session name : ' + session.name);

print('Session official name : ' + session.officialName);

print('Session sessionCode : ' + session.sessionCode);

print('Session description : ' + session.description);

print('Session scheduled by : ' + session.schedulerName);

print('Session submitted by : ' + session.submitterName);

print('Session correlator name: ' + session.correlatorName);

print('Session suffix : ' + session.networkSuffix);

print('Session networkID : ' + session.networkID);

};

Will create the following output:

Session name : $12MAY10XU

Session official name : IN112-131

Session sessionCode : I12131

Session description : i12131, INTEN | geo_export

Session scheduled by : USNO

Session submitted by : NASA

Session correlator name: WASH

Session suffix : U

Session networkID : INT

Another set of session properties are shown on Tab. 8.13.
For the same session the script code

print('Session #bands : ' + session.numOfBands);

print('Session #stations : ' + session.numOfStations);

print('Session #baseline : ' + session.numOfBaselines);

print('Session #sources : ' + session.numOfSources);

print('Session #observs : ' + session.numOfObservations);

print('Session created on: ' + session.tCreation);

78

Type Property Access Meaning
int numOfBands Read only number of bands
int numOfStations Read only number of stations
int numOfBaselines Read only number of baselines
int numOfSources Read only number of sources
int numOfObservations Read only number of observations
int primaryBandIdx Read only index of the primary (usually, �X�) band
boolean hasReferenceClocksStation Read only true if reference clock station is selected
boolean hasReferenceCoordinatesStation Read only true if coordinates of at least one station are not estimated

or constraints will be applied to the coordinates of at least
one station

Date tCreation Read only date when the session was created
Date tStart Read only epoch of the �rst observation
Date tFinis Read only epoch of the last observation
Date tMean Read only epoch of the mean observation
double dUt1Value Read only returns value of estimated dUT1
double dUt1Correction Read only returns adjustment of dUT1 obtained in a last run
double dUt1StdDev Read only returns standard deviation of estimated dUT1

Table 8.13: Session properties.

print('Session started on: ' + session.tStart);

print('Session stopped on: ' + session.tFinis);

print('Session mean epoch: ' + session.tMean);

will make the following output:

Session #bands : 2

Session #stations : 2

Session #baseline : 1

Session #sources : 8

Session #observs : 22

Session created on: Fri May 11 2012 15:45:24 GMT+0000 (UTC)

Session started on: Thu May 10 2012 18:30:25 GMT+0000 (UTC)

Session stopped on: Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session mean epoch: Thu May 10 2012 18:59:06 GMT+0000 (UTC)

The properties of session object that have complex type are on Tab. 8.14.

Type Property Access Meaning
array of Bands bands Read only an array of Objects that describe bands
array of Stations stations Read only an array of Objects that describe stations
array of Baselines baselines Read only an array of Objects that describe baselines
array of Sources sources Read only an array of Objects that describe sources
array of Observations observations Read only an array of Objects that describe observations

Table 8.14: Session properties.

The objects Band, Station, Baseline, Source and Observation allow access to information on particular band,
station, baseline, radio source and observation of the session. They will be discussed later.

The object session allows a user to inquire and modify data of a VLBI session as well as performs some
prede�ned operations. The �rst group of its methods allow a user to pick up an object of the type Station,
Baseline or Source:

lookUpStation(String key): return an object of type Station that has key key or null if the key was not found;

lookUpBaseline(String key): return an object of type Baseline that has key key or null if the key was not
found;

79

lookUpSource(String key): return an object of type Source that has key key or null if the key was not found;

Here the key key is a string of eight (for station and source) or seventeen (for baseline) chars, as names of stations
and sources represented in databases. For example, executing the following script sources (assuming the session
12MAY10XU_V004 is already successfully loaded):

var key='WETTZELL';

var stn=session.lookUpStation(key);

if (stn != null)

print('stn = ' + stn.name);

else

print('Station ' + key + ' was not found');

key='KOKEE';

stn=session.lookUpStation(key);

if (stn != null)

print('stn = ' + stn.name);

else

print('Station ' + key + ' was not found');

will make the following output:

stn = WETTZELL

Station KOKEE was not found

Note: in contrast to the property key, the property name of station, source or baseline has no padding space
chars.

The following methods perform prede�ned actions with session data:

resetAllEditings(): clears all editing information;

clearAuxSigmas(): sets auxiliary standard deviations to zero. The auxiliary standard deviations are calculated
to have a reduced χ2 = 1 for a whole session or baselines, depending on con�guration;

suppressNotSoGoodObs(): deselects all observations which have quality code less than value of Initially use
observations with Quality Code of or higher con�g option. This feature is useful for a new session;

pickupReferenceClocksStation(): if a reference clock station is not set for the session, sets it up;

pickupReferenceCoordinatesStation(): if a reference coordinate station is not set for the session, sets it up;

setReferenceClocksStation(String key): set a station with key key to be a reference clock station. If other
station already has this attribute, turn it o�. If key is not found, do nothing;

checkUseOfManualPhaseCals(): checks the history part of a database for mentioning use of phase calibra-
tions, if found, turn o� for such station the use of cable calibrations;

doStdSetup(): performs standard set up, currently it is just a shortcut for invoking suppressNotSoGoodObs(),
pickupReferenceClocksStation(), pickupReferenceCoordinatesStation() and checkUseOfManualPhaseCals()
methods;

setNumOfClockPolynoms4Stations(int n): sets the number of polynomial terms for clock model. If SOLVE
compatibility is set in con�guration, the number of the terms for the reference clock station will be set to
zero;

calcIono(boolean sbdOnly=false): evaluate the ionospheric corrections. If an optional argument sbdOnly is
true, the corrections are evaluated for single band delays only;

80

zeroIono(): sets the ionosphere corrections to zero;

scanAmbiguityMultipliers(int bandIdx): scans residuals for a band with the index bandIdx and adjust
ambiguity multipliers for group delays. If possible, modi�es the multipliers to have all triangles closed;

checkClockBreaks(int bandIdx): scans residuals for a band with the index bandIdx and check for clock
breaks. This option is in developing stage, not all clock breaks can be found;

process(): estimates parameters and evaluate residuals for all bands using current con�guration and parameter
set up;

eliminateOutliersSimpleMode(int bandIdx, int maxNumOfPasses, double threshold, double upperLimit):
performs initial elimination of outliers for a band with the index bandIdx. The maxNumOfPasses is a num-
ber of iterations (this value overrides con�guration). This procedure considers as outlier an observation that
has absolute value of residual bigger than threshold ·WRMS or bigger than upperLimit (the last condition
is checked if the provided upperLimit is greater than zero);

int eliminateOutliers(int bandIdx): performs deselection of observations for a band with the index bandIdx.
The process of deselection is controlled by the current con�guration. Returns number of deselected obser-
vations;

int restoreOutliers(int bandIdx): performs restoration of previously deselected observations for a band with
the index bandIdx; The process of restoration is controlled by the current con�guration. Returns number
of restored observations;

int doReWeighting(): evaluates the additional standard deviations to have a reduced χ2 = 1. The reweighting
process is iterative, the number of iterations is limited by seven. The method returns a number of performed
iterations;

In the following examples we assume that the session 12MAY10XU_V004 is successfully loaded. The following
code makes initial set up and evaluates the ionosphere corrections. Then, it sets the group delays as observables,
modi�es the number of polynomial terms of clock model to three, sets up the estimated parameters (clocks, zenith
delays and baseline length) and obtain a solution:

session.doStdSetup();

session.calcIono();

config.useDelayType = CFG.VD_GRP_DELAY;

session.setNumOfClockPolynoms4Stations(3);

parsDescript.setMode4Parameter(Parameters.Clocks, Parameters.EstimateLocal);

parsDescript.setMode4Parameter(Parameters.Zenith, Parameters.EstimateLocal);

parsDescript.setMode4Parameter(Parameters.Bl_Length, Parameters.EstimateLocal);

session.process();

In the following subsections we discuss the objects Band, Station, Baseline, Source and Observation. The �rst
three objects are derived from a common ancestor which has the following properties:

8.6.1 The object �Band�

This object represents a band and its statistical information. The properties of Band are shown on Tab. 8.16.
An example of accessing data for this object:

var bandKeys=Array();

print('Session number of bands : ' + session.bands.length);

for (var i=0; i<session.bands.length; i++)

{

bandKeys[i] = session.bands[i].key;

81

Type Property Access Meaning
String key Read only a �canonical� name of the object;
String name Read only same as key, but without trailing space chars;
int numTotal Read only a number of total observations;
int numUsable Read only a number of usable observations;
int numProcessed Read only a number of analyzed observations;
Date tFirst Read only the �rst epoch of observations;
Date tLast Read only the last epoch of observations;
double sigma2add Read/Write additional standard deviation for group delays to have a re-

duced χ2 = 1, applicable to band and baseline;
double wrms Read only weighed root mean square of delays, in seconds;
double chi2 Read only non-reduced χ2 for delays;
double reducedChi2 Read only reduced χ2 for delays;
double dof Read only degree of freedom for delays;

Table 8.15: Common properties of Band, Station and Baseline objects.

