FFMPEG-ALL(1) FFMPEG-ALL(1) NAME ffmpeg - ffmpeg video converter SYNOPSIS ffmpeg [global_options] {[input_file_options] -i input_url} ... {[output_file_options] output_url} ... DESCRIPTION ffmpeg is a very fast video and audio converter that can also grab from a live audio/video source. It can also convert between arbitrary sample rates and resize video on the fly with a high quality polyphase filter. ffmpeg reads from an arbitrary number of input "files" (which can be regular files, pipes, network streams, grabbing devices, etc.), specified by the "-i" option, and writes to an arbitrary number of output "files", which are specified by a plain output url. Anything found on the command line which cannot be interpreted as an option is considered to be an output url. Each input or output url can, in principle, contain any number of streams of different types (video/audio/subtitle/attachment/data). The allowed number and/or types of streams may be limited by the container format. Selecting which streams from which inputs will go into which output is either done automatically or with the "-map" option (see the Stream selection chapter). To refer to input files in options, you must use their indices (0-based). E.g. the first input file is 0, the second is 1, etc. Similarly, streams within a file are referred to by their indices. E.g. "2:3" refers to the fourth stream in the third input file. Also see the Stream specifiers chapter. As a general rule, options are applied to the next specified file. Therefore, order is important, and you can have the same option on the command line multiple times. Each occurrence is then applied to the next input or output file. Exceptions from this rule are the global options (e.g. verbosity level), which should be specified first. Do not mix input and output files -- first specify all input files, then all output files. Also do not mix options which belong to different files. All options apply ONLY to the next input or output file and are reset between files. · To set the video bitrate of the output file to 64 kbit/s: ffmpeg -i input.avi -b:v 64k -bufsize 64k output.avi · To force the frame rate of the output file to 24 fps: ffmpeg -i input.avi -r 24 output.avi · To force the frame rate of the input file (valid for raw formats only) to 1 fps and the frame rate of the output file to 24 fps: ffmpeg -r 1 -i input.m2v -r 24 output.avi The format option may be needed for raw input files. DETAILED DESCRIPTION The transcoding process in ffmpeg for each output can be described by the following diagram: _______ ______________ | | | | | input | demuxer | encoded data | decoder | file | ---------> | packets | -----+ |_______| |______________| | v _________ | | | decoded | | frames | |_________| ________ ______________ | | | | | | | output | <-------- | encoded data | <----+ | file | muxer | packets | encoder |________| |______________| ffmpeg calls the libavformat library (containing demuxers) to read input files and get packets containing encoded data from them. When there are multiple input files, ffmpeg tries to keep them synchronized by tracking lowest timestamp on any active input stream. Encoded packets are then passed to the decoder (unless streamcopy is selected for the stream, see further for a description). The decoder produces uncompressed frames (raw video/PCM audio/...) which can be processed further by filtering (see next section). After filtering, the frames are passed to the encoder, which encodes them and outputs encoded packets. Finally those are passed to the muxer, which writes the encoded packets to the output file. Filtering Before encoding, ffmpeg can process raw audio and video frames using filters from the libavfilter library. Several chained filters form a filter graph. ffmpeg distinguishes between two types of filtergraphs: simple and complex. Simple filtergraphs Simple filtergraphs are those that have exactly one input and output, both of the same type. In the above diagram they can be represented by simply inserting an additional step between decoding and encoding: _________ ______________ | | | | | decoded | | encoded data | | frames |\ _ | packets | |_________| \ /||______________| \ __________ / simple _\|| | / encoder filtergraph | filtered |/ | frames | |__________| Simple filtergraphs are configured with the per-stream -filter option (with -vf and -af aliases for video and audio respectively). A simple filtergraph for video can look for example like this: _______ _____________ _______ ________ | | | | | | | | | input | ---> | deinterlace | ---> | scale | ---> | output | |_______| |_____________| |_______| |________| Note that some filters change frame properties but not frame contents. E.g. the "fps" filter in the example above changes number of frames, but does not touch the frame contents. Another example is the "setpts" filter, which only sets timestamps and otherwise passes the frames unchanged. Complex filtergraphs Complex filtergraphs are those which cannot be described as simply a linear processing chain applied to one stream. This is the case, for example, when the graph has more than one input and/or output, or when output stream type is different from input. They can be represented with the following diagram: _________ | | | input 0 |\ __________ |_________| \ | | \ _________ /| output 0 | \ | | / |__________| _________ \| complex | / | | | |/ | input 1 |---->| filter |\ |_________| | | \ __________ /| graph | \ | | / | | \| output 1 | _________ / |_________| |__________| | | / | input 2 |/ |_________| Complex filtergraphs are configured with the -filter_complex option. Note that this option is global, since a complex filtergraph, by its nature, cannot be unambiguously associated with a single stream or file. The -lavfi option is equivalent to -filter_complex. A trivial example of a complex filtergraph is the "overlay" filter, which has two video inputs and one video output, containing one video overlaid on top of the other. Its audio counterpart is the "amix" filter. Stream copy Stream copy is a mode selected by supplying the "copy" parameter to the -codec option. It makes ffmpeg omit the decoding and encoding step for the specified stream, so it does only demuxing and muxing. It is useful for changing the container format or modifying container-level metadata. The diagram above will, in this case, simplify to this: _______ ______________ ________ | | | | | | | input | demuxer | encoded data | muxer | output | | file | ---------> | packets | -------> | file | |_______| |______________| |________| Since there is no decoding or encoding, it is very fast and there is no quality loss. However, it might not work in some cases because of many factors. Applying filters is obviously also impossible, since filters work on uncompressed data. STREAM SELECTION By default, ffmpeg includes only one stream of each type (video, audio, subtitle) present in the input files and adds them to each output file. It picks the "best" of each based upon the following criteria: for video, it is the stream with the highest resolution, for audio, it is the stream with the most channels, for subtitles, it is the first subtitle stream. In the case where several streams of the same type rate equally, the stream with the lowest index is chosen. You can disable some of those defaults by using the "-vn/-an/-sn/-dn" options. For full manual control, use the "-map" option, which disables the defaults just described. OPTIONS All the numerical options, if not specified otherwise, accept a string representing a number as input, which may be followed by one of the SI unit prefixes, for example: 'K', 'M', or 'G'. If 'i' is appended to the SI unit prefix, the complete prefix will be interpreted as a unit prefix for binary multiples, which are based on powers of 1024 instead of powers of 1000. Appending 'B' to the SI unit prefix multiplies the value by 8. This allows using, for example: 'KB', 'MiB', 'G' and 'B' as number suffixes. Options which do not take arguments are boolean options, and set the corresponding value to true. They can be set to false by prefixing the option name with "no". For example using "-nofoo" will set the boolean option with name "foo" to false. Stream specifiers Some options are applied per-stream, e.g. bitrate or codec. Stream specifiers are used to precisely specify which stream(s) a given option belongs to. A stream specifier is a string generally appended to the option name and separated from it by a colon. E.g. "-codec:a:1 ac3" contains the "a:1" stream specifier, which matches the second audio stream. Therefore, it would select the ac3 codec for the second audio stream. A stream specifier can match several streams, so that the option is applied to all of them. E.g. the stream specifier in "-b:a 128k" matches all audio streams. An empty stream specifier matches all streams. For example, "-codec copy" or "-codec: copy" would copy all the streams without reencoding. Possible forms of stream specifiers are: stream_index Matches the stream with this index. E.g. "-threads:1 4" would set the thread count for the second stream to 4. stream_type[:stream_index] stream_type is one of following: 'v' or 'V' for video, 'a' for audio, 's' for subtitle, 'd' for data, and 't' for attachments. 'v' matches all video streams, 'V' only matches video streams which are not attached pictures, video thumbnails or cover arts. If stream_index is given, then it matches stream number stream_index of this type. Otherwise, it matches all streams of this type. p:program_id[:stream_index] or p:program_id[:stream_type[:stream_index]] or p:program_id:m:key[:value] In first version, if stream_index is given, then it matches the stream with number stream_index in the program with the id program_id. Otherwise, it matches all streams in the program. In the second version, stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd' for data. If stream_index is also given, then it matches stream number stream_index of this type in the program with the id program_id. Otherwise, if only stream_type is given, it matches all streams of this type in the program with the id program_id. In the third version matches streams in the program with the id program_id with the metadata tag key having the specified value. If value is not given, matches streams that contain the given tag with any value. #stream_id or i:stream_id Match the stream by stream id (e.g. PID in MPEG-TS container). m:key[:value] Matches streams with the metadata tag key having the specified value. If value is not given, matches streams that contain the given tag with any value. u Matches streams with usable configuration, the codec must be defined and the essential information such as video dimension or audio sample rate must be present. Note that in ffmpeg, matching by metadata will only work properly for input files. Generic options These options are shared amongst the ff* tools. -L Show license. -h, -?, -help, --help [arg] Show help. An optional parameter may be specified to print help about a specific item. If no argument is specified, only basic (non advanced) tool options are shown. Possible values of arg are: long Print advanced tool options in addition to the basic tool options. full Print complete list of options, including shared and private options for encoders, decoders, demuxers, muxers, filters, etc. decoder=decoder_name Print detailed information about the decoder named decoder_name. Use the -decoders option to get a list of all decoders. encoder=encoder_name Print detailed information about the encoder named encoder_name. Use the -encoders option to get a list of all encoders. demuxer=demuxer_name Print detailed information about the demuxer named demuxer_name. Use the -formats option to get a list of all demuxers and muxers. muxer=muxer_name Print detailed information about the muxer named muxer_name. Use the -formats option to get a list of all muxers and demuxers. filter=filter_name Print detailed information about the filter name filter_name. Use the -filters option to get a list of all filters. -version Show version. -formats Show available formats (including devices). -demuxers Show available demuxers. -muxers Show available muxers. -devices Show available devices. -codecs Show all codecs known to libavcodec. Note that the term 'codec' is used throughout this documentation as a shortcut for what is more correctly called a media bitstream format. -decoders Show available decoders. -encoders Show all available encoders. -bsfs Show available bitstream filters. -protocols Show available protocols. -filters Show available libavfilter filters. -pix_fmts Show available pixel formats. -sample_fmts Show available sample formats. -layouts Show channel names and standard channel layouts. -colors Show recognized color names. -sources device[,opt1=val1[,opt2=val2]...] Show autodetected sources of the input device. Some devices may provide system-dependent source names that cannot be autodetected. The returned list cannot be assumed to be always complete. ffmpeg -sources pulse,server=192.168.0.4 -sinks device[,opt1=val1[,opt2=val2]...] Show autodetected sinks of the output device. Some devices may provide system-dependent sink names that cannot be autodetected. The returned list cannot be assumed to be always complete. ffmpeg -sinks pulse,server=192.168.0.4 -loglevel [flags+]loglevel | -v [flags+]loglevel Set logging