Type Property Access Meaning
double refFreq Read only a reference frequency of the band
int numOfChannels Read only a designed number of channels
Date tCreation Read only epoch of database creation
int inputFileVersion Read only a version of a database
String correlatorType Read only type of a correlator
double groupDelaysAmbigSpacing Read only returns a typical ambiguity spacing for group delays
array of Stations stations Read only an array of Objects that describe stations
array of Baselines baselines Read only an array of Objects that describe baselines
array of Sources sources Read only an array of Objects that describe sources

Table 8.16: Properties of Band objects.

print('Session band[' + i + '] key : ' + session.bands[i].key);

print('Session band[' + i + '] name : ' + session.bands[i].name);

print('Session band[' + i + '] #Total : ' + session.bands[i].numTotal);

print('Session band[' + i + '] #Usable : ' + session.bands[i].numUsable);

print('Session band[' + i + '] #Used : ' + session.bands[i].numProcessed);

print('Session band[' + i + '] tFirst : ' + session.bands[i].tFirst);

print('Session band[' + i + '] tLast : ' + session.bands[i].tLast);

print('Session band[' + i + '] sig2add : ' + session.bands[i].sigma2add*1.0e12 + ' (ps)');

print('Session band[' + i + '] WRMS : ' + session.bands[i].wrms*1.0e12 + ' (ps)');

print('Session band[' + i + '] Chi2 : ' + session.bands[i].chi2);

print('Session band[' + i + '] DoF : ' + session.bands[i].dof);

print('Session band[' + i + '] RefFreq : ' + session.bands[i].refFreq);

print('Session band[' + i + '] #Channels : ' + session.bands[i].numOfChannels);

print('Session band[' + i + '] tCreation : ' + session.bands[i].tCreation);

print('Session band[' + i + '] Version : ' + session.bands[i].inputFileVersion);

print('Session band[' + i + '] correlator type: ' + session.bands[i].correlatorType);

print('++');

};

This script commands make the following output:

Session band[0] key : X

Session band[0] name : X

Session band[0] #Total : 22

Session band[0] #Usable : 19

Session band[0] #Used : 17

82

Session band[0] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session band[0] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session band[0] sig2add : 0 (ps)

Session band[0] WRMS : 17.2817678829019 (ps)

Session band[0] Chi2 : 6.7652418362446

Session band[0] DoF : 9.0000000000016

Session band[0] RefFreq : 8182.99

Session band[0] #Channels : 8

Session band[0] tCreation : Fri May 11 2012 15:45:24 GMT+0000 (UTC)

Session band[0] Version : 4

Session band[0] correlator type:

++

Session band[1] key : S

Session band[1] name : S

Session band[1] #Total : 22

Session band[1] #Usable : 19

Session band[1] #Used : 17

Session band[1] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session band[1] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session band[1] sig2add : 0 (ps)

Session band[1] WRMS : 12.915293209587421 (ps)

Session band[1] Chi2 : 0.0526281339698778

Session band[1] DoF : 16.889519141471364

Session band[1] RefFreq : 2212.99

Session band[1] #Channels : 6

Session band[1] tCreation : Fri May 11 2012 15:28:07 GMT+0000 (UTC)

Session band[1] Version : 2

Session band[1] correlator type:

++

As one can see, in this example the �eld correlator type is empty � the corresponding databases have the LCode
�CORRTYPE�, however no data provided there.

8.6.2 The object �Station�

The object Station represents a station that participates in a VLBI session, its statistical information and allows
a user to change some particular options. The Tab. 8.17 lists its properties.
The AuxObs Object represents cable calibration corrections and meteorological parameters, and will be discussed
later.

The property ��ybyCableCalSource� is doing the same as the similar property of the object con�g, but works
only for a speci�ed station. The property has read only access, to alter a type of cable calibration corrections use
setFlybyCableCalSource method:

bool setFlybyCableCalSource(NsScrPrx4TaskCon�g::CableCalSource): set source of cable calibration
corrections, returns true if success.

Check the properties getHasCccFslg, getHasCccCdms and getHasCccPcmt before calling setFlybyCableCalSource,
e.g.:

var key='WETTZ13S';

var stn=session.lookUpStation(key);

if (stn != null)

{

if (stn.getHasCccFslg)

if (stn.setFlybyCableCalSource(CFG.CCS_PCMT))

83

Type Property Access Meaning
double cableCalSign Read only the sign that was applied to cable calibration corrections of

the station during parsing station log �le;
int numOfScans Read only number of scans on the station;
int numOfClockPolynoms Read/Write number of terms in clock polynomial model;
String sId Read only returns two-char station ID;
boolean isValid Read/Write true if station is in a solution, false if it should be dese-

lected;
boolean estimateCoords Read/Write if true, positions of this station should be estimated if a user

decided to estimate station coordinates. This �ag does not
turn �on� or �o�� estimation of station positions;

boolean constrainCoords Read/Write if true, positions of this station should be used in equations
of constraints.

boolean referenceClocks Read/Write a �ag speci�es that a station is a reference clock station;
boolean useCableCal Read/Write if true, the cable calibration corrections will be applied in a

solution;
CFG.CableCalSource �ybyCableCalSource Read only Provides a source of origin of cable calibration corrections;
boolean badMeteo Read/Write if true, meteorological parameters of the station are incor-

rect or suspicious, the software should use standard meteo
parameters instead of what is provided in a database;

boolean getHasCccFslg Read only true if the station has cable calibrations from a �eld system
log �le;

boolean getHasCccCdms Read only true if the station has CDMS cable calibrations;
boolean getHasCccPcmt Read only true if the station has proxy cable calibrations (PCMT);
bool estimateTroposphere Read only if true, troposphere parameters of this station should be

estimated if a user decided to estimate the troposphere pa-
rameters (zenith delay and its gradients). This �ag does not
turn �on� or �o�� estimation of the troposphere parame-
ters;

array of AuxObs auxObs Read only an array of Objects that describe auxiliary data
double latitude Read only latitude of a station
double longitude Read only longitude of a station

Table 8.17: Properties of Station objects.

print('stn = ' + stn.name + ': setting flybyCableCalSource to CFG.CCS_FSLG done');

else

print('stn = ' + stn.name + ': setting flybyCableCalSource to CFG.CCS_FSLG has failed');

else

print('stn = ' + stn.name + ': FS log file cable cal data are not available');

print('stn = ' + stn.name + ': stn.flybyCableCalSource = ' + stn.flybyCableCalSource);

}

else

print('Station ' + key + ' was not found');

The data from di�erent sources of cable calibrations are collected by vgosDbProcLogs of version 0.6.5 and higher.
The utility accumulates these data in a separate netCDF �le. It does not interfere with the standard netCDF �le
for cable calibration corrections and designed mostly for testing purposes.

Here is an example of using properties of Station.

var stations=session.stations;

var stnByName=Object;

print('Session num of stations : ' + stations.length);

for (var i=0; i<stations.length; i++)

{

stnByName[stations[i].name]=stations[i];

print('Session stn[' + i + '] key : \"' + stations[i].key + '\"');

84

print('Session stn[' + i + '] name : \"' + stations[i].name + '\"');

print('Session stn[' + i + '] #Total : ' + stations[i].numTotal);

print('Session stn[' + i + '] #Usable : ' + stations[i].numUsable);

print('Session stn[' + i + '] #Used : ' + stations[i].numProcessed);

print('Session stn[' + i + '] tFirst : ' + stations[i].tFirst);

print('Session stn[' + i + '] tLast : ' + stations[i].tLast);

print('Session stn[' + i + '] sig2add : ' + stations[i].sigma2add*1.0e12 + ' (ps)');

print('Session stn[' + i + '] WRMS : ' + stations[i].wrms*1.0e12 + ' (ps)');

print('Session stn[' + i + '] Chi2 : ' + stations[i].chi2);

print('Session stn[' + i + '] DoF : ' + stations[i].dof);

print('Session stn[' + i + '] #ClockTerms : ' + stations[i].numOfClockPolynoms);

print('Session stn[' + i + '] cableSign : ' + stations[i].cableCalSign);

print('Session stn[' + i + '] is valid : ' + stations[i].isValid);

print('Session stn[' + i + '] estimate coo : ' + stations[i].estimateCoords);

print('Session stn[' + i + '] constrain coo: ' + stations[i].constrainCoords);

print('Session stn[' + i + '] ref.clocks : ' + stations[i].referenceClocks);

print('Session stn[' + i + '] use cable cal: ' + stations[i].useCableCal);

print('++');

};

print('Total number of observations at KOKEE = ' + stnByName['KOKEE'].numTotal);

The output will look like:

Session num of stations : 2

Session stn[0] key : "KOKEE "

Session stn[0] name : "KOKEE"

Session stn[0] #Total : 22

Session stn[0] #Usable : 19

Session stn[0] #Used : 17

Session stn[0] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session stn[0] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session stn[0] sig2add : 0 (ps)

Session stn[0] WRMS : 17.2817678829019 (ps)

Session stn[0] Chi2 : 6.7652418362446

Session stn[0] DoF : 9.0000000000016

Session stn[0] #ClockTerms : 0

Session stn[0] cableSign : -1

Session stn[0] is valid : true

Session stn[0] estimate coo : true

Session stn[0] constrain coo: false

Session stn[0] ref.clocks : true

Session stn[0] use cable cal: false

Session stn[0] # of AuxObs : 22

++

Session stn[1] key : "WETTZELL"

Session stn[1] name : "WETTZELL"

Session stn[1] #Total : 22

Session stn[1] #Usable : 19

Session stn[1] #Used : 17

Session stn[1] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session stn[1] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session stn[1] sig2add : 0 (ps)

Session stn[1] WRMS : 17.2817678829019 (ps)

85

Session stn[1] Chi2 : 6.7652418362446

Session stn[1] DoF : 9.0000000000016

Session stn[1] #ClockTerms : 3

Session stn[1] cableSign : 1

Session stn[1] is valid : true

Session stn[1] estimate coo : false

Session stn[1] constrain coo: false

Session stn[1] ref.clocks : false

Session stn[1] use cable cal: true

++

Total number of observations at KOKEE = 22

The object �AuxObs�

The Object AuxObs contains station dependent data and has the properties as it shown on Tab. 8.18.

Type Property Access Meaning
Date epoch Read only epoch of the measurements;
double cableCalibration Read only cable calibration correction, sec;
double atmPressure Read only atmospheric pressure, mbar;
double atmTemperature Read only ambient temperature, C;
double atmHumidity Read only relative humidity, 0.5=50%
Station station Read only an owner;

Table 8.18: Properties of AuxObs objects.

An example to access these data:

var stnKokee = stnByName['KOKEE'];

for (var i=0; i<stnKokee.auxObs.length; i++)

{

print('aux[' + i + '] ' + stnKokee.auxObs[i].epoch.toUTCString() + ' meteo= {' +

stnKokee.auxObs[i].atmPressure.toFixed(2) + '(mbar), ' +

stnKokee.auxObs[i].atmTemperature.toFixed(2) + '(C), ' +

(stnKokee.auxObs[i].atmHumidity*100).toFixed(2) + '(%)}, CC= ' +

(stnKokee.auxObs[i].cableCalibration*1e12).toFixed(2) + '(ps)');

};

The output will look like:

aux[0] Thu, 10 May 2012 18:30:25 GMT meteo= {890.20(mbar), 12.70(C), 100.00(%)}, CC= -3.51(ps)

aux[1] Thu, 10 May 2012 18:33:13 GMT meteo= {890.24(mbar), 12.70(C), 100.00(%)}, CC= -3.88(ps)

aux[2] Thu, 10 May 2012 18:36:29 GMT meteo= {890.30(mbar), 12.73(C), 100.00(%)}, CC= -3.88(ps)

aux[3] Thu, 10 May 2012 18:38:26 GMT meteo= {890.27(mbar), 12.80(C), 100.00(%)}, CC= -5.91(ps)

aux[4] Thu, 10 May 2012 18:41:20 GMT meteo= {890.20(mbar), 12.80(C), 100.00(%)}, CC= -4.08(ps)

aux[5] Thu, 10 May 2012 18:44:52 GMT meteo= {890.20(mbar), 12.80(C), 100.00(%)}, CC= -5.18(ps)

aux[6] Thu, 10 May 2012 18:47:10 GMT meteo= {890.22(mbar), 12.80(C), 100.00(%)}, CC= -2.96(ps)

aux[7] Thu, 10 May 2012 18:49:13 GMT meteo= {890.30(mbar), 12.82(C), 100.00(%)}, CC= -1.86(ps)

aux[8] Thu, 10 May 2012 18:51:29 GMT meteo= {890.30(mbar), 12.90(C), 100.00(%)}, CC= -3.13(ps)

aux[9] Thu, 10 May 2012 18:53:24 GMT meteo= {890.30(mbar), 12.90(C), 100.00(%)}, CC= -2.01(ps)

aux[10] Thu, 10 May 2012 18:56:23 GMT meteo= {890.30(mbar), 12.90(C), 100.00(%)}, CC= -3.68(ps)

aux[11] Thu, 10 May 2012 18:59:59 GMT meteo= {890.36(mbar), 12.90(C), 100.00(%)}, CC= -4.23(ps)

aux[12] Thu, 10 May 2012 19:03:02 GMT meteo= {890.50(mbar), 12.92(C), 100.00(%)}, CC= -1.28(ps)

aux[13] Thu, 10 May 2012 19:05:19 GMT meteo= {890.50(mbar), 13.00(C), 100.00(%)}, CC= -2.01(ps)

aux[14] Thu, 10 May 2012 19:07:14 GMT meteo= {890.50(mbar), 13.00(C), 100.00(%)}, CC= -1.11(ps)

aux[15] Thu, 10 May 2012 19:08:57 GMT meteo= {890.47(mbar), 13.00(C), 100.00(%)}, CC= 2.04(ps)

86

aux[16] Thu, 10 May 2012 19:11:42 GMT meteo= {890.44(mbar), 13.00(C), 100.00(%)}, CC= 2.59(ps)

aux[17] Thu, 10 May 2012 19:15:21 GMT meteo= {890.47(mbar), 13.00(C), 100.00(%)}, CC= 8.34(ps)

aux[18] Thu, 10 May 2012 19:18:28 GMT meteo= {890.40(mbar), 13.02(C), 100.00(%)}, CC= 11.64(ps)

aux[19] Thu, 10 May 2012 19:20:59 GMT meteo= {890.40(mbar), 13.10(C), 100.00(%)}, CC= 11.49(ps)

aux[20] Thu, 10 May 2012 19:24:42 GMT meteo= {890.40(mbar), 13.10(C), 100.00(%)}, CC= 13.14(ps)

aux[21] Thu, 10 May 2012 19:27:49 GMT meteo= {890.40(mbar), 13.10(C), 100.00(%)}, CC= 11.84(ps)

8.6.3 The object �Baseline�

The object Baseline allows a user to access the statistical information and attributes of a particular baseline, the properties
of the object are displayed on the Tab. 8.19.