level and flags used by the library. The optional flags prefix can consist of the following values: repeat Indicates that repeated log output should not be compressed to the first line and the "Last message repeated n times" line will be omitted. level Indicates that log output should add a "[level]" prefix to each message line. This can be used as an alternative to log coloring, e.g. when dumping the log to file. Flags can also be used alone by adding a '+'/'-' prefix to set/reset a single flag without affecting other flags or changing loglevel. When setting both flags and loglevel, a '+' separator is expected between the last flags value and before loglevel. loglevel is a string or a number containing one of the following values: quiet, -8 Show nothing at all; be silent. panic, 0 Only show fatal errors which could lead the process to crash, such as an assertion failure. This is not currently used for anything. fatal, 8 Only show fatal errors. These are errors after which the process absolutely cannot continue. error, 16 Show all errors, including ones which can be recovered from. warning, 24 Show all warnings and errors. Any message related to possibly incorrect or unexpected events will be shown. info, 32 Show informative messages during processing. This is in addition to warnings and errors. This is the default value. verbose, 40 Same as "info", except more verbose. debug, 48 Show everything, including debugging information. trace, 56 For example to enable repeated log output, add the "level" prefix, and set loglevel to "verbose": ffmpeg -loglevel repeat+level+verbose -i input output Another example that enables repeated log output without affecting current state of "level" prefix flag or loglevel: ffmpeg [...] -loglevel +repeat By default the program logs to stderr. If coloring is supported by the terminal, colors are used to mark errors and warnings. Log coloring can be disabled setting the environment variable AV_LOG_FORCE_NOCOLOR or NO_COLOR, or can be forced setting the environment variable AV_LOG_FORCE_COLOR. The use of the environment variable NO_COLOR is deprecated and will be dropped in a future FFmpeg version. -report Dump full command line and console output to a file named "program-YYYYMMDD-HHMMSS.log" in the current directory. This file can be useful for bug reports. It also implies "-loglevel verbose". Setting the environment variable FFREPORT to any value has the same effect. If the value is a ':'-separated key=value sequence, these options will affect the report; option values must be escaped if they contain special characters or the options delimiter ':' (see the ``Quoting and escaping'' section in the ffmpeg-utils manual). The following options are recognized: file set the file name to use for the report; %p is expanded to the name of the program, %t is expanded to a timestamp, "%%" is expanded to a plain "%" level set the log verbosity level using a numerical value (see "-loglevel"). For example, to output a report to a file named ffreport.log using a log level of 32 (alias for log level "info"): FFREPORT=file=ffreport.log:level=32 ffmpeg -i input output Errors in parsing the environment variable are not fatal, and will not appear in the report. -hide_banner Suppress printing banner. All FFmpeg tools will normally show a copyright notice, build options and library versions. This option can be used to suppress printing this information. -cpuflags flags (global) Allows setting and clearing cpu flags. This option is intended for testing. Do not use it unless you know what you're doing. ffmpeg -cpuflags -sse+mmx ... ffmpeg -cpuflags mmx ... ffmpeg -cpuflags 0 ... Possible flags for this option are: x86 mmx mmxext sse sse2 sse2slow sse3 sse3slow ssse3 atom sse4.1 sse4.2 avx avx2 xop fma3 fma4 3dnow 3dnowext bmi1 bmi2 cmov ARM armv5te armv6 armv6t2 vfp vfpv3 neon setend AArch64 armv8 vfp neon PowerPC altivec Specific Processors pentium2 pentium3 pentium4 k6 k62 athlon athlonxp k8 AVOptions These options are provided directly by the libavformat, libavdevice and libavcodec libraries. To see the list of available AVOptions, use the -help option. They are separated into two categories: generic These options can be set for any container, codec or device. Generic options are listed under AVFormatContext options for containers/devices and under AVCodecContext options for codecs. private These options are specific to the given container, device or codec. Private options are listed under their corresponding containers/devices/codecs. For example to write an ID3v2.3 header instead of a default ID3v2.4 to an MP3 file, use the id3v2_version private option of the MP3 muxer: ffmpeg -i input.flac -id3v2_version 3 out.mp3 All codec AVOptions are per-stream, and thus a stream specifier should be attached to them. Note: the -nooption syntax cannot be used for boolean AVOptions, use -option 0/-option 1. Note: the old undocumented way of specifying per-stream AVOptions by prepending v/a/s to the options name is now obsolete and will be removed soon. Main options -f fmt (input/output) Force input or output file format. The format is normally auto detected for input files and guessed from the file extension for output files, so this option is not needed in most cases. -i url (input) input file url -y (global) Overwrite output files without asking. -n (global) Do not overwrite output files, and exit immediately if a specified output file already exists. -stream_loop number (input) Set number of times input stream shall be looped. Loop 0 means no loop, loop -1 means infinite loop. -c[:stream_specifier] codec (input/output,per-stream) -codec[:stream_specifier] codec (input/output,per-stream) Select an encoder (when used before an output file) or a decoder (when used before an input file) for one or more streams. codec is the name of a decoder/encoder or a special value "copy" (output only) to indicate that the stream is not to be re-encoded. For example ffmpeg -i INPUT -map 0 -c:v libx264 -c:a copy OUTPUT encodes all video streams with libx264 and copies all audio streams. For each stream, the last matching "c" option is applied, so ffmpeg -i INPUT -map 0 -c copy -c:v:1 libx264 -c:a:137 libvorbis OUTPUT will copy all the streams except the second video, which will be encoded with libx264, and the 138th audio, which will be encoded with libvorbis. -t duration (input/output) When used as an input option (before "-i"), limit the duration of data read from the input file. When used as an output option (before an output url), stop writing the output after its duration reaches duration. duration must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual. -to and -t are mutually exclusive and -t has priority. -to position (input/output) Stop writing the output or reading the input at position. position must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual. -to and -t are mutually exclusive and -t has priority. -fs limit_size (output) Set the file size limit, expressed in bytes. No further chunk of bytes is written after the limit is exceeded. The size of the output file is slightly more than the requested file size. -ss position (input/output) When used as an input option (before "-i"), seeks in this input file to position. Note that in most formats it is not possible to seek exactly, so ffmpeg will seek to the closest seek point before position. When transcoding and -accurate_seek is enabled (the default), this extra segment between the seek point and position will be decoded and discarded. When doing stream copy or when -noaccurate_seek is used, it will be preserved. When used as an output option (before an output url), decodes but discards input until the timestamps reach position. position must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual. -sseof position (input/output) Like the "-ss" option but relative to the "end of file". That is negative values are earlier in the file, 0 is at EOF. -itsoffset offset (input) Set the input time offset. offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual. The offset is added to the timestamps of the input files. Specifying a positive offset means that the corresponding streams are delayed by the time duration specified in offset. -timestamp date (output) Set the recording timestamp in the container. date must be a date specification, see the Date section in the ffmpeg-utils(1) manual. -metadata[:metadata_specifier] key=value (output,per-metadata) Set a metadata key/value pair. An optional metadata_specifier may be given to set metadata on streams, chapters or programs. See "-map_metadata" documentation for details. This option overrides metadata set with "-map_metadata". It is also possible to delete metadata by using an empty value. For example, for setting the title in the output file: ffmpeg -i in.avi -metadata title="my title" out.flv To set the language of the first audio stream: ffmpeg -i INPUT -metadata:s:a:0 language=eng OUTPUT -disposition[:stream_specifier] value (output,per-stream) Sets the disposition for a stream. This option overrides the disposition copied from the input stream. It is also possible to delete the disposition by setting it to 0. The following dispositions are recognized: default dub original comment lyrics karaoke forced hearing_impaired visual_impaired clean_effects captions descriptions metadata For example, to make the second audio stream the default stream: ffmpeg -i in.mkv -disposition:a:1 default out.mkv To make the second subtitle stream the default stream and remove the default disposition from the first subtitle stream: ffmpeg -i INPUT -disposition:s:0 0 -disposition:s:1 default OUTPUT -program [title=title:][program_num=program_num:]st=stream[:st=stream...] (output) Creates a program with the specified title, program_num and adds the specified stream(s) to it. -target type (output) Specify target file type ("vcd", "svcd", "dvd", "dv", "dv50"). type may be prefixed with "pal-", "ntsc-" or "film-" to use the corresponding standard. All the format options (bitrate, codecs, buffer sizes) are then set automatically. You can just type: ffmpeg -i myfile.avi -target vcd /tmp/vcd.mpg Nevertheless you can specify additional options as long as you know they do not conflict with the standard, as in: ffmpeg -i myfile.avi -target vcd -bf 2 /tmp/vcd.mpg -dn (output) Disable data recording. For full manual control see the "-map" option. -dframes number (output) Set the number of data frames to output. This is an obsolete alias for "-frames:d", which you should use instead. -frames[:stream_specifier] framecount (output,per-stream) Stop writing to the stream after framecount frames. -q[:stream_specifier] q (output,per-stream) -qscale[:stream_specifier] q (output,per-stream) Use fixed quality scale (VBR). The meaning of q/qscale is codec- dependent. If qscale is used without a stream_specifier then it applies only to the video stream, this is to maintain compatibility with previous behavior and as specifying the same codec specific value to 2 different codecs that is audio and video generally is not what is intended when no stream_specifier is used. -filter[:stream_specifier] filtergraph (output,per-stream) Create the filtergraph specified by filtergraph and use it to filter the stream. filtergraph is a description of the filtergraph to apply to the stream, and must have a single input and a single output of the same type of the stream. In the filtergraph, the input is associated to the label "in", and the output to the label "out". See the ffmpeg-filters manual for more information about the filtergraph syntax. See the -filter_complex option if you want to create filtergraphs with multiple inputs and/or outputs. -filter_script[:stream_specifier] filename (output,per-stream) This option is similar to -filter, the only difference is that its argument is the name of the file from which a filtergraph description is to be read. -filter_threads nb_threads (global) Defines how many threads are used to process a filter pipeline. Each pipeline will produce a thread pool with this many threads available for parallel processing. The default is the number of available CPUs. -pre[:stream_specifier] preset_name (output,per-stream) Specify the preset for matching stream(s). -stats (global) Print encoding progress/statistics. It is on by default, to explicitly disable it you need to specify "-nostats". -progress url (global) Send program-friendly progress information to url. Progress information is written approximately every second and at the end of the encoding process. It is made of "key=value" lines. key consists of only alphanumeric characters. The last key of a sequence of progress information is always "progress". -stdin Enable interaction on standard input. On by default unless standard input is used as an input. To explicitly disable interaction you need to specify "-nostdin". Disabling interaction on standard input is useful, for example, if ffmpeg is in the background process group. Roughly the same result can be achieved with "ffmpeg ... < /dev/null" but it requires a shell. -debug_ts (global) Print timestamp information. It is off by default. This option is mostly useful for testing and debugging purposes, and the output format may change from one version to another, so it should not be employed by portable scripts. See also the option "-fdebug ts". -attach filename (output) Add an attachment to the output file. This