Type Property Access Meaning
double length Read only a length of the baseline;
boolean isValid Read/Write true if the baseline is in a solution, false if it should be

deselected;
boolean estimateClocks Read/Write if true, an additional baseline clock o�set should be esti-

mated if a user decided to estimate the baseline clock o�-
sets. This �ag does not turn �on� or �o�� estimation of the
o�sets;

Table 8.19: Properties of Baseline objects.

An example for the same session:

var baselines=session.baselines;

print('Session num of baselines : ' + baselines.length);

for (var i=0; i<baselines.length; i++)

{

print('Session bln[' + i + '] key : \"' + baselines[i].key + '\"');

print('Session bln[' + i + '] name : \"' + baselines[i].name + '\"');

print('Session bln[' + i + '] #Total : ' + baselines[i].numTotal);

print('Session bln[' + i + '] #Usable: ' + baselines[i].numUsable);

print('Session bln[' + i + '] #Used : ' + baselines[i].numProcessed);

print('Session bln[' + i + '] tFirst : ' + baselines[i].tFirst);

print('Session bln[' + i + '] tLast : ' + baselines[i].tLast);

print('Session bln[' + i + '] sig2add: ' + baselines[i].sigma2add*1.0e12 + ' (ps)');

print('Session bln[' + i + '] WRMS : ' + baselines[i].wrms*1.0e12 + ' (ps)');

print('Session bln[' + i + '] Chi2 : ' + baselines[i].chi2);

print('Session bln[' + i + '] DoF : ' + baselines[i].dof);

print('Session bln[' + i + '] length : ' + baselines[i].length + '(m)');

print('Session bln[' + i + '] isValid: ' + baselines[i].isValid);

print('Session bln[' + i + '] EstClks: ' + baselines[i].estimateClocks);

print('++');

};

The output will look like:

Session num of baselines : 1

Session bln[0] key : "KOKEE :WETTZELL"

Session bln[0] name : "KOKEE:WETTZELL"

Session bln[0] #Total : 22

Session bln[0] #Usable: 19

Session bln[0] #Used : 17

Session bln[0] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session bln[0] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session bln[0] sig2add: 17.98 (ps)

87

Session bln[0] WRMS : 17.2817678829019 (ps)

Session bln[0] Chi2 : 6.7652418362446

Session bln[0] DoF : 9.0000000000016

Session bln[0] length : 10357449.083383746(m)

Session bln[0] isValid: true

Session bln[0] EstClks: false

++

8.6.4 The object �Source�

On Tab. 8.20 the properties of the object Source are shown.

Type Property Access Meaning
double rightAscension Read only right ascension, rad;
double declination Declination, rad;
boolean isValid Read/Write true if the source is in a solution, false if it should be des-

elected;
boolean estimateCoords Read/Write if true, coordinates of the source should be estimated if a

user decided to estimate source coordinates. This �ag does
not turn �on� or �o�� the estimation of source coordinates;

boolean constrainCoords Read/Write if true, coordinates of this source should be used in equa-
tions of constraints.

boolean applySsm Read/Write if true, a source structure model of the source should be
applied.

String aprioriComments Read only comments about a source from an external a priori �le

Table 8.20: Properties of Source objects.

In addition, the following functions are implemented:

int numOfSrcStructPoints(): returns a number of components of a source structure model;

void addSrcStructPoint(double k, double b, double x, double y, boolean estK=false, boolean estB=false, boolean estR=false):
adds a component to the source structure model with relative positions x and y (in radians), ratio k (0 < k < 1), and
di�erence of spectral indices b. The arguments estK, estB and estR control which parameters shoud be estimated
(if Parameters.SrcSSM is set properly): the brightness ratio, the di�erence of spectral indices, the position. If last
arguments are missed, the default value false will be used.

void clearSrcStructPoints(): removes all components of a model;

void setK_i(i, double v): sets brightness ratio of the ith component to value of v;

void setB_i(i, double v): sets di�erence of spectral indices of the ith component to value of v;

void setX_i(i, double v): sets x-coordinate of the ith component to value of v (in radians);

void setY_i(i, double v): sets y-coordinate of the ith component to value of v (in radians);

double getK_i(i): returns value of brightness ratio of the ith component;

double getB_i(i): returns value of di�erence of spectral indices of the ith component;

double getX_i(i): returns value of x-coordinate of the ith component;

double getY_i(i): returns value of y-coordinate of the ith component;

double getK_iSig(i): returns standard deviations of estimation of brightness ratio of the ith component;

double getB_iSig(i): returns standard deviations of estimation of di�erence of spectral indices of the ith component;

double getX_iSig(i): returns standard deviations of estimation of x-coordinate of the ith component;

double getY_iSig(i): returns standard deviations of estimation of y-coordinate of the ith component;

The use of Source object is similar to the previous objects:

88

var sources=session.sources;

print('Session num of sources: ' + sources.length);

for (var i=0; i<sources.length; i++)

{

var src=sources[i];

print('Session src[' + i + '] key : \"' + src.key + '\"');

print('Session src[' + i + '] name : \"' + src.name + '\"');

print('Session src[' + i + '] #Total : ' + src.numTotal);

print('Session src[' + i + '] #Usable: ' + src.numUsable);

print('Session src[' + i + '] #Used : ' + src.numProcessed);

print('Session src[' + i + '] tFirst : ' + src.tFirst);

print('Session src[' + i + '] tLast : ' + src.tLast);

print('Session src[' + i + '] sig2add: ' + src.sigma2add*1.0e12 + ' (ps)');

print('Session src[' + i + '] WRMS : ' + src.wrms*1.0e12 + ' (ps)');

print('Session src[' + i + '] Chi2 : ' + src.chi2);

print('Session src[' + i + '] DoF : ' + src.dof);

print('Session src[' + i + '] RA : ' + src.rightAscension + '(rad)');

print('Session src[' + i + '] De : ' + src.declination + '(rad)');

print('Session src[' + i + '] isValid: ' + src.isValid);

print('Session src[' + i + '] EstCoor: ' + src.estimateCoords);

print('Session src[' + i + '] ConCoor: ' + src.constrainCoords);

print('++');

};

The output for the �rst three sources would be:

Session num of sources: 8

Session src[0] key : "0059+581"

Session src[0] name : "0059+581"

Session src[0] #Total : 4

Session src[0] #Usable: 4

Session src[0] #Used : 4

Session src[0] tFirst : Thu May 10 2012 18:36:29 GMT+0000 (UTC)

Session src[0] tLast : Thu May 10 2012 19:27:49 GMT+0000 (UTC)

Session src[0] sig2add: 0 (ps)

Session src[0] WRMS : 6.468445427175654 (ps)

Session src[0] Chi2 : 0.435196539219441

Session src[0] DoF : 1.4692610127891128

Session src[0] RA : 0.27385396839018517(rad)

Session src[0] De : 1.0193262750705432(rad)

Session src[0] isValid: true

Session src[0] EstCoor: true

Session src[0] ConCoor: false

++

Session src[1] key : "0552+398"

Session src[1] name : "0552+398"

Session src[1] #Total : 3

Session src[1] #Usable: 3

Session src[1] #Used : 3

Session src[1] tFirst : Thu May 10 2012 18:49:13 GMT+0000 (UTC)

Session src[1] tLast : Thu May 10 2012 19:18:28 GMT+0000 (UTC)

Session src[1] sig2add: 0 (ps)

Session src[1] WRMS : 7.817527397115135 (ps)

Session src[1] Chi2 : 0.24670886152400762

Session src[1] DoF : 1.3944546913275808

Session src[1] RA : 1.5512199587587385(rad)

89

Session src[1] De : 0.6948794009400607(rad)

Session src[1] isValid: true

Session src[1] EstCoor: true

Session src[1] ConCoor: false

++

Session src[2] key : "0556+238"

Session src[2] name : "0556+238"

Session src[2] #Total : 1

Session src[2] #Usable: 1

Session src[2] #Used : 0

Session src[2] tFirst : Fri Jan 01 2100 00:00:00 GMT+0000 (UTC)

Session src[2] tLast : Fri Oct 04 1957 00:00:00 GMT+0000 (UTC)

Session src[2] sig2add: 0 (ps)

Session src[2] WRMS : 0 (ps)

Session src[2] Chi2 : 0

Session src[2] DoF : 1

Session src[2] RA : 1.5687625188339909(rad)

Session src[2] De : 0.41710424737671953(rad)

Session src[2] isValid: true

Session src[2] EstCoor: true

Session src[2] ConCoor: false

++

8.6.5 The object �Observation�

On Tab. 8.21 the properties of the object Observation are shown. The object allows to access the statistical information
for an observation and modify its editing data. This is a complex object, it contains data that depend on band and type
of delay. If a session has more than one band, not all bands can be present in the object Observation.