is supported by a few formats like Matroska for e.g. fonts used in rendering subtitles. Attachments are implemented as a specific type of stream, so this option will add a new stream to the file. It is then possible to use per-stream options on this stream in the usual way. Attachment streams created with this option will be created after all the other streams (i.e. those created with "-map" or automatic mappings). Note that for Matroska you also have to set the mimetype metadata tag: ffmpeg -i INPUT -attach DejaVuSans.ttf -metadata:s:2 mimetype=application/x-truetype-font out.mkv (assuming that the attachment stream will be third in the output file). -dump_attachment[:stream_specifier] filename (input,per-stream) Extract the matching attachment stream into a file named filename. If filename is empty, then the value of the "filename" metadata tag will be used. E.g. to extract the first attachment to a file named 'out.ttf': ffmpeg -dump_attachment:t:0 out.ttf -i INPUT To extract all attachments to files determined by the "filename" tag: ffmpeg -dump_attachment:t "" -i INPUT Technical note -- attachments are implemented as codec extradata, so this option can actually be used to extract extradata from any stream, not just attachments. -noautorotate Disable automatically rotating video based on file metadata. Video Options -vframes number (output) Set the number of video frames to output. This is an obsolete alias for "-frames:v", which you should use instead. -r[:stream_specifier] fps (input/output,per-stream) Set frame rate (Hz value, fraction or abbreviation). As an input option, ignore any timestamps stored in the file and instead generate timestamps assuming constant frame rate fps. This is not the same as the -framerate option used for some input formats like image2 or v4l2 (it used to be the same in older versions of FFmpeg). If in doubt use -framerate instead of the input option -r. As an output option, duplicate or drop input frames to achieve constant output frame rate fps. -s[:stream_specifier] size (input/output,per-stream) Set frame size. As an input option, this is a shortcut for the video_size private option, recognized by some demuxers for which the frame size is either not stored in the file or is configurable -- e.g. raw video or video grabbers. As an output option, this inserts the "scale" video filter to the end of the corresponding filtergraph. Please use the "scale" filter directly to insert it at the beginning or some other place. The format is wxh (default - same as source). -aspect[:stream_specifier] aspect (output,per-stream) Set the video display aspect ratio specified by aspect. aspect can be a floating point number string, or a string of the form num:den, where num and den are the numerator and denominator of the aspect ratio. For example "4:3", "16:9", "1.3333", and "1.7777" are valid argument values. If used together with -vcodec copy, it will affect the aspect ratio stored at container level, but not the aspect ratio stored in encoded frames, if it exists. -vn (output) Disable video recording. For full manual control see the "-map" option. -vcodec codec (output) Set the video codec. This is an alias for "-codec:v". -pass[:stream_specifier] n (output,per-stream) Select the pass number (1 or 2). It is used to do two-pass video encoding. The statistics of the video are recorded in the first pass into a log file (see also the option -passlogfile), and in the second pass that log file is used to generate the video at the exact requested bitrate. On pass 1, you may just deactivate audio and set output to null, examples for Windows and Unix: ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y NUL ffmpeg -i foo.mov -c:v libxvid -pass 1 -an -f rawvideo -y /dev/null -passlogfile[:stream_specifier] prefix (output,per-stream) Set two-pass log file name prefix to prefix, the default file name prefix is ``ffmpeg2pass''. The complete file name will be PREFIX-N.log, where N is a number specific to the output stream -vf filtergraph (output) Create the filtergraph specified by filtergraph and use it to filter the stream. This is an alias for "-filter:v", see the -filter option. Advanced Video options -pix_fmt[:stream_specifier] format (input/output,per-stream) Set pixel format. Use "-pix_fmts" to show all the supported pixel formats. If the selected pixel format can not be selected, ffmpeg will print a warning and select the best pixel format supported by the encoder. If pix_fmt is prefixed by a "+", ffmpeg will exit with an error if the requested pixel format can not be selected, and automatic conversions inside filtergraphs are disabled. If pix_fmt is a single "+", ffmpeg selects the same pixel format as the input (or graph output) and automatic conversions are disabled. -sws_flags flags (input/output) Set SwScaler flags. -vdt n Discard threshold. -rc_override[:stream_specifier] override (output,per-stream) Rate control override for specific intervals, formatted as "int,int,int" list separated with slashes. Two first values are the beginning and end frame numbers, last one is quantizer to use if positive, or quality factor if negative. -ilme Force interlacing support in encoder (MPEG-2 and MPEG-4 only). Use this option if your input file is interlaced and you want to keep the interlaced format for minimum losses. The alternative is to deinterlace the input stream with -deinterlace, but deinterlacing introduces losses. -psnr Calculate PSNR of compressed frames. -vstats Dump video coding statistics to vstats_HHMMSS.log. -vstats_file file Dump video coding statistics to file. -vstats_version file Specifies which version of the vstats format to use. Default is 2. version = 1 : "frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s" version > 1: "out= %2d st= %2d frame= %5d q= %2.1f PSNR= %6.2f f_size= %6d s_size= %8.0fkB time= %0.3f br= %7.1fkbits/s avg_br= %7.1fkbits/s" -top[:stream_specifier] n (output,per-stream) top=1/bottom=0/auto=-1 field first -dc precision Intra_dc_precision. -vtag fourcc/tag (output) Force video tag/fourcc. This is an alias for "-tag:v". -qphist (global) Show QP histogram -vbsf bitstream_filter Deprecated see -bsf -force_key_frames[:stream_specifier] time[,time...] (output,per-stream) -force_key_frames[:stream_specifier] expr:expr (output,per-stream) Force key frames at the specified timestamps, more precisely at the first frames after each specified time. If the argument is prefixed with "expr:", the string expr is interpreted like an expression and is evaluated for each frame. A key frame is forced in case the evaluation is non-zero. If one of the times is ""chapters"[delta]", it is expanded into the time of the beginning of all chapters in the file, shifted by delta, expressed as a time in seconds. This option can be useful to ensure that a seek point is present at a chapter mark or any other designated place in the output file. For example, to insert a key frame at 5 minutes, plus key frames 0.1 second before the beginning of every chapter: -force_key_frames 0:05:00,chapters-0.1 The expression in expr can contain the following constants: n the number of current processed frame, starting from 0 n_forced the number of forced frames prev_forced_n the number of the previous forced frame, it is "NAN" when no keyframe was forced yet prev_forced_t the time of the previous forced frame, it is "NAN" when no keyframe was forced yet t the time of the current processed frame For example to force a key frame every 5 seconds, you can specify: -force_key_frames expr:gte(t,n_forced*5) To force a key frame 5 seconds after the time of the last forced one, starting from second 13: -force_key_frames expr:if(isnan(prev_forced_t),gte(t,13),gte(t,prev_forced_t+5)) Note that forcing too many keyframes is very harmful for the lookahead algorithms of certain encoders: using fixed-GOP options or similar would be more efficient. -copyinkf[:stream_specifier] (output,per-stream) When doing stream copy, copy also non-key frames found at the beginning. -init_hw_device type[=name][:device[,key=value...]] Initialise a new hardware device of type type called name, using the given device parameters. If no name is specified it will receive a default name of the form "type%d". The meaning of device and the following arguments depends on the device type: cuda device is the number of the CUDA device. dxva2 device is the number of the Direct3D 9 display adapter. vaapi device is either an X11 display name or a DRM render node. If not specified, it will attempt to open the default X11 display ($DISPLAY) and then the first DRM render node (/dev/dri/renderD128). vdpau device is an X11 display name. If not specified, it will attempt to open the default X11 display ($DISPLAY). qsv device selects a value in MFX_IMPL_*. Allowed values are: auto sw hw auto_any hw_any hw2 hw3 hw4 If not specified, auto_any is used. (Note that it may be easier to achieve the desired result for QSV by creating the platform-appropriate subdevice (dxva2 or vaapi) and then deriving a QSV device from that.) opencl device selects the platform and device as platform_index.device_index. The set of devices can also be filtered using the key-value pairs to find only devices matching particular platform or device strings. The strings usable as filters are: platform_profile platform_version platform_name platform_vendor platform_extensions device_name device_vendor driver_version device_version device_profile device_extensions device_type The indices and filters must together uniquely select a device. Examples: -init_hw_device opencl:0.1 Choose the second device on the first platform. -init_hw_device opencl:,device_name=Foo9000 Choose the device with a name containing the string Foo9000. -init_hw_device opencl:1,device_type=gpu,device_extensions=cl_khr_fp16 Choose the GPU device on the second platform supporting the cl_khr_fp16 extension. -init_hw_device type[=name]@source Initialise a new hardware device of type type called name, deriving it from the existing device with the name source. -init_hw_device list List all hardware device types supported in this build of ffmpeg. -filter_hw_device name Pass the hardware device called name to all filters in any filter graph. This can be used to set the device to upload to with the "hwupload" filter, or the device to map to with the "hwmap" filter. Other filters may also make use of this parameter when they require a hardware device. Note that this is typically only required when the input is not already in hardware frames - when it is, filters will derive the device they require from the context of the frames they receive as input. This is a global setting, so all filters will receive the same device. -hwaccel[:stream_specifier] hwaccel (input,per-stream) Use hardware acceleration to decode the matching stream(s). The allowed values of hwaccel are: none Do not use any hardware acceleration (the default). auto Automatically select the hardware acceleration method. vdpau Use VDPAU (Video Decode and Presentation API for Unix) hardware acceleration. dxva2 Use DXVA2 (DirectX Video Acceleration) hardware acceleration. vaapi Use VAAPI (Video Acceleration API) hardware acceleration. qsv Use the Intel QuickSync Video acceleration for video transcoding. Unlike most other values, this option does not enable accelerated decoding (that is used automatically whenever a qsv decoder is selected), but accelerated transcoding, without copying the frames into the system memory. For it to work, both the decoder and the encoder must support QSV acceleration and no filters must be used. This option has no effect if the selected hwaccel is not available or not supported by the chosen decoder. Note that most acceleration methods are intended for playback and will not be faster than software decoding on modern CPUs. Additionally, ffmpeg will usually need to copy the decoded frames from the GPU memory into the system memory, resulting in further performance loss. This option is thus mainly useful for testing. -hwaccel_device[:stream_specifier] hwaccel_device (input,per-stream) Select a device to use for hardware acceleration. This option only makes sense when the -hwaccel option is also specified. It can either refer to an existing device created with -init_hw_device by name, or it can create a new device as if -init_hw_device type:hwaccel_device were called immediately before. -hwaccels List all hardware acceleration methods supported in this build of ffmpeg. Audio Options -aframes number (output) Set the number of audio frames to output. This is an obsolete alias for "-frames:a", which you should use instead. -ar[:stream_specifier] freq (input/output,per-stream) Set the audio sampling frequency. For output streams it is set by default to the frequency of the corresponding input stream. For input streams this option only makes sense for audio grabbing devices and raw demuxers and is mapped to the corresponding demuxer options. -aq q (output) Set the audio quality (codec-specific, VBR). This is an alias for -q:a. -ac[:stream_specifier] channels (input/output,per-stream) Set the number of audio channels. For output streams it is set by default to the number of input audio channels. For input streams this option only makes sense for audio grabbing devices and raw demuxers and is mapped to the corresponding demuxer options. -an (output) Disable audio recording. For full manual control see the "-map" option. -acodec codec (input/output) Set the audio codec. This is an alias for "-codec:a". -sample_fmt[:stream_specifier] sample_fmt (output,per-stream) Set the audio sample format. Use "-sample_fmts" to get a list of supported sample formats. -af filtergraph (output) Create the filtergraph specified by filtergraph and use it to filter the stream. This is an alias for "-filter:a", see the -filter option. Advanced Audio options -atag fourcc/tag (output) Force audio tag/fourcc. This is an alias for "-tag:a". -absf bitstream_filter Deprecated, see -bsf -guess_layout_max channels (input,per-stream) If some input channel layout is not known, try to guess only if it corresponds to at most the specified number of channels. For example, 2 tells to ffmpeg to recognize 1 channel as mono and 2 channels as stereo but not 6 channels as 5.1. The default is to always try to guess. Use 0 to disable all guessing. Subtitle options -scodec codec (input/output) Set the subtitle codec. This is an alias for "-codec:s". -sn (output) Disable subtitle recording. For full manual control see the "-map" option. -sbsf bitstream_filter Deprecated, see -bsf Advanced Subtitle options -fix_sub_duration Fix subtitles durations. For each subtitle, wait for the next packet in the same stream and adjust the duration of the first to avoid overlap. This is necessary with some subtitles codecs, especially DVB subtitles, because the duration in the original packet is only a rough estimate and the end is actually marked by an empty subtitle frame. Failing to use this option when necessary can result in exaggerated durations or muxing failures due to non- monotonic timestamps. Note that this option will delay the output of all data until the next subtitle packet is decoded: it may increase memory consumption and latency a lot. -canvas_size size Set the size of the canvas used to render subtitles. Advanced options -map [-]input_file_id[:stream_specifier][?][,sync_file_id[:stream_specifier]] | [linklabel] (output) Designate one or more input streams as a source for the output file. Each input stream is identified by the input file index input_file_id and the input stream index input_stream_id within the input file. Both indices start at 0. If specified, sync_file_id:stream_specifier sets which input stream is used as a presentation sync reference. The first "-map" option on the command line specifies the source for output stream 0, the second "-map" option specifies the source for output stream 1, etc. A "-" character before the stream identifier creates a "negative" mapping. It disables matching streams from already created mappings. A trailing "?" after the stream index will allow the map to be optional: if the map matches no streams the map will be ignored instead of failing. Note the map will still fail if an invalid input file index is used; such as if the map refers to a non- existent input. An alternative [linklabel] form will map outputs from complex filter graphs (see the -filter_complex option) to the output file. linklabel must correspond to a defined output link label in the graph. For example, to map ALL streams from the first input file to output ffmpeg -i INPUT -map 0 output For example, if you have two audio streams in the first input file, these streams are identified by "0:0" and "0:1". You can use "-map" to select which streams to place in an output file. For example: ffmpeg -i INPUT -map 0:1 out.wav will map the input stream in INPUT identified by "0:1" to the (single) output stream in out.wav. For example, to select the stream with index 2 from input file a.mov (specified by the identifier "0:2"), and stream with index 6 from input b.mov (specified by the identifier "1:6"), and copy them to the output file out.mov: ffmpeg -i a.mov -i b.mov -c copy -map 0:2 -map 1:6 out.mov To select all video and the third audio stream from an input file: ffmpeg -i INPUT -map 0:v -map 0:a:2 OUTPUT To map all the streams except the second audio, use negative mappings ffmpeg -i INPUT -map 0 -map -0:a:1 OUTPUT To map the video and audio streams from the first input, and using the trailing "?", ignore the audio mapping if no audio streams exist in the first input: ffmpeg -i INPUT -map 0:v -map 0:a? OUTPUT To pick the English audio stream: ffmpeg -i INPUT -map 0:m:language:eng OUTPUT Note that using this option disables the default mappings for this output file. -ignore_unknown Ignore input streams with unknown type instead of failing if copying such streams is attempted. -copy_unknown Allow input streams with unknown type to be copied instead of failing if copying such streams is attempted. -map_channel [input_file_id.stream_specifier.channel_id|-1][?][:output_file_id.stream_specifier] Map an audio channel from a given input to an output. If output_file_id.stream_specifier is not set, the audio channel will be mapped on all the audio streams. Using "-1" instead of input_file_id.stream_specifier.channel_id will map a muted channel. A trailing "?" will allow the map_channel to be optional: if the map_channel matches no channel the map_channel will be ignored instead of failing. For example, assuming INPUT is a stereo audio file, you can switch the two audio channels with the following command: ffmpeg -i INPUT -map_channel 0.0.1 -map_channel 0.0.0 OUTPUT If you want to mute the first channel and keep the second: ffmpeg -i INPUT -map_channel -1 -map_channel 0.0.1 OUTPUT The order of the "-map_channel" option specifies the order of the channels in the output stream. The output channel layout is guessed from the number of channels mapped (mono if one "-map_channel", stereo if two, etc.). Using "-ac" in combination of "-map_channel" makes the channel gain levels to be updated if input and output channel layouts don't match (for instance two "-map_channel" options and "-ac 6"). You can also extract each channel of an input to specific outputs; the following command extracts two channels of the INPUT audio stream (file 0, stream 0) to the respective OUTPUT_CH0 and OUTPUT_CH1 outputs: ffmpeg -i INPUT -map_channel 0.0.0 OUTPUT_CH0 -map_channel 0.0.1 OUTPUT_CH1 The following example splits the channels of a stereo input into two separate streams, which are put into the same output file: ffmpeg -i stereo.wav -map 0:0 -map 0:0 -map_channel 0.0.0:0.0 -map_channel 0.0.1:0.1 -y out.ogg Note that currently each output stream can only contain channels from a single input stream; you can't for example use "-map_channel" to pick multiple input audio channels contained in different streams (from the same or different files) and merge them into a single output stream. It is therefore not currently possible, for example, to turn two separate mono streams into a single stereo stream. However splitting a stereo stream into two single channel mono streams is possible. If you need this feature, a possible workaround is to use the amerge filter. For example, if you need to merge a media (here input.mkv) with 2 mono audio streams into one single stereo channel audio stream (and keep the video stream), you can use the following command: ffmpeg -i input.mkv -filter_complex "[0:1] [0:2] amerge" -c:a pcm_s16le -c:v copy output.mkv To map the first two audio channels from the first input, and using the trailing "?", ignore the audio channel mapping if the first input is mono instead of stereo: ffmpeg -i INPUT -map_channel 0.0.0 -map_channel 0.0.1? OUTPUT -map_metadata[:metadata_spec_out] infile[:metadata_spec_in] (output,per-metadata) Set metadata information of the next output file from infile. Note that those are file indices (zero-based), not filenames. Optional metadata_spec_in/out parameters specify, which metadata to copy. A metadata specifier can have the following forms: g global metadata, i.e. metadata that applies to the whole file s[:stream_spec] per-stream metadata. stream_spec is a stream specifier as described in the Stream specifiers chapter. In an input metadata specifier, the first matching stream is copied from. In an output metadata specifier, all matching streams are copied to. c:chapter_index per-chapter metadata. chapter_index is the zero-based chapter index. p:program_index per-program metadata. program_index is the zero-based program index. If metadata specifier is omitted, it defaults to global. By default, global metadata is copied from the first input file, per-stream and per-chapter metadata is copied along with streams/chapters. These default mappings are disabled by creating any mapping of the relevant type. A negative file index can be used to create a dummy mapping that just disables automatic copying. For example to copy metadata from the first stream of the input file to global metadata of the output file: ffmpeg -i in.ogg -map_metadata 0:s:0 out.mp3 To do the reverse, i.e. copy global metadata to all audio streams: ffmpeg -i in.mkv -map_metadata:s:a 0:g out.mkv Note that simple 0 would work as well in this example, since global metadata is assumed by default. -map_chapters input_file_index (output) Copy chapters from input file with index input_file_index to the next output file. If no chapter mapping is specified, then chapters are copied from the first input file with at least one chapter. Use a negative file index to disable any chapter copying. -benchmark (global) Show benchmarking information at the end of an encode. Shows CPU time used and maximum memory consumption. Maximum memory consumption is not supported on all systems, it will usually display as 0 if not supported. -benchmark_all (global) Show benchmarking information during the encode. Shows CPU time used in various steps (audio/video encode/decode). -timelimit duration (global) Exit after ffmpeg has been running for duration seconds. -dump (global) Dump each input packet to stderr. -hex (global) When dumping packets, also dump the payload. -re (input) Read input at native frame rate. Mainly used to simulate a grab device, or live input stream (e.g. when reading from a file). Should not be used with actual grab devices or live input streams (where it can cause packet loss). By default ffmpeg attempts to read the input(s) as fast as possible. This option will slow down the reading of the input(s) to the native frame rate of the input(s). It is useful for real-time output (e.g. live streaming). -loop_output number_of_times Repeatedly loop output for formats that support looping such as animated GIF (0 will loop the output infinitely). This option is deprecated, use -loop. -vsync parameter Video sync method. For compatibility reasons old values can be specified as numbers. Newly added values will have to be specified as strings always. 0, passthrough Each frame is passed with its timestamp from the demuxer to the muxer. 1, cfr Frames will be duplicated and dropped to achieve exactly the requested constant frame rate. 2, vfr Frames are passed through with their timestamp or dropped so as to prevent 2 frames from having the same timestamp. drop As passthrough but destroys all timestamps, making the muxer generate fresh timestamps based on frame-rate. -1, auto Chooses between 1 and 2 depending on muxer capabilities. This is the default method. Note that the timestamps may be further modified by the muxer, after this. For example, in the case that the format option avoid_negative_ts is enabled. With -map you can select from which stream the timestamps should be taken. You can leave either video or audio unchanged and sync the remaining stream(s) to the unchanged one. -frame_drop_threshold parameter Frame drop threshold, which specifies how much behind video frames can be before they are dropped. In frame rate units, so 1.0 is one frame. The default is -1.1. One possible usecase is to avoid framedrops in case of noisy timestamps or to increase frame drop precision in case of exact timestamps. -async samples_per_second Audio sync method. "Stretches/squeezes" the audio stream to match the timestamps, the parameter is the maximum samples per second by which the audio is changed. -async 1 is a special case where only the start of the audio stream is corrected without any later correction. Note that the timestamps may be further modified by the muxer, after this. For example, in the case that the format option avoid_negative_ts is enabled. This option has been deprecated. Use the "aresample" audio filter instead. -copyts Do not process input timestamps, but keep their values without trying to sanitize them. In particular, do not remove the initial start time offset value. Note that, depending on the vsync option or on specific muxer processing (e.g. in case the format option avoid_negative_ts is enabled) the output timestamps may mismatch with the input timestamps even when this option is selected. -start_at_zero When used with copyts, shift input timestamps so they start at zero. This means that using e.g. "-ss 50" will make output timestamps start at 50 seconds, regardless of what timestamp the input file started at. -copytb mode Specify how to set the encoder timebase when stream copying. mode is an integer numeric value, and can assume one of the following values: 1 Use the demuxer timebase. The time base is copied to the output encoder from the corresponding input demuxer. This is sometimes required to avoid non monotonically increasing timestamps when copying video streams with variable frame rate. 0 Use the decoder timebase. The time base is copied to the output encoder from the