Type Property Access Meaning
String key Read only a key that represent the observation;
String scanName Read only name of the scan;
Date epoch Read only reference epoch of the observation;
boolean isValid Read/Write true if the observation is ok to be in a solution, false if it

should be deselected. If isValid is true it is not necessary
that the observation will be in a solution � other reasons
could prevent that, like low quality factor, deselected base-
line, etc.;

boolean isProcessed Read only true if the observation was processed in the last solution;
int numOfBands Read only a number of available bands for the observation;
double gmst Read only returns Greenwich Mean Sidereal Time in radians;
Station station_1 Read only the reference station;
Station station_2 Read only the remote station;
Baseline baseline Read only the baseline;
Source source Read only the source.

Table 8.21: Properties of Source objects.

The access to band and delay type dependent data are made with methods. The following functions are implemented
currently:

int qualityFactor(String bandKey): returns a quality factor for the observation on the band bandKey, if the obser-
vation does not exist on this band, returns −1;

double correlationCoe�(String bandKey): returns a correlation coe�cient for the observation on the band bandKey,
if the observation does not exist on this band, returns −1.0;

double snr(String bandKey): returns signal to noise ratio for the observation on the band bandKey, if the observation
does not exist on this band, returns −1.0;

90

int numOfChannels(String bandKey): returns number of channels for the observation on the band bandKey, if the
observation does not exist on this band, returns −1;

boolean isUsable(String bandKey): returns true if the observation on the band bandKey is potentially usable (i.e.,
has acceptable quality code, has more than one channel and the stations, the source and the baseline are not
deselected; the �ag isValid can be true or false), if the observation does not exist on this band, returns false;

double delayValue(String bandKey, CFG.VlbiDelayType delayType): returns value of a delay of the type de-
layType on the band bandKey, if the observation does not exist on this band, returns 0.0;

double delayValueGeoc(String bandKey, CFG.VlbiDelayType delayType): returns value of a delay of the type
delayType on the band bandKey calculated at the geocenter, if the observation does not exist on this band, returns
0.0;

double delayStdDev(String bandKey, CFG.VlbiDelayType delayType): returns value of standard deviations of
a delay of the type delayType on the band bandKey, if the observation does not exist on this band, returns −1.0;

double delayResidual(String bandKey, CFG.VlbiDelayType delayType): returns value of the residual for a de-
lay of the type delayType on the band bandKey, if the observation does not exist on this band, returns 0.0;

double delayResidualNorm(String bandKey, CFG.VlbiDelayType delayType): returns value of the normalized
residual for a delay of the type delayType on the band bandKey, if the observation does not exist on this band,
returns 0.0;

double delayAmbiguitySpacing(String bandKey, CFG.VlbiDelayType delayType): returns ambiguity spacings
for a delay of the type delayType on the band bandKey, if the observation does not exist on this band, returns −1.0;

int delayNumOfAmbiguities(String bandKey, CFG.VlbiDelayType delayType): returns multiplier of ambigu-
ities for a delay of the type delayType on the band bandKey, if the observation does not exist on this band, returns
0;

double rateValue(String bandKey): returns value of the delay rate on the band bandKey, if the observation does not
exist on this band, returns 0.0;

double rateStdDev(String bandKey): returns value of standard deviations of the delay rate on the band bandKey,
if the observation does not exist on this band, returns −1.0;

double rateResidual(String bandKey): returns value of the residual for the delay rate on the band bandKey, if the
observation does not exist on this band, returns 0.0;

double rateResidualNorm(String bandKey): returns value of the normalized residual for the delay rate on the band
bandKey, if the observation does not exist on this band, returns 0.0;

double delaySourceStructure(String bandKey): returns value of the source structure e�ect (if it has been applied).

An example of use this object in a script (see subsection 8.6.1 for de�nition of the variable bandKeys):

var observations=session.observations;

print('Number of observations: ' + observations.length);

for (var i=0; i<4/*observations.length*/; i++)

{

print('obs[' + i + '] key : ' + observations[i].key);

print('obs[' + i + '] Scan : ' + observations[i].scanName);

print('obs[' + i + '] Epoch : ' + observations[i].epoch.toUTCString());

print('obs[' + i + '] isValid: ' + observations[i].isValid);

print('obs[' + i + '] isProcd: ' + observations[i].isProcessed);

print('obs[' + i + '] #ofBnds: ' + observations[i].numOfBands);

print('obs[' + i + '] Stn_1 : ' + observations[i].station_1.name);

print('obs[' + i + '] Stn_2 : ' + observations[i].station_2.name);

print('obs[' + i + '] Bln : ' + observations[i].baseline.name);

print('obs[' + i + '] Src : ' + observations[i].source.name);

for (var j=0; j<bandKeys.length; j++)

{

var key=bandKeys[j];

91

print(' band[' + j + '] key : "' + key + '"');

print(' band[' + j + '] QF : ' + observations[i].qualityFactor(key));

print(' band[' + j + '] SNR : ' + observations[i].snr(key));

print(' band[' + j + '] #Chann: ' + observations[i].numOfChannels(key));

print(' band[' + j + '] usable: ' + observations[i].isUsable(key));

print(' band[' + j + '] SB delay_residual : ' +

observations[i].delay_residual(key, CFG.VD_SB_DELAY)*1.0e12 + ' (ps)');

print(' band[' + j + '] SB delay_residualNorm : ' +

observations[i].delay_residualNorm(key, CFG.VD_SB_DELAY));

print(' band[' + j + '] SB delay_ambiguitySpacing: ' +

observations[i].delay_ambiguitySpacing(key, CFG.VD_SB_DELAY));

print(' band[' + j + '] SB delay_numOfAmbiguities: ' +

observations[i].delay_numOfAmbiguities(key, CFG.VD_SB_DELAY));

print(' band[' + j + '] GR delay_residual : ' +

observations[i].delay_residual(key, CFG.VD_GRP_DELAY)*1.0e12 + ' (ps)');

print(' band[' + j + '] GR delay_residualNorm : ' +

observations[i].delay_residualNorm(key, CFG.VD_GRP_DELAY));

print(' band[' + j + '] GR delay_ambiguitySpacing: ' +

observations[i].delay_ambiguitySpacing(key, CFG.VD_GRP_DELAY)*1.0e9 + ' (ns)');

print(' band[' + j + '] GR delay_numOfAmbiguities: ' +

observations[i].delay_numOfAmbiguities(key, CFG.VD_GRP_DELAY));

print(' band[' + j + '] PH delay_residual : ' +

observations[i].delay_residual(key, CFG.VD_PHS_DELAY)*1.0e12 + ' (ps)');

print(' band[' + j + '] PH delay_residualNorm : ' +

observations[i].delay_residualNorm(key, CFG.VD_PHS_DELAY));

print(' band[' + j + '] PH delay_ambiguitySpacing: ' +

observations[i].delay_ambiguitySpacing(key, CFG.VD_PHS_DELAY)*1.0e9 + ' (ns)');

print(' band[' + j + '] PH delay_numOfAmbiguities: ' +

observations[i].delay_numOfAmbiguities(key, CFG.VD_PHS_DELAY));

print(' band[' + j + '] rate_residual : ' +

observations[i].rate_residual(key)*1.0e12 + ' (ps/s)');

print(' band[' + j + '] rate_residualNorm : ' +

observations[i].rate_residualNorm(key));

};

print('++');

};

The output of such script commands is:

Number of observations: 22

obs[0] key : 056057:66625.000000-KOKEE :WETTZELL@1803+784

obs[0] Scan : 131-1830

obs[0] Epoch : Thu, 10 May 2012 18:30:25 GMT

obs[0] isValid: true

obs[0] isProcd: false

obs[0] #ofBnds: 2

obs[0] Stn_1 : KOKEE

obs[0] Stn_2 : WETTZELL

obs[0] Bln : KOKEE:WETTZELL

obs[0] Src : 1803+784

band[0] key : "X"

band[0] QF : 0

92

band[0] SNR : 5.226466655731201

band[0] #Chann: 8

band[0] usable: false

band[0] SB delay_residual : -77101.6270768163 (ps)

band[0] SB delay_residualNorm : 0

band[0] SB delay_ambiguitySpacing: 0

band[0] SB delay_numOfAmbiguities: 0

band[0] GR delay_residual : 6727.071629084957 (ps)

band[0] GR delay_residualNorm : 77.15231240080058

band[0] GR delay_ambiguitySpacing: 50.00000074505806 (ns)

band[0] GR delay_numOfAmbiguities: 0

band[0] PH delay_residual : 3400.7440136160444 (ps)

band[0] PH delay_residualNorm : 0

band[0] PH delay_ambiguitySpacing: 0.12220471979068775 (ns)

band[0] PH delay_numOfAmbiguities: 0

band[0] rate_residual : -6.381405499851667 (ps/s)

band[0] rate_residualNorm : -8.3056343106481

band[1] key : "S"

band[1] QF : 0

band[1] SNR : 5.031310081481934

band[1] #Chann: 6

band[1] usable: false

band[1] SB delay_residual : -77101.6270768163 (ps)

band[1] SB delay_residualNorm : 0

band[1] SB delay_ambiguitySpacing: 0

band[1] SB delay_numOfAmbiguities: 0

band[1] GR delay_residual : 6727.071629084955 (ps)

band[1] GR delay_residualNorm : 71.18153710199417

band[1] GR delay_ambiguitySpacing: 200.00000298023224 (ns)

band[1] GR delay_numOfAmbiguities: 0

band[1] PH delay_residual : -40673.30872801258 (ps)

band[1] PH delay_residualNorm : 0

band[1] PH delay_ambiguitySpacing: 0.45187732434398714 (ns)

band[1] PH delay_numOfAmbiguities: 0

band[1] rate_residual : -6.381405499851667 (ps/s)

band[1] rate_residualNorm : -2.762912372499939

++

obs[1] key : 056057:66793.500000-KOKEE :WETTZELL@DA426

obs[1] Scan : 131-1831

obs[1] Epoch : Thu, 10 May 2012 18:33:13 GMT

obs[1] isValid: false

obs[1] isProcd: false

obs[1] #ofBnds: 2

obs[1] Stn_1 : KOKEE

obs[1] Stn_2 : WETTZELL

obs[1] Bln : KOKEE:WETTZELL

obs[1] Src : DA426

band[0] key : "X"

band[0] QF : 9

band[0] SNR : 13.297061920166016

band[0] #Chann: 8

band[0] usable: true

band[0] SB delay_residual : -34066.25062244681 (ps)

band[0] SB delay_residualNorm : 0

band[0] SB delay_ambiguitySpacing: 0

93

band[0] SB delay_numOfAmbiguities: 0

band[0] GR delay_residual : -183.1095294019572 (ps)

band[0] GR delay_residualNorm : -5.249131073406312

band[0] GR delay_ambiguitySpacing: 50.00000074505806 (ns)

band[0] GR delay_numOfAmbiguities: 0

band[0] PH delay_residual : 277.664214584888 (ps)

band[0] PH delay_residualNorm : 0

band[0] PH delay_ambiguitySpacing: 0.12220471979068775 (ns)

band[0] PH delay_numOfAmbiguities: 0

band[0] rate_residual : 0.5900324167213904 (ps/s)

band[0] rate_residualNorm : 0.9157038262848808

band[1] key : "S"

band[1] QF : 9

band[1] SNR : 16.091747283935547

band[1] #Chann: 6

band[1] usable: true

band[1] SB delay_residual : -34066.25062244681 (ps)

band[1] SB delay_residualNorm : 0

band[1] SB delay_ambiguitySpacing: 0

band[1] SB delay_numOfAmbiguities: 0

band[1] GR delay_residual : -183.1095294019579 (ps)

band[1] GR delay_residualNorm : -5.910117229529999

band[1] GR delay_ambiguitySpacing: 200.00000298023224 (ns)

band[1] GR delay_numOfAmbiguities: 0

band[1] PH delay_residual : 7128.312369242522 (ps)

band[1] PH delay_residualNorm : 0

band[1] PH delay_ambiguitySpacing: 0.45187732434398714 (ns)

band[1] PH delay_numOfAmbiguities: 0

band[1] rate_residual : 0.5900324167213904 (ps/s)

band[1] rate_residualNorm : 0.9305854845553957

++

obs[2] key : 056057:66989.000000-KOKEE :WETTZELL@0059+581

obs[2] Scan : 131-1835

obs[2] Epoch : Thu, 10 May 2012 18:36:29 GMT

obs[2] isValid: true

obs[2] isProcd: true

obs[2] #ofBnds: 2

obs[2] Stn_1 : KOKEE

obs[2] Stn_2 : WETTZELL

obs[2] Bln : KOKEE:WETTZELL

obs[2] Src : 0059+581

band[0] key : "X"

band[0] QF : 9

band[0] SNR : 115.29768371582031

band[0] #Chann: 8

band[0] usable: true

band[0] SB delay_residual : -32824.42245431099 (ps)

band[0] SB delay_residualNorm : 0

band[0] SB delay_ambiguitySpacing: 0

band[0] SB delay_numOfAmbiguities: 0

band[0] GR delay_residual : 4.653915341358772 (ps)

band[0] GR delay_residualNorm : 0.3670455669661493

band[0] GR delay_ambiguitySpacing: 50.00000074505806 (ns)

band[0] GR delay_numOfAmbiguities: 0

band[0] PH delay_residual : 1181.6100078639383 (ps)

94

band[0] PH delay_residualNorm : 0

band[0] PH delay_ambiguitySpacing: 0.12220471979068775 (ns)

band[0] PH delay_numOfAmbiguities: 0

band[0] rate_residual : 0.17664172145018558 (ps/s)

band[0] rate_residualNorm : 0.2743711079130166

band[1] key : "S"

band[1] QF : 9

band[1] SNR : 53.394752502441406

band[1] #Chann: 6

band[1] usable: true

band[1] SB delay_residual : -32824.42245431099 (ps)

band[1] SB delay_residualNorm : 0

band[1] SB delay_ambiguitySpacing: 0

band[1] SB delay_numOfAmbiguities: 0

band[1] GR delay_residual : 4.653915341361047 (ps)

band[1] GR delay_residualNorm : 0.5560407163248116

band[1] GR delay_ambiguitySpacing: 200.00000298023224 (ns)

band[1] GR delay_numOfAmbiguities: 0

band[1] PH delay_residual : 17451.212584490735 (ps)

band[1] PH delay_residualNorm : 0

band[1] PH delay_ambiguitySpacing: 0.45187732434398714 (ns)

band[1] PH delay_numOfAmbiguities: 0

band[1] rate_residual : 0.17664172145018553 (ps/s)

band[1] rate_residualNorm : 0.2779574963913654

++

obs[3] key : 056057:67106.500000-KOKEE :WETTZELL@3C418

obs[3] Scan : 131-1837

obs[3] Epoch : Thu, 10 May 2012 18:38:26 GMT

obs[3] isValid: true

obs[3] isProcd: true

obs[3] #ofBnds: 2

obs[3] Stn_1 : KOKEE

obs[3] Stn_2 : WETTZELL

obs[3] Bln : KOKEE:WETTZELL

obs[3] Src : 3C418

band[0] key : "X"

band[0] QF : 9

band[0] SNR : 39.00614929199219

band[0] #Chann: 8

band[0] usable: true

band[0] SB delay_residual : -36703.61749143739 (ps)

band[0] SB delay_residualNorm : 0

band[0] SB delay_ambiguitySpacing: 0

band[0] SB delay_numOfAmbiguities: 0

band[0] GR delay_residual : 25.062730303683104 (ps)

band[0] GR delay_residualNorm : 0.9088012160598974

band[0] GR delay_ambiguitySpacing: 50.00000074505806 (ns)

band[0] GR delay_numOfAmbiguities: 0

band[0] PH delay_residual : 1243.4952193442662 (ps)

band[0] PH delay_residualNorm : 0

band[0] PH delay_ambiguitySpacing: 0.12220471979068775 (ns)

band[0] PH delay_numOfAmbiguities: 0

band[0] rate_residual : 0.025152838979971313 (ps/s)

band[0] rate_residualNorm : 0.03878200018615596

band[1] key : "S"