corresponding input decoder. -1 Try to make the choice automatically, in order to generate a sane output. Default value is -1. -enc_time_base[:stream_specifier] timebase (output,per-stream) Set the encoder timebase. timebase is a floating point number, and can assume one of the following values: 0 Assign a default value according to the media type. For video - use 1/framerate, for audio - use 1/samplerate. -1 Use the input stream timebase when possible. If an input stream is not available, the default timebase will be used. >0 Use the provided number as the timebase. This field can be provided as a ratio of two integers (e.g. 1:24, 1:48000) or as a floating point number (e.g. 0.04166, 2.0833e-5) Default value is 0. -bitexact (input/output) Enable bitexact mode for (de)muxer and (de/en)coder -shortest (output) Finish encoding when the shortest input stream ends. -dts_delta_threshold Timestamp discontinuity delta threshold. -muxdelay seconds (input) Set the maximum demux-decode delay. -muxpreload seconds (input) Set the initial demux-decode delay. -streamid output-stream-index:new-value (output) Assign a new stream-id value to an output stream. This option should be specified prior to the output filename to which it applies. For the situation where multiple output files exist, a streamid may be reassigned to a different value. For example, to set the stream 0 PID to 33 and the stream 1 PID to 36 for an output mpegts file: ffmpeg -i inurl -streamid 0:33 -streamid 1:36 out.ts -bsf[:stream_specifier] bitstream_filters (output,per-stream) Set bitstream filters for matching streams. bitstream_filters is a comma-separated list of bitstream filters. Use the "-bsfs" option to get the list of bitstream filters. ffmpeg -i h264.mp4 -c:v copy -bsf:v h264_mp4toannexb -an out.h264 ffmpeg -i file.mov -an -vn -bsf:s mov2textsub -c:s copy -f rawvideo sub.txt -tag[:stream_specifier] codec_tag (input/output,per-stream) Force a tag/fourcc for matching streams. -timecode hh:mm:ssSEPff Specify Timecode for writing. SEP is ':' for non drop timecode and ';' (or '.') for drop. ffmpeg -i input.mpg -timecode 01:02:03.04 -r 30000/1001 -s ntsc output.mpg -filter_complex filtergraph (global) Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. For simple graphs -- those with one input and one output of the same type -- see the -filter options. filtergraph is a description of the filtergraph, as described in the ``Filtergraph syntax'' section of the ffmpeg-filters manual. Input link labels must refer to input streams using the "[file_index:stream_specifier]" syntax (i.e. the same as -map uses). If stream_specifier matches multiple streams, the first one will be used. An unlabeled input will be connected to the first unused input stream of the matching type. Output link labels are referred to with -map. Unlabeled outputs are added to the first output file. Note that with this option it is possible to use only lavfi sources without normal input files. For example, to overlay an image over video ffmpeg -i video.mkv -i image.png -filter_complex '[0:v][1:v]overlay[out]' -map '[out]' out.mkv Here "[0:v]" refers to the first video stream in the first input file, which is linked to the first (main) input of the overlay filter. Similarly the first video stream in the second input is linked to the second (overlay) input of overlay. Assuming there is only one video stream in each input file, we can omit input labels, so the above is equivalent to ffmpeg -i video.mkv -i image.png -filter_complex 'overlay[out]' -map '[out]' out.mkv Furthermore we can omit the output label and the single output from the filter graph will be added to the output file automatically, so we can simply write ffmpeg -i video.mkv -i image.png -filter_complex 'overlay' out.mkv To generate 5 seconds of pure red video using lavfi "color" source: ffmpeg -filter_complex 'color=c=red' -t 5 out.mkv -filter_complex_threads nb_threads (global) Defines how many threads are used to process a filter_complex graph. Similar to filter_threads but used for "-filter_complex" graphs only. The default is the number of available CPUs. -lavfi filtergraph (global) Define a complex filtergraph, i.e. one with arbitrary number of inputs and/or outputs. Equivalent to -filter_complex. -filter_complex_script filename (global) This option is similar to -filter_complex, the only difference is that its argument is the name of the file from which a complex filtergraph description is to be read. -accurate_seek (input) This option enables or disables accurate seeking in input files with the -ss option. It is enabled by default, so seeking is accurate when transcoding. Use -noaccurate_seek to disable it, which may be useful e.g. when copying some streams and transcoding the others. -seek_timestamp (input) This option enables or disables seeking by timestamp in input files with the -ss option. It is disabled by default. If enabled, the argument to the -ss option is considered an actual timestamp, and is not offset by the start time of the file. This matters only for files which do not start from timestamp 0, such as transport streams. -thread_queue_size size (input) This option sets the maximum number of queued packets when reading from the file or device. With low latency / high rate live streams, packets may be discarded if they are not read in a timely manner; raising this value can avoid it. -sdp_file file (global) Print sdp information for an output stream to file. This allows dumping sdp information when at least one output isn't an rtp stream. (Requires at least one of the output formats to be rtp). -discard (input) Allows discarding specific streams or frames of streams at the demuxer. Not all demuxers support this. none Discard no frame. default Default, which discards no frames. noref Discard all non-reference frames. bidir Discard all bidirectional frames. nokey Discard all frames excepts keyframes. all Discard all frames. -abort_on flags (global) Stop and abort on various conditions. The following flags are available: empty_output No packets were passed to the muxer, the output is empty. -xerror (global) Stop and exit on error -max_muxing_queue_size packets (output,per-stream) When transcoding audio and/or video streams, ffmpeg will not begin writing into the output until it has one packet for each such stream. While waiting for that to happen, packets for other streams are buffered. This option sets the size of this buffer, in packets, for the matching output stream. The default value of this option should be high enough for most uses, so only touch this option if you are sure that you need it. As a special exception, you can use a bitmap subtitle stream as input: it will be converted into a video with the same size as the largest video in the file, or 720x576 if no video is present. Note that this is an experimental and temporary solution. It will be removed once libavfilter has proper support for subtitles. For example, to hardcode subtitles on top of a DVB-T recording stored in MPEG-TS format, delaying the subtitles by 1 second: ffmpeg -i input.ts -filter_complex \ '[#0x2ef] setpts=PTS+1/TB [sub] ; [#0x2d0] [sub] overlay' \ -sn -map '#0x2dc' output.mkv (0x2d0, 0x2dc and 0x2ef are the MPEG-TS PIDs of respectively the video, audio and subtitles streams; 0:0, 0:3 and 0:7 would have worked too) Preset files A preset file contains a sequence of option=value pairs, one for each line, specifying a sequence of options which would be awkward to specify on the command line. Lines starting with the hash ('#') character are ignored and are used to provide comments. Check the presets directory in the FFmpeg source tree for examples. There are two types of preset files: ffpreset and avpreset files. ffpreset files ffpreset files are specified with the "vpre", "apre", "spre", and "fpre" options. The "fpre" option takes the filename of the preset instead of a preset name as input and can be used for any kind of codec. For the "vpre", "apre", and "spre" options, the options specified in a preset file are applied to the currently selected codec of the same type as the preset option. The argument passed to the "vpre", "apre", and "spre" preset options identifies the preset file to use according to the following rules: First ffmpeg searches for a file named arg.ffpreset in the directories $FFMPEG_DATADIR (if set), and $HOME/.ffmpeg, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeg) or in a ffpresets folder along the executable on win32, in that order. For example, if the argument is "libvpx-1080p", it will search for the file libvpx-1080p.ffpreset. If no such file is found, then ffmpeg will search for a file named codec_name-arg.ffpreset in the above-mentioned directories, where codec_name is the name of the codec to which the preset file options will be applied. For example, if you select the video codec with "-vcodec libvpx" and use "-vpre 1080p", then it will search for the file libvpx-1080p.ffpreset. avpreset files avpreset files are specified with the "pre" option. They work similar to ffpreset files, but they only allow encoder- specific options. Therefore, an option=value pair specifying an encoder cannot be used. When the "pre" option is specified, ffmpeg will look for files with the suffix .avpreset in the directories $AVCONV_DATADIR (if set), and $HOME/.avconv, and in the datadir defined at configuration time (usually PREFIX/share/ffmpeg), in that order. First ffmpeg searches for a file named codec_name-arg.avpreset in the above-mentioned directories, where codec_name is the name of the codec to which the preset file options will be applied. For example, if you select the video codec with "-vcodec libvpx" and use "-pre 1080p", then it will search for the file libvpx-1080p.avpreset. If no such file is found, then ffmpeg will search for a file named arg.avpreset in the same directories. EXAMPLES Video and Audio grabbing If you specify the input format and device then ffmpeg can grab video and audio directly. ffmpeg -f oss -i /dev/dsp -f video4linux2 -i /dev/video0 /tmp/out.mpg Or with an ALSA audio source (mono input, card id 1) instead of OSS: ffmpeg -f alsa -ac 1 -i hw:1 -f video4linux2 -i /dev/video0 /tmp/out.mpg Note that you must activate the right video source and channel before launching ffmpeg with any TV viewer such as by Gerd Knorr. You also have to set the audio recording levels correctly with a standard mixer. X11 grabbing Grab the X11 display with ffmpeg via ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0 /tmp/out.mpg 0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. ffmpeg -f x11grab -video_size cif -framerate 25 -i :0.0+10,20 /tmp/out.mpg 0.0 is display.screen number of your X11 server, same as the DISPLAY environment variable. 10 is the x-offset and 20 the y-offset for the grabbing. Video and Audio file format conversion Any supported file format and protocol can serve as input to ffmpeg: Examples: · You can use YUV files as input: ffmpeg -i /tmp/test%d.Y /tmp/out.mpg It will use the files: /tmp/test0.Y, /tmp/test0.U, /tmp/test0.V, /tmp/test1.Y, /tmp/test1.U, /tmp/test1.V, etc... The Y files use twice the resolution of the U and V files. They are raw files, without header. They can be generated by all decent video decoders. You must specify the size of the image with the -s option if ffmpeg cannot guess it. · You can input from a raw YUV420P file: ffmpeg -i /tmp/test.yuv /tmp/out.avi test.yuv is a file containing raw YUV planar data. Each frame is composed of the Y plane followed by the U and V planes at half vertical and horizontal resolution. · You can output to a raw YUV420P file: ffmpeg -i mydivx.avi hugefile.yuv · You can set several input files and output files: ffmpeg -i /tmp/a.wav -s 640x480 -i /tmp/a.yuv /tmp/a.mpg Converts the audio file a.wav and the raw YUV video file a.yuv to MPEG file a.mpg. · You can also do audio and video conversions at the same time: ffmpeg -i /tmp/a.wav -ar 22050 /tmp/a.mp2 Converts a.wav to MPEG audio at 22050 Hz sample rate. · You can encode to several formats at the same time and define a mapping from input stream to output streams: ffmpeg -i /tmp/a.wav -map 0:a -b:a 64k /tmp/a.mp2 -map 0:a -b:a 128k /tmp/b.mp2 Converts a.wav to a.mp2 at 64 kbits and to b.mp2 at 128 kbits. '-map file:index' specifies which input stream is used for each output stream, in the order of the definition of output streams. · You can transcode decrypted VOBs: ffmpeg -i snatch_1.vob -f avi -c:v mpeg4 -b:v 800k -g 300 -bf 2 -c:a libmp3lame -b:a 128k snatch.avi This is a typical DVD ripping example; the input is a VOB file, the output an AVI file with MPEG-4 video and MP3 audio. Note that in this command we use B-frames so the MPEG-4 stream is DivX5 compatible, and GOP size is 300 which means one intra frame every 10 seconds for 29.97fps input video. Furthermore, the audio stream is MP3-encoded so you need to enable LAME support by passing "--enable-libmp3lame" to configure. The mapping is particularly useful for DVD transcoding to get the desired audio language. NOTE: To see the supported input formats, use "ffmpeg -demuxers". · You can extract images from a video, or create a video from many images: For extracting images from a video: ffmpeg -i foo.avi -r 1 -s WxH -f image2 foo-%03d.jpeg This will extract one video frame per second from the video and will output them in files named foo-001.jpeg, foo-002.jpeg, etc. Images will be rescaled to fit the new WxH values. If you want to extract just a limited number of frames, you can use the above command in combination with the "-frames:v" or "-t" option, or in combination with -ss to start extracting from a certain point in time. For creating a video from many images: ffmpeg -f image2 -framerate 12 -i foo-%03d.jpeg -s WxH foo.avi The syntax "foo-%03d.jpeg" specifies to use a decimal number composed of three digits padded with zeroes to express the sequence number. It is the same syntax supported by the C printf function, but only formats accepting a normal integer are suitable. When importing an image sequence, -i also supports expanding shell- like wildcard patterns (globbing) internally, by selecting the image2-specific "-pattern_type glob" option. For example, for creating a video from filenames matching the glob pattern "foo-*.jpeg": ffmpeg -f image2 -pattern_type glob -framerate 12 -i 'foo-*.jpeg' -s WxH foo.avi · You can put many streams of the same type in the output: ffmpeg -i test1.avi -i test2.avi -map 1:1 -map 1:0 -map 0:1 -map 0:0 -c copy -y test12.nut The resulting output file test12.nut will contain the first four streams from the input files in reverse order. · To force CBR video output: ffmpeg -i myfile.avi -b 4000k -minrate 4000k -maxrate 4000k -bufsize 1835k out.m2v · The four options lmin, lmax, mblmin and mblmax use 'lambda' units, but you may use the QP2LAMBDA constant to easily convert from 'q' units: ffmpeg -i src.ext -lmax 21*QP2LAMBDA dst.ext SYNTAX This section documents the syntax and formats employed by the FFmpeg libraries and tools. Quoting and escaping FFmpeg adopts the following quoting and escaping mechanism, unless explicitly specified. The following rules are applied: · ' and \ are special characters (respectively used for quoting and escaping). In addition to them, there might be other special characters depending on the specific syntax where the escaping and quoting are employed. · A special character is escaped by prefixing it with a \. · All characters enclosed between '' are included literally in the parsed string. The quote character ' itself cannot be quoted, so you may need to close the quote and escape it. · Leading and trailing whitespaces, unless escaped or quoted, are removed from the parsed string. Note that you may need to add a second level of escaping when using the command line or a script, which depends on the syntax of the adopted shell language. The function "av_get_token" defined in libavutil/avstring.h can be used to parse a token quoted or escaped according to the rules defined above. The tool tools/ffescape in the FFmpeg source tree can be used to automatically quote or escape a string in a script. Examples · Escape the string "Crime d'Amour" containing the "'" special character: Crime d\'Amour · The string above contains a quote, so the "'" needs to be escaped when quoting it: 'Crime d'\''Amour' · Include leading or trailing whitespaces using quoting: ' this string starts and ends with whitespaces ' · Escaping and quoting can be mixed together: ' The string '\'string\'' is a string ' · To include a literal \ you can use either escaping or quoting: 'c:\foo' can be written as c:\\foo Date The accepted syntax is: [(YYYY-MM-DD|YYYYMMDD)[T|t| ]]((HH:MM:SS[.m...]]])|(HHMMSS[.m...]]]))[Z] now If the value is "now" it takes the current time. Time is local time unless Z is appended, in which case it is interpreted as UTC. If the year-month-day part is not specified it takes the current year-month-day. Time duration There are two accepted syntaxes for expressing time duration. [-][:]:[....] HH expresses the number of hours, MM the number of minutes for a maximum of 2 digits, and SS the number of seconds for a maximum of 2 digits. The m at the end expresses decimal value for SS. or [-]+[....] S expresses the number of seconds, with the optional decimal part m. In both expressions, the optional - indicates negative duration. Examples The following examples are all valid time duration: 55 55 seconds 12:03:45 12 hours, 03 minutes and 45 seconds 23.189 23.189 seconds Video size Specify the size of the sourced video, it may be a string of the form widthxheight, or the name of a size abbreviation. The following abbreviations are recognized: ntsc 720x480 pal 720x576 qntsc 352x240 qpal 352x288 sntsc 640x480 spal 768x576 film 352x240 ntsc-film 352x240 sqcif 128x96 qcif 176x144 cif 352x288 4cif 704x576 16cif 1408x1152 qqvga 160x120 qvga 320x240 vga 640x480 svga 800x600 xga 1024x768 uxga 1600x1200 qxga 2048x1536 sxga 1280x1024 qsxga 2560x2048 hsxga 5120x4096 wvga 852x480 wxga 1366x768 wsxga 1600x1024 wuxga 1920x1200 woxga 2560x1600 wqsxga 3200x2048 wquxga 3840x2400 whsxga 6400x4096 whuxga 7680x4800 cga 320x200 ega 640x350 hd480 852x480 hd720 1280x720 hd1080 1920x1080 2k 2048x1080 2kflat 1998x1080 2kscope 2048x858 4k 4096x2160 4kflat 3996x2160 4kscope 4096x1716 nhd 640x360 hqvga 240x160 wqvga 400x240 fwqvga 432x240 hvga 480x320 qhd 960x540 2kdci 2048x1080 4kdci 4096x2160 uhd2160 3840x2160 uhd4320 7680x4320 Video rate Specify the frame rate of a video, expressed as the number of frames generated per second. It has to be a string in the format frame_rate_num/frame_rate_den, an integer number, a float number or a valid video frame rate abbreviation. The following abbreviations are recognized: ntsc 30000/1001 pal 25/1 qntsc 30000/1001 qpal 25/1 sntsc 30000/1001 spal 25/1 film 24/1 ntsc-film 24000/1001 Ratio A ratio can be expressed as an expression, or in the form numerator:denominator. Note that a ratio with infinite (1/0) or negative value is considered valid, so you should check on the returned value if you want to exclude those values. The undefined value can be expressed using the "0:0" string. Color It can be the name of a color as defined below (case insensitive match) or a "[0x|#]RRGGBB[AA]" sequence, possibly followed by @ and a string representing the alpha component. The alpha component may be a string composed by "0x" followed by an hexadecimal number or a decimal number between 0.0 and 1.0, which represents the opacity value (0x00 or 0.0 means completely transparent, 0xff or 1.0 completely opaque). If the alpha component is not specified then 0xff is assumed. The string random will result in a random color. The following names of colors are recognized: AliceBlue 0xF0F8FF AntiqueWhite 0xFAEBD7 Aqua 0x00FFFF Aquamarine 0x7FFFD4 Azure 0xF0FFFF Beige 0xF5F5DC Bisque 0xFFE4C4 Black 0x000000 BlanchedAlmond 0xFFEBCD Blue 0x0000FF BlueViolet 0x8A2BE2 Brown 0xA52A2A BurlyWood 0xDEB887 CadetBlue 0x5F9EA0 Chartreuse 0x7FFF00 Chocolate 0xD2691E Coral 0xFF7F50 CornflowerBlue 0x6495ED Cornsilk 0xFFF8DC Crimson 0xDC143C Cyan 0x00FFFF DarkBlue 0x00008B DarkCyan 0x008B8B DarkGoldenRod 0xB8860B DarkGray 0xA9A9A9 DarkGreen 0x006400 DarkKhaki 0xBDB76B DarkMagenta 0x8B008B DarkOliveGreen 0x556B2F Darkorange 0xFF8C00 DarkOrchid 0x9932CC DarkRed 0x8B0000 DarkSalmon 0xE9967A DarkSeaGreen 0x8FBC8F DarkSlateBlue 0x483D8B DarkSlateGray 0x2F4F4F DarkTurquoise 0x00CED1 DarkViolet 0x9400D3 DeepPink 0xFF1493 DeepSkyBlue 0x00BFFF DimGray 0x696969 DodgerBlue 0x1E90FF FireBrick 0xB22222 FloralWhite 0xFFFAF0 ForestGreen 0x228B22 Fuchsia 0xFF00FF Gainsboro 0xDCDCDC GhostWhite 0xF8F8FF Gold 0xFFD700 GoldenRod 0xDAA520 Gray 0x808080 Green 0x008000 GreenYellow 0xADFF2F HoneyDew 0xF0FFF0 HotPink 0xFF69B4 IndianRed 0xCD5C5C Indigo 0x4B0082 Ivory 0xFFFFF0 Khaki 0xF0E68C Lavender 0xE6E6FA LavenderBlush 0xFFF0F5 LawnGreen 0x7CFC00 LemonChiffon 0xFFFACD LightBlue 0xADD8E6 LightCoral 0xF08080 LightCyan 0xE0FFFF LightGoldenRodYellow 0xFAFAD2 LightGreen 0x90EE90 LightGrey 0xD3D3D3 LightPink 0xFFB6C1 LightSalmon 0xFFA07A LightSeaGreen 0x20B2AA LightSkyBlue 0x87CEFA LightSlateGray 0x778899 LightSteelBlue 0xB0C4DE LightYellow 0xFFFFE0 Lime 0x00FF00 LimeGreen 0x32CD32 Linen 0xFAF0E6 Magenta 0xFF00FF Maroon 0x800000 MediumAquaMarine 0x66CDAA MediumBlue 0x0000CD MediumOrchid 0xBA55D3 MediumPurple 0x9370D8 MediumSeaGreen 0x3CB371 MediumSlateBlue 0x7B68EE MediumSpringGreen 0x00FA9A MediumTurquoise 0x48D1CC MediumVioletRed 0xC71585 MidnightBlue 0x191970 MintCream 0xF5FFFA MistyRose 0xFFE4E1 Moccasin 0xFFE4B5 NavajoWhite 0xFFDEAD Navy 0x000080 OldLace 0xFDF5E6 Olive 0x808000 OliveDrab 0x6B8E23 Orange 0xFFA500 OrangeRed 0xFF4500 Orchid 0xDA70D6 PaleGoldenRod 0xEEE8AA PaleGreen 0x98FB98 PaleTurquoise 0xAFEEEE PaleVioletRed 0xD87093 PapayaWhip 0xFFEFD5 PeachPuff 0xFFDAB9 Peru 0xCD853F Pink 0xFFC0CB Plum 0xDDA0DD PowderBlue 0xB0E0E6 Purple 0x800080 Red 0xFF0000 RosyBrown 0xBC8F8F RoyalBlue 0x4169E1 SaddleBrown 0x8B4513 Salmon 0xFA8072 SandyBrown 0xF4A460 SeaGreen 0x2E8B57 SeaShell 0xFFF5EE Sienna 0xA0522D Silver 0xC0C0C0 SkyBlue 0x87CEEB SlateBlue 0x6A5ACD SlateGray 0x708090 Snow 0xFFFAFA SpringGreen 0x00FF7F SteelBlue 0x4682B4 Tan 0xD2B48C Teal 0x008080 Thistle 0xD8BFD8 Tomato 0xFF6347 Turquoise 0x40E0D0 Violet 0xEE82EE Wheat 0xF5DEB3 White 0xFFFFFF WhiteSmoke 0xF5F5F5 Yellow 0xFFFF00 YellowGreen 0x9ACD32 Channel Layout A channel layout specifies the spatial disposition of the channels in a multi-channel audio stream. To specify a channel layout, FFmpeg makes use of a special syntax. Individual channels are identified by an id, as given by the table below: FL front left FR front right FC front center LFE low frequency BL back left BR back right FLC front left-of-center FRC front right-of-center BC back center SL side left SR side right TC top center TFL top front left TFC top front center TFR top front right TBL top back left TBC top back center TBR top back right DL downmix left DR downmix right WL wide left WR wide right SDL surround direct left SDR surround direct right LFE2 low frequency 2 Standard channel layout compositions can be specified by using the following identifiers: mono FC stereo FL+FR 2.1 FL+FR+LFE 3.0 FL+FR+FC 3.0(back) FL+FR+BC 4.0 FL+FR+FC+BC quad FL+FR+BL+BR quad(side) FL+FR+SL+SR 3.1 FL+FR+FC+LFE 5.0 FL+FR+FC+BL+BR 5.0(side) FL+FR+FC+SL+SR 4.1 FL+FR+FC+LFE+BC 5.1 FL+FR+FC+LFE+BL+BR 5.1(side) FL+FR+FC+LFE+SL+SR 6.0 FL+FR+FC+BC+SL+SR 6.0(front) FL+FR+FLC+FRC+SL+SR hexagonal FL+FR+FC+BL+BR+BC 6.1 FL+FR+FC+LFE+BC+SL+SR 6.1 FL+FR+FC+LFE+BL+BR+BC 6.1(front) FL+FR+LFE+FLC+FRC+SL+SR 7.0 FL+FR+FC+BL+BR+SL+SR 7.0(front) FL+FR+FC+FLC+FRC+SL+SR 7.1 FL+FR+FC+LFE+BL+BR+SL+SR 7.1(wide) FL+FR+FC+LFE+BL+BR+FLC+FRC 7.1(wide-side) FL+FR+FC+LFE+FLC+FRC+SL+SR octagonal FL+FR+FC+BL+BR+BC+SL+SR downmix DL+DR A custom channel layout can be specified as a sequence of terms, separated by '+' or '|'. Each term can be: · the name of a standard channel layout (e.g. mono, stereo, 4.0, quad, 5.0, etc.) · the name of a single channel (e.g. FL, FR, FC, LFE, etc.) · a number of channels, in decimal, followed by 'c', yielding the default channel layout for that number of channels (see the function "av_get_default_channel_layout"). Note that not all channel counts have a default layout. · a number of channels, in decimal, followed by 'C', yielding an unknown channel layout with the specified number of channels. Note that not all channel layout specification strings support unknown channel layouts. · a channel layout mask, in hexadecimal starting with "0x" (see the "AV_CH_*" macros in libavutil/channel_layout.h. Before libavutil version 53 the trailing character "c" to specify a number of channels was optional, but now it is required, while a channel layout mask can also be specified as a decimal number (if and only if not followed by "c" or "C"). See also the function "av_get_channel_layout" defined in libavutil/channel_layout.h. EXPRESSION EVALUATION When evaluating an arithmetic expression, FFmpeg uses an internal formula evaluator, implemented through the libavutil/eval.h interface. An expression may contain unary, binary operators, constants, and functions. Two expressions expr1 and expr2 can be combined to form another expression "expr1;expr2". expr1 and expr2 are evaluated in turn, and the new expression evaluates to the value of expr2. The following binary operators are available: "+", "-", "*", "/", "^". The following unary operators are available: "+", "-". The following functions are available: abs(x) Compute absolute value of x. acos(x) Compute arccosine of x. asin(x) Compute arcsine of x. atan(x) Compute arctangent of x. atan2(x, y) Compute principal value of the arc tangent of y/x. between(x, min, max) Return 1 if x is greater than or equal to min and lesser than or equal to max, 0 otherwise. bitand(x, y) bitor(x, y) Compute bitwise and/or operation on x and y. The results of the evaluation of x and y are converted to integers before executing the bitwise operation. Note that both the conversion to integer and the conversion back to floating point can lose precision. Beware of unexpected results for large numbers (usually 2^53 and larger). ceil(expr) Round the value of expression expr upwards to the nearest integer. For example, "ceil(1.5)" is "2.0". clip(x, min, max) Return the value of x clipped between min and max. cos(x) Compute cosine of x. cosh(x) Compute hyperbolic cosine of x. eq(x, y) Return 1 if x and y are equivalent, 0 otherwise. exp(x) Compute exponential of x (with base "e", the Euler's number). floor(expr) Round the value of expression expr downwards to the nearest integer. For example, "floor(-1.5)" is "-2.0". gauss(x) Compute Gauss function of x, corresponding to "exp(-x*x/2) / sqrt(2*PI)". gcd(x, y) Return the greatest common divisor of x and y. If both x and y are 0 or either or both