95

band[1] QF : 9

band[1] SNR : 7.94821834564209

band[1] #Chann: 6

band[1] usable: true

band[1] SB delay_residual : -36703.61749143739 (ps)

band[1] SB delay_residualNorm : 0

band[1] SB delay_ambiguitySpacing: 0

band[1] SB delay_numOfAmbiguities: 0

band[1] GR delay_residual : 25.06273030368269 (ps)

band[1] GR delay_residualNorm : 0.4574713346056261

band[1] GR delay_ambiguitySpacing: 200.00000298023224 (ns)

band[1] GR delay_numOfAmbiguities: 0

band[1] PH delay_residual : 17906.143770210678 (ps)

band[1] PH delay_residualNorm : 0

band[1] PH delay_ambiguitySpacing: 0.45187732434398714 (ns)

band[1] PH delay_numOfAmbiguities: 0

band[1] rate_residual : 0.02515283897997139 (ps/s)

band[1] rate_residualNorm : 0.018590603245821645

++

8.7 Passing arguments to a script

When a user runs a script, νSolve pass the optional (i.e., others than start with ��� char and parsed by νSolve) command
line arguments to the script. In scripts these command line arguments visible as an object args that is an array of String.
As an example of using arguments, let us consider a script that uses arguments:

function main()

{

const selfName = 'export2ngs';

// check arguments:

if (!args.length)

{

print('\nscript ' + selfName + ' usage:\n');

print(selfName + ' input [input type]');

print('where arguments:');

print(' input -- a database name (with or without version part) or a wrapper file name');

print(' input type -- either \'DBH\' (default) or \'VDB\', optional.');

return;

};

handler.fileName = args[0];

handler.inputType = 'DBH';

if (args.length > 1)

handler.inputType = args[1];

// check:

if (handler.inputType == '---')

{

print(selfName + ': ERROR: wrong input type.');

return;

};

print(selfName + ': Session name = ' + handler.fileName);

print(selfName + ': input type = ' + handler.inputType);

handler.importSession();

if (session.isOk)

{

96

print(selfName + ': Session loaded.');

handler.exportDataToNgs();

print(selfName + ': Session exported as an NGS file.');

}

else

print(selfName + ': ERROR: reading the file ' + handler.fileName + ' as ' +

handler.inputType + ' type has failed.');

};

// end of main body

main();

The script performs a simple action: reads a VLBI session that is provided by a user and exports it into an ASCII �le in
NGS format. Also, a user optionally can specify a type of input � read data from databases or use the vgosDb format. Since
ECMAScript does not have program structuring � all commands are executed as they appear in a �le, we put everything
in a function main() and the script consists of one command that is calling this function.

First, it checks for a size of the array args and if it is zero, prints info how to use the script and exits. Then, it uses the
�rst argument as a �le name of input VLBI session and, if the number of the arguments more than one, uses the second
argument as the type of input data. The input type can be either string �DBH� or �VDB�, trying to assign anything
else to the property inputType of the object handler will reset it to the value �---�, which means "unknown". The script
checks for the result of the assignment and, if the second argument was not recognized, complains and exits. If the result
of checking is satisfying, the script read a VLBI session and, if it was successful, exports data into NGS format.

This script is given here for education purposes. It also can be found in scripts directory of the current distribution
under the name �export2ngs.js�.

Using this feature makes easy to organize data processing in a batch mode. For example, if a user created an ASCII
�le under the name sessionList and put there the following strings:

18JAN02XU

18JAN03XU

18JAN04XU

18JAN05XU

18JAN08XU

18JAN10XU

Then, results of executing a shell script

#!/bin/bash

list=`cat sessionList`

for i in $list

do

nuSolve -t export2ngs.js $i

done

will be six NGS �les for the sessions from the list. The �les will be saved in a directory speci�ed in the Preferences, see
subsection 4.1.1.

8.8 Control of the log output

During its work, various parts of νSolve generate messages. The messages have two attributes: log level and log facility.
The level of a message speci�es how severe the message is, it could vary from �error� to �<debug�. The facility of a
message describes to which module or sub-module it belongs, e.g., graphical user interface, input/output operations, etc..
All generated messages come through logger that �lters them and display eligible messages. A user can con�gure the logger
which log level and facility it should accept and ignore, see the subsection 4.1.4 Con�guration of logging subsystem.

97

By default, set up of the logging subsystem of the software is the same as it is in interactive mode � νSolve reads the
con�guration before executing a script. To override behavior of the logging system an object logger is available in scripts.
Properties of this object are shown on Tab. 8.22.

Type Property Access Meaning
String �leName Read/Write a �le name where the log messages should be saved;
String dirName Read/Write a directory where the �le �leName is expected;
boolean have2store Read/Write if true, log messages will be stored in the �le, otherwise �

discarded;
boolean isMute Read/Write if true, the messages will be send to the standard error

stream, otherwise � muted;

Table 8.22: Properties of logger objects.

Types for log level and log facility are provided by the metaobject Log, Tab. 8.23 and Tab. 8.24 list these types.

Values Meaning
Err error message
Wrn warning message
Inf routine message
Dbg debug message

Table 8.23: Enumerated type log level of metaobject Log.

The object logger has the following methods:

write(LogLevel lvl, int facilities, String message): put a message message of log level lvl and facility(ies) facilities
into a log system.

addLogFacility(LogLevel lvl, int facilities): sets a facilities facilities of a level lvl to be accepted by the log system;

delLogFacility(LogLevel lvl, int facilities): sets a facilities facilities of a level lvl to be ignored by the log system;

boolean isEligible(LogLevel lvl, int facilities): returns true if a message of the log level lvl and facilities facilities is
acceptable by the log system;

rmLogFile(): if a log �le exists, deletes it;

The argument facilities above can be either a value from Tab. 8.24 or a combination of them. For example:

logger.write(Log.Dbg, Log.Config | Log.Gui, 'A user pressed a button');

An example of use this object in a script:

print('logger file name : ' + logger.fileName);

print('logger dir name : ' + logger.dirName);

print('logger have2store: ' + logger.have2store);

logger.have2store = false;

logger.write(Log.Inf, Log.Run, "a test message");

print('debug level for "Preproc" facility (init): ' + logger.isEligible(Log.Dbg, Log.Preproc));

logger.addLogFacility(Log.Dbg, Log.Preproc);

print('debug level for Preproc facility (enabled): ' + logger.isEligible(Log.Dbg, Log.Preproc));

logger.write(Log.Dbg, Log.Preproc, "testing enable.");

logger.delLogFacility(Log.Dbg, Log.Preproc);

print('debug level for Preproc facility (disabled): ' + logger.isEligible(Log.Dbg, Log.Preproc));

98

Values Meaning
IoBin binary input/output operations
IoTxt input/output operations for text �les
IoNcdf netCDF IO
IoDbh database handler access
Io a combination of IoBin, IoTxt, IoNcdf and IoDbh
Matrix general vector and matrix operations
Matrix3d 3-d vector and matrix operations
Interp interpolations
Math a combination of Matrix, Matrix3d and Interp
Obs data manipulations with an observation
Station data manipulations with a station
Source data manipulations with a source
Session data manipulations with a session
Data a combination of Obs, Station, Source and Session
RefFrame calculations of reference frames transformations
Time time scale conversion
Iono evaluation of ionosphere corrections
Refraction calculation of troposphere e�ects
Delay calculation of theoretical delay
Rate calculation of theoretical rate
FlyBy applying ��y by� to the theoretical values
Displacement evaluation of site displacements
Geo a combination of RefFrame, Time, Iono, Refraction, Delay, Rate,

FlyBy and Displacement
Estimator estimator
Pwl piece-wise continuous parameters
Stoch stochastic parameters
Con�g software con�guration
Gui graphical user interface
Report report generator
Run obtaining a solution
Preproc preliminary processing
All a combination of Io, Math, Data, Geo, Estimator, Pwl, Stoch,

Con�g, Gui, Report, Run and Preproc

Table 8.24: Enumerated type log facility of metaobject Log.

logger.write(Log.Dbg, Log.Preproc, "testing disable.");

print('debug level for Log.Config facility: ' + logger.isEligible(Log.Dbg, Log.Config));

print('debug level for Log.Gui facility : ' + logger.isEligible(Log.Dbg, Log.Gui));

print('debug level for (Log.Config | Log.Gui) facilities: ' + logger.isEligible(Log.Dbg, Log.Config | Log.Gui));

logger.write(Log.Dbg, Log.Config | Log.Gui, 'A user pressed a button');

These script commands will generate output:

logger file name : nuSolve.log

logger dir name : /home/slb/nuSolve

logger have2store: true

15:44:01 a test message

debug level for "Preproc" facility (init): true

debug level for Preproc facility (enabled): true

15:44:01 testing enable.

debug level for Preproc facility (disabled): false

debug level for Log.Config facility: true

debug level for Log.Gui facility : false

99

debug level for (Log.Config | Log.Gui) facilities: true

15:44:01 A user pressed a button

Using this interface we can modify the script �export2ngs.js� mentioned above. Suppose, we want to keep for each
session a log in a separate �le, also, override the log �les if they already exists from previous execution of the script. Also,
we do not want to log any debug messages and have output to the screen. Then, the script would look like:

function main()

{

const selfName = 'export2ngs';

// check arguments:

if (!args.length)

{

print('\nscript ' + selfName + ' usage:\n');

print(selfName + ' input [input type]');

print('where arguments:');

print(' input -- a database name (with or without version part) or a wrapper file name');

print(' input type -- either \'DBH\' (default) or \'VDB\', optional.');

return;

};

handler.fileName = args[0];

handler.inputType = 'DBH';

if (args.length > 1)

handler.inputType = args[1];

// check:

if (handler.inputType == '---')

{

print(selfName + ': ERROR: wrong input type.');

return;

};

print(selfName + ': Session name = ' + handler.fileName);

print(selfName + ': input type = ' + handler.inputType);

// set up logging:

logger.fileName = selfName + '.' + handler.fileName + '.log';

logger.have2store = true;

// log all error messages:

logger.addLogFacility(Log.Err, Log.All);

// log all warning messages:

logger.addLogFacility(Log.Wrn, Log.All);

// log all information messages:

logger.addLogFacility(Log.Inf, Log.All);

// skip all debug messages:

logger.delLogFacility(Log.Dbg, Log.All);

// delete the file if it exists:

logger.rmLogFile();

logger.isMute = true;

logger.write(Log.Inf, Log.Preproc, selfName + ': Starting processing ' + handler.fileName + ' file');

handler.importSession();

if (session.isOk)

{

print(selfName + ': Session loaded.');

handler.exportDataToNgs();

100

print(selfName + ': Session exported as an NGS file.');

}

else

print(selfName + ': ERROR: reading the file ' + handler.fileName + ' as ' +

handler.inputType + ' type has failed.');

};

// end of main body

main();

101

Chapter 9

Selected practical issues of using νSolve in

a script mode

9.1 Converting data format of a VLBI session

Using the script capabilities of νSolve it is easy to convert data format of a VLBI session. As examples, the software
distribution contains two scripts, export2ngs.js and vgosDxConvertor.js. The �rst script exports some data from
vgosDb, DBH or vgosDa �les into NGS format. The second script converts a VLBI session from vgosDb to vgosDa format
or back. Invocation of the scripts without arguments will print its usage.

The �les are available in scripts directory of the distribution and are installed in [PREFIX]/share/nusolve/scripts

when a user execute make install command (see Chapter 2 Installation).
Starting version 0.7.1 there is no needs to provide a path to script �les that come with the distribution. To export

VLBI database 17DEC03XB in the NGS format a user can type (assuming the database is in proper place):

> nuSolve -t export2ngs.js 17DEC03XB

And to convert a VLBI session that is in vgosDa format in a �le 20191209_a_v002.env.vda into the vgosDb format, type:

> nuSolve -t vgosDxConvertor.js a2b 20191209_a_v002.env.vda

In both cases the software assumes that the input �les are in prede�ned directories, see subsection 4.1.1 Specifying direc-

tories, external �les. A user can provide an alternative path to the input �les, i.e.:

> nuSolve -t vgosDxConvertor.js b2a /tmp/16APR02XA

To change a path for output, the scripts should be edited by a user.
In addition to the ECMAScript vgosDxConvertor.js a bash wrapper vgosDxConvertor is provided by the distribution.

This script is installed in the same directory as nuSolve, so a user can perform conversion between vgosDa and vgosDb
formats with minimum typing:

> vgosDxConvertor db2da ~/500/vgosDb/2020/20APR01XA ~/500/vgosDa/

or

> vgosDxConvertor da2db ~/500/vgosDa/20APR01XU.vda ~/tmp/20APR01XU.tgz

or

> vgosDxConvertor db2da ~/Downloads/20APR01XA.tgz ~/tmp/vda/20APR01XA.vda

Note, in contrast to previous scripts, this script, vgosDxConvertor, does not use user set up, the input and output path
have to be provided explicitly by a user.

102

Chapter 10

Concluding remark

Currently, this document is in the developmental stage, and it is likely to be changed frequently. Check for new versions
at the web site:

https://sourceforge.net/projects/nusolve/

If you have questions or suggestions that will improve the software or the User Guide, please e-mail us at:

<mailto:sergei.bolotin@nasa.gov>

Happy solving!

103

Bibliography

[1] S. Bolotin, J. Gipson, D. MacMillan: �Development of a New VLBI Data Analysis Software". In: International
VLBI Service for Geodesy and Astrometry 2010 General Meeting Proceedings, edited by D. Behrend and K. Baver,
NASA/CP-2010-215864, 197-201, 2010.

[2] S. Bolotin, J. Gipson, D. Gordon, D. MacMillan: �Current Status of Development of New VLBI Data Analysis
Software". In: Proceedings of the 20th Meeting of the European VLBI Group for Geodesy and Astrometry, edited
by W. Alef, S. Bernhart, A. Nothnagel, Schriftenreihe des Instituts für Geodäsie und Geoinformation der Universität
Bonn, Nr. 22, ISSN 1864-1113, 86-88, 2011.

[3] S. Bolotin, K. Baver, J. Gipson, D. Gordon, D. MacMillan: �The First Release of νSolve". In: International VLBI
Service for Geodesy and Astrometry 2012 General Meeting Proceedings `Launching the Next-Generation IVS Network',
edited by D. Behrend and K. Baver, NASA/CP-2012-217504, 222-226, 2012.

[4] S. Bolotin, K. Baver, O. Bolotina, J. Gipson, D. Gordon, K. Le Bail, D. MacMillan: �The Source Structure E�ect
in Broadband Observations". In: Proceedings of the 24th Meeting of the European VLBI Group for Geodesy and
Astrometry, edited by R. Haas, S. Garcia-Espada, and J.A.Lopez Fernandez, Spain, pp. 224�228, 2019

[5] Herring, T.A., �Modeling atmospheric delays in the analysis of space geodetic data�, In Publications on Geodesy Pro-
ceedings of Refraction of Transatmospheric Signals in Geodesy; Netherlands Commissie voor Geodesie: Amersfoort,
The Netherlands, Volume 36, pp. 157�164. 1992.

[6] Niell, A. E., �Global mapping functions for the atmosphere delay at radio wavelengths�, J. Geophys. Res., 101,
3227�3246. 1996.

[7] L. Petrov: �Memo about outliers elimination�. http://astrogeo.org/mk5/help/elim_02.pdf

[8] L. Petrov: �Memo about reweighting�. http://astrogeo.org/mk5/help/upwei_02_hlp.ps.gz

104