are less than zero then behavior is undefined. gt(x, y) Return 1 if x is greater than y, 0 otherwise. gte(x, y) Return 1 if x is greater than or equal to y, 0 otherwise. hypot(x, y) This function is similar to the C function with the same name; it returns "sqrt(x*x + y*y)", the length of the hypotenuse of a right triangle with sides of length x and y, or the distance of the point (x, y) from the origin. if(x, y) Evaluate x, and if the result is non-zero return the result of the evaluation of y, return 0 otherwise. if(x, y, z) Evaluate x, and if the result is non-zero return the evaluation result of y, otherwise the evaluation result of z. ifnot(x, y) Evaluate x, and if the result is zero return the result of the evaluation of y, return 0 otherwise. ifnot(x, y, z) Evaluate x, and if the result is zero return the evaluation result of y, otherwise the evaluation result of z. isinf(x) Return 1.0 if x is +/-INFINITY, 0.0 otherwise. isnan(x) Return 1.0 if x is NAN, 0.0 otherwise. ld(var) Load the value of the internal variable with number var, which was previously stored with st(var, expr). The function returns the loaded value. lerp(x, y, z) Return linear interpolation between x and y by amount of z. log(x) Compute natural logarithm of x. lt(x, y) Return 1 if x is lesser than y, 0 otherwise. lte(x, y) Return 1 if x is lesser than or equal to y, 0 otherwise. max(x, y) Return the maximum between x and y. min(x, y) Return the minimum between x and y. mod(x, y) Compute the remainder of division of x by y. not(expr) Return 1.0 if expr is zero, 0.0 otherwise. pow(x, y) Compute the power of x elevated y, it is equivalent to "(x)^(y)". print(t) print(t, l) Print the value of expression t with loglevel l. If l is not specified then a default log level is used. Returns the value of the expression printed. Prints t with loglevel l random(x) Return a pseudo random value between 0.0 and 1.0. x is the index of the internal variable which will be used to save the seed/state. root(expr, max) Find an input value for which the function represented by expr with argument ld(0) is 0 in the interval 0..max. The expression in expr must denote a continuous function or the result is undefined. ld(0) is used to represent the function input value, which means that the given expression will be evaluated multiple times with various input values that the expression can access through ld(0). When the expression evaluates to 0 then the corresponding input value will be returned. round(expr) Round the value of expression expr to the nearest integer. For example, "round(1.5)" is "2.0". sin(x) Compute sine of x. sinh(x) Compute hyperbolic sine of x. sqrt(expr) Compute the square root of expr. This is equivalent to "(expr)^.5". squish(x) Compute expression "1/(1 + exp(4*x))". st(var, expr) Store the value of the expression expr in an internal variable. var specifies the number of the variable where to store the value, and it is a value ranging from 0 to 9. The function returns the value stored in the internal variable. Note, Variables are currently not shared between expressions. tan(x) Compute tangent of x. tanh(x) Compute hyperbolic tangent of x. taylor(expr, x) taylor(expr, x, id) Evaluate a Taylor series at x, given an expression representing the "ld(id)"-th derivative of a function at 0. When the series does not converge the result is undefined. ld(id) is used to represent the derivative order in expr, which means that the given expression will be evaluated multiple times with various input values that the expression can access through "ld(id)". If id is not specified then 0 is assumed. Note, when you have the derivatives at y instead of 0, "taylor(expr, x-y)" can be used. time(0) Return the current (wallclock) time in seconds. trunc(expr) Round the value of expression expr towards zero to the nearest integer. For example, "trunc(-1.5)" is "-1.0". while(cond, expr) Evaluate expression expr while the expression cond is non-zero, and returns the value of the last expr evaluation, or NAN if cond was always false. The following constants are available: PI area of the unit disc, approximately 3.14 E exp(1) (Euler's number), approximately 2.718 PHI golden ratio (1+sqrt(5))/2, approximately 1.618 Assuming that an expression is considered "true" if it has a non-zero value, note that: "*" works like AND "+" works like OR For example the construct: if (A AND B) then C is equivalent to: if(A*B, C) In your C code, you can extend the list of unary and binary functions, and define recognized constants, so that they are available for your expressions. The evaluator also recognizes the International System unit prefixes. If 'i' is appended after the prefix, binary prefixes are used, which are based on powers of 1024 instead of powers of 1000. The 'B' postfix multiplies the value by 8, and can be appended after a unit prefix or used alone. This allows using for example 'KB', 'MiB', 'G' and 'B' as number postfix. The list of available International System prefixes follows, with indication of the corresponding powers of 10 and of 2. y 10^-24 / 2^-80 z 10^-21 / 2^-70 a 10^-18 / 2^-60 f 10^-15 / 2^-50 p 10^-12 / 2^-40 n 10^-9 / 2^-30 u 10^-6 / 2^-20 m 10^-3 / 2^-10 c 10^-2 d 10^-1 h 10^2 k 10^3 / 2^10 K 10^3 / 2^10 M 10^6 / 2^20 G 10^9 / 2^30 T 10^12 / 2^40 P 10^15 / 2^40 E 10^18 / 2^50 Z 10^21 / 2^60 Y 10^24 / 2^70 CODEC OPTIONS libavcodec provides some generic global options, which can be set on all the encoders and decoders. In addition each codec may support so- called private options, which are specific for a given codec. Sometimes, a global option may only affect a specific kind of codec, and may be nonsensical or ignored by another, so you need to be aware of the meaning of the specified options. Also some options are meant only for decoding or encoding. Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in the "AVCodecContext" options or using the libavutil/opt.h API for programmatic use. The list of supported options follow: b integer (encoding,audio,video) Set bitrate in bits/s. Default value is 200K. ab integer (encoding,audio) Set audio bitrate (in bits/s). Default value is 128K. bt integer (encoding,video) Set video bitrate tolerance (in bits/s). In 1-pass mode, bitrate tolerance specifies how far ratecontrol is willing to deviate from the target average bitrate value. This is not related to min/max bitrate. Lowering tolerance too much has an adverse effect on quality. flags flags (decoding/encoding,audio,video,subtitles) Set generic flags. Possible values: mv4 Use four motion vector by macroblock (mpeg4). qpel Use 1/4 pel motion compensation. loop Use loop filter. qscale Use fixed qscale. pass1 Use internal 2pass ratecontrol in first pass mode. pass2 Use internal 2pass ratecontrol in second pass mode. gray Only decode/encode grayscale. emu_edge Do not draw edges. psnr Set error[?] variables during encoding. truncated ildct Use interlaced DCT. low_delay Force low delay. global_header Place global headers in extradata instead of every keyframe. bitexact Only write platform-, build- and time-independent data. (except (I)DCT). This ensures that file and data checksums are reproducible and match between platforms. Its primary use is for regression testing. aic Apply H263 advanced intra coding / mpeg4 ac prediction. cbp Deprecated, use mpegvideo private options instead. qprd Deprecated, use mpegvideo private options instead. ilme Apply interlaced motion estimation. cgop Use closed gop. me_method integer (encoding,video) Set motion estimation method. Possible values: zero zero motion estimation (fastest) full full motion estimation (slowest) epzs EPZS motion estimation (default) esa esa motion estimation (alias for full) tesa tesa motion estimation dia dia motion estimation (alias for epzs) log log motion estimation phods phods motion estimation x1 X1 motion estimation hex hex motion estimation umh umh motion estimation iter iter motion estimation extradata_size integer Set extradata size. time_base rational number Set codec time base. It is the fundamental unit of time (in seconds) in terms of which frame timestamps are represented. For fixed-fps content, timebase should be "1 / frame_rate" and timestamp increments should be identically 1. g integer (encoding,video) Set the group of picture (GOP) size. Default value is 12. ar integer (decoding/encoding,audio) Set audio sampling rate (in Hz). ac integer (decoding/encoding,audio) Set number of audio channels. cutoff integer (encoding,audio) Set cutoff bandwidth. (Supported only by selected encoders, see their respective documentation sections.) frame_size integer (encoding,audio) Set audio frame size. Each submitted frame except the last must contain exactly frame_size samples per channel. May be 0 when the codec has CODEC_CAP_VARIABLE_FRAME_SIZE set, in that case the frame size is not restricted. It is set by some decoders to indicate constant frame size. frame_number integer Set the frame number. delay integer qcomp float (encoding,video) Set video quantizer scale compression (VBR). It is used as a constant in the ratecontrol equation. Recommended range for default rc_eq: 0.0-1.0. qblur float (encoding,video) Set video quantizer scale blur (VBR). qmin integer (encoding,video) Set min video quantizer scale (VBR). Must be included between -1 and 69, default value is 2. qmax integer (encoding,video) Set max video quantizer scale (VBR). Must be included between -1 and 1024, default value is 31. qdiff integer (encoding,video) Set max difference between the quantizer scale (VBR). bf integer (encoding,video) Set max number of B frames between non-B-frames. Must be an integer between -1 and 16. 0 means that B-frames are disabled. If a value of -1 is used, it will choose an automatic value depending on the encoder. Default value is 0. b_qfactor float (encoding,video) Set qp factor between P and B frames. rc_strategy integer (encoding,video) Set ratecontrol method. b_strategy integer (encoding,video) Set strategy to choose between I/P/B-frames. ps integer (encoding,video) Set RTP payload size in bytes. mv_bits integer header_bits integer i_tex_bits integer p_tex_bits integer i_count integer p_count integer skip_count integer misc_bits integer frame_bits integer codec_tag integer bug flags (decoding,video) Workaround not auto detected encoder bugs. Possible values: autodetect old_msmpeg4 some old lavc generated msmpeg4v3 files (no autodetection) xvid_ilace Xvid interlacing bug (autodetected if fourcc==XVIX) ump4 (autodetected if fourcc==UMP4) no_padding padding bug (autodetected) amv ac_vlc illegal vlc bug (autodetected per fourcc) qpel_chroma std_qpel old standard qpel (autodetected per fourcc/version) qpel_chroma2 direct_blocksize direct-qpel-blocksize bug (autodetected per fourcc/version) edge edge padding bug (autodetected per fourcc/version) hpel_chroma dc_clip ms Workaround various bugs in microsoft broken decoders. trunc trancated frames lelim integer (encoding,video) Set single coefficient elimination threshold for luminance (negative values also consider DC coefficient). celim integer (encoding,video) Set single coefficient elimination threshold for chrominance (negative values also consider dc coefficient) strict integer (decoding/encoding,audio,video) Specify how strictly to follow the standards. Possible values: very strictly conform to an older more strict version of the spec or reference software strict strictly conform to all the things in the spec no matter what consequences normal unofficial allow unofficial extensions experimental allow non standardized experimental things, experimental (unfinished/work in progress/not well tested) decoders and encoders. Note: experimental decoders can pose a security risk, do not use this for decoding untrusted input. b_qoffset float (encoding,video) Set QP offset between P and B frames. err_detect flags (decoding,audio,video) Set error detection flags. Possible values: crccheck verify embedded CRCs bitstream detect bitstream specification deviations buffer detect improper bitstream length explode abort decoding on minor error detection ignore_err ignore decoding errors, and continue decoding. This is useful if you want to analyze the content of a video and thus want everything to be decoded no matter what. This option will not result in a video that is pleasing to watch in case of errors. careful consider things that violate the spec and have not been seen in the wild as errors compliant consider all spec non compliancies as errors aggressive consider things that a sane encoder should not do as an error has_b_frames integer block_align integer mpeg_quant integer (encoding,video) Use MPEG quantizers instead of H.263. qsquish float (encoding,video) How to keep quantizer between qmin and qmax (0 = clip, 1 = use differentiable function). rc_qmod_amp float (encoding,video) Set experimental quantizer modulation. rc_qmod_freq integer (encoding,video) Set experimental quantizer modulation. rc_override_count integer rc_eq string (encoding,video) Set rate control equation. When computing the expression, besides the standard functions defined in the section 'Expression Evaluation', the following functions are available: bits2qp(bits), qp2bits(qp). Also the following constants are available: iTex pTex tex mv fCode iCount mcVar var isI isP isB avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex. maxrate integer (encoding,audio,video) Set max bitrate tolerance (in bits/s). Requires bufsize to be set. minrate integer (encoding,audio,video) Set min bitrate tolerance (in bits/s). Most useful in setting up a CBR encode. It is of little use elsewise. bufsize integer (encoding,audio,video) Set ratecontrol buffer size (in bits). rc_buf_aggressivity float (encoding,video) Currently useless. i_qfactor float (encoding,video) Set QP factor between P and I frames. i_qoffset float (encoding,video) Set QP offset between P and I frames. rc_init_cplx float (encoding,video) Set initial complexity for 1-pass encoding. dct integer (encoding,video) Set DCT algorithm. Possible values: auto autoselect a good one (default) fastint fast integer int accurate integer mmx altivec faan floating point AAN DCT lumi_mask float (encoding,video) Compress bright areas stronger than medium ones. tcplx_mask float (encoding,video) Set temporal complexity masking. scplx_mask float (encoding,video) Set spatial complexity masking. p_mask float (encoding,video) Set inter masking. dark_mask float (encoding,video) Compress dark areas stronger than medium ones. idct integer (decoding/encoding,video) Select IDCT implementation. Possible values: auto int simple simplemmx simpleauto Automatically pick a IDCT compatible with the simple one arm altivec sh4 simplearm simplearmv5te simplearmv6 simpleneon simplealpha ipp xvidmmx faani floating point AAN IDCT slice_count integer ec flags (decoding,video) Set error concealment strategy. Possible values: guess_mvs iterative motion vector (MV) search (slow) deblock use strong deblock filter for damaged MBs favor_inter favor predicting from the previous frame instead of the current bits_per_coded_sample integer pred integer (encoding,video) Set prediction method. Possible values: left plane median aspect rational number (encoding,video) Set sample aspect ratio. sar rational number (encoding,video) Set sample aspect ratio. Alias to aspect. debug flags (decoding/encoding,audio,video,subtitles) Print specific debug info. Possible values: pict picture info rc rate control bitstream mb_type macroblock (MB) type qp per-block quantization parameter (QP) dct_coeff green_metadata display complexity metadata for the upcoming frame, GoP or for a given duration. skip startcode er error recognition mmco memory management control operations (H.264) bugs buffers picture buffer allocations thread_ops threading operations nomc skip motion compensation cmp integer (encoding,video) Set full pel me compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma subcmp integer (encoding,video) Set sub pel me compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma mbcmp integer (encoding,video) Set macroblock compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma ildctcmp integer (encoding,video) Set interlaced dct compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma dia_size integer (encoding,video) Set diamond type & size for motion estimation. last_pred integer (encoding,video) Set amount of motion predictors from the previous frame. preme integer (encoding,video) Set pre motion estimation. precmp integer (encoding,video) Set pre motion estimation compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma pre_dia_size integer (encoding,video) Set diamond type & size for motion estimation pre-pass. subq integer (encoding,video) Set sub pel motion estimation quality. dtg_active_format integer me_range integer (encoding,video) Set limit motion vectors range (1023 for DivX player). ibias integer (encoding,video) Set intra quant bias. pbias integer (encoding,video) Set inter quant bias. color_table_id integer global_quality integer (encoding,audio,video) coder integer (encoding,video) Possible values: vlc variable length coder / huffman coder ac arithmetic coder raw raw (no encoding) rle run-length coder deflate deflate-based coder context integer (encoding,video) Set context model. slice_flags integer mbd integer (encoding,video) Set macroblock decision algorithm (high quality mode). Possible values: simple use mbcmp (default) bits use fewest bits rd use best rate distortion stream_codec_tag integer sc_threshold integer (encoding,video) Set scene change threshold. lmin integer (encoding,video) Set min lagrange factor (VBR). lmax integer (encoding,video) Set max lagrange factor (VBR). nr integer (encoding,video) Set noise reduction. rc_init_occupancy integer (encoding,video) Set number of bits which should be loaded into the rc buffer before decoding starts. flags2 flags (decoding/encoding,audio,video) Possible values: fast Allow non spec compliant speedup tricks. sgop Deprecated, use mpegvideo private options instead. noout Skip bitstream encoding. ignorecrop Ignore cropping information from sps. local_header Place global headers at every keyframe instead of in extradata. chunks Frame data might be split into multiple chunks. showall Show all frames before the first keyframe. skiprd Deprecated, use mpegvideo private options instead. export_mvs Export motion vectors into frame side-data (see "AV_FRAME_DATA_MOTION_VECTORS") for codecs that support it. See also doc/examples/export_mvs.c. error integer (encoding,video) qns integer (encoding,video) Deprecated, use mpegvideo private options instead. threads integer (decoding/encoding,video) Set the number of threads to be used, in case the selected codec implementation supports multi-threading. Possible values: auto, 0 automatically select the number of threads to set Default value is auto. me_threshold integer (encoding,video) Set motion estimation threshold. mb_threshold integer (encoding,video) Set macroblock threshold. dc integer (encoding,video) Set intra_dc_precision. nssew integer (encoding,video) Set nsse weight. skip_top integer (decoding,video) Set number of macroblock rows at the top which are skipped. skip_bottom integer (decoding,video) Set number of macroblock rows at the bottom which are skipped. profile integer (encoding,audio,video) Possible values: unknown aac_main aac_low aac_ssr aac_ltp aac_he aac_he_v2 aac_ld aac_eld mpeg2_aac_low mpeg2_aac_he mpeg4_sp mpeg4_core mpeg4_main mpeg4_asp dts dts_es dts_96_24 dts_hd_hra dts_hd_ma level integer (encoding,audio,video) Possible values: unknown lowres integer (decoding,audio,video) Decode at 1= 1/2, 2=1/4, 3=1/8 resolutions. skip_threshold integer (encoding,video) Set frame skip threshold. skip_factor integer (encoding,video) Set frame skip factor. skip_exp integer (encoding,video) Set frame skip exponent. Negative values behave identical to the corresponding positive ones, except that the score is normalized. Positive values exist primarily for compatibility reasons and are not so useful. skipcmp integer (encoding,video) Set frame skip compare function. Possible values: sad sum of absolute differences, fast (default) sse sum of squared errors satd sum of absolute Hadamard transformed differences dct sum of absolute DCT transformed differences psnr sum of squared quantization errors (avoid, low quality) bit number of bits needed for the block rd rate distortion optimal, slow zero 0 vsad sum of absolute vertical differences vsse sum of squared vertical differences nsse noise preserving sum of squared differences w53 5/3 wavelet, only used in snow w97 9/7 wavelet, only used in snow dctmax chroma border_mask float (encoding,video) Increase the quantizer for macroblocks close to borders. mblmin integer (encoding,video) Set min macroblock lagrange factor (VBR). mblmax integer (encoding,video) Set max macroblock lagrange factor (VBR). mepc integer (encoding,video) Set motion estimation bitrate penalty compensation (1.0 = 256). skip_loop_filter integer (decoding,video) skip_idct integer (decoding,video) skip_frame integer (decoding,video) Make decoder discard processing depending on the frame type selected by the option value. skip_loop_filter skips frame loop filtering, skip_idct skips frame IDCT/dequantization, skip_frame skips decoding. Possible values: none Discard no frame. default Discard useless frames like 0-sized frames. noref Discard all non-reference frames. bidir Discard all bidirectional frames. nokey Discard all frames excepts keyframes. all Discard all frames. Default value is default. bidir_refine integer (encoding,video) Refine the two motion vectors used in bidirectional macroblocks. brd_scale integer (encoding,video) Downscale frames for dynamic B-frame decision. keyint_min integer (encoding,video) Set minimum interval between IDR-frames. refs integer (encoding,video) Set reference frames to consider for motion compensation. chromaoffset integer (encoding,video) Set chroma qp offset from luma. trellis integer (encoding,audio,video) Set rate-distortion optimal quantization. sc_factor integer (encoding,video) Set value multiplied by qscale for each frame and added to scene_change_score. mv0_threshold integer (encoding,video) b_sensitivity integer (encoding,video) Adjust sensitivity of b_frame_strategy 1. compression_level integer (encoding,audio,video) min_prediction_order integer (encoding,audio) max_prediction_order integer (encoding,audio) timecode_frame_start integer (encoding,video) Set GOP timecode frame start number, in non drop frame format. request_channels integer (decoding,audio) Set desired number of audio channels. bits_per_raw_sample integer channel_layout integer (decoding/encoding,audio) Possible values: request_channel_layout integer (decoding,audio) Possible values: rc_max_vbv_use float (encoding,video) rc_min_vbv_use float (encoding,video) ticks_per_frame integer (decoding/encoding,audio,video) color_primaries integer (decoding/encoding,video) Possible values: bt709 BT.709 bt470m BT.470 M bt470bg BT.470 BG smpte170m SMPTE 170 M smpte240m SMPTE 240 M film Film bt2020 BT.2020 smpte428 smpte428_1 SMPTE ST 428-1 smpte431 SMPTE 431-2 smpte432 SMPTE 432-1 jedec-p22 JEDEC P22 color_trc integer (decoding/encoding,video) Possible values: bt709 BT.709 gamma22 BT.470 M gamma28 BT.470 BG smpte170m SMPTE 170 M smpte240m SMPTE 240 M linear Linear log log100 Log log_sqrt log316 Log square root iec61966_2_4 iec61966-2-4 IEC 61966-2-4 bt1361 bt1361e BT.1361 iec61966_2_1 iec61966-2-1 IEC 61966-2-1 bt2020_10 bt2020_10bit BT.2020 - 10 bit bt2020_12 bt2020_12bit BT.2020 - 12 bit smpte2084 SMPTE ST 2084 smpte428 smpte428_1 SMPTE ST 428-1 arib-std-b67 ARIB STD-B67 colorspace integer (decoding/encoding,video) Possible values: rgb RGB bt709 BT.709 fcc FCC bt470bg BT.470 BG smpte170m SMPTE 170 M smpte240m SMPTE 240 M ycocg YCOCG bt2020nc bt2020_ncl BT.2020 NCL bt2020c bt2020_cl BT.2020 CL smpte2085 SMPTE 2085 color_range integer (decoding/encoding,video) If used as input parameter, it serves as a hint to the decoder, which color_range the input has. Possible values: tv mpeg MPEG (219*2^(n-8)) pc jpeg JPEG (2^n-1) chroma_sample_location integer (decoding/encoding,video) Possible values: left center topleft top bottomleft bottom log_level_offset integer Set the log level offset. slices integer (encoding,video) Number of slices, used in parallelized encoding. thread_type flags (decoding/encoding,video) Select which multithreading methods to use. Use of frame will increase decoding delay by one frame per thread, so clients which cannot provide future frames should not use it. Possible values: slice Decode more than one part of a single frame at once. Multithreading using slices works only when the video was encoded with slices. frame Decode more than one frame at once. Default value is slice+frame. audio_service_type integer (encoding,audio) Set audio service type. Possible values: ma Main Audio Service ef Effects vi Visually Impaired hi Hearing Impaired di Dialogue co Commentary em Emergency vo Voice Over ka Karaoke request_sample_fmt sample_fmt (decoding,audio) Set sample format audio decoders should prefer. Default value is "none". pkt_timebase rational number sub_charenc encoding (decoding,subtitles) Set the input subtitles character encoding. field_order field_order (video) Set/override the field order of the video. Possible values: progressive Progressive video tt Interlaced video, top field coded and displayed first bb Interlaced video, bottom field coded and displayed first tb Interlaced video, top coded first, bottom displayed first bt Interlaced video, bottom coded first, top displayed first skip_alpha bool (decoding,video) Set to 1 to disable processing alpha (transparency). This works like the gray flag in the flags option which skips chroma information instead of alpha. Default is 0. codec_whitelist list (input) "," separated list of allowed decoders. By default all are allowed. dump_separator string (input) Separator used to separate the fields printed on the command line about the Stream parameters. For example to separate the fields with newlines and indention: ffprobe -dump_separator " " -i ~/videos/matrixbench_mpeg2.mpg max_pixels integer (decoding/encoding,video) Maximum number of pixels per image. This value can be used to avoid out of memory failures due to large images. apply_cropping bool (decoding,video) Enable cropping if cropping parameters are multiples of the required alignment for the left and top parameters. If the alignment is not met the cropping will be partially applied to maintain alignment. Default is 1 (enabled). Note: The required alignment depends on if "AV_CODEC_FLAG_UNALIGNED" is set and the CPU. "AV_CODEC_FLAG_UNALIGNED" cannot be changed from the command line. Also hardware decoders will not apply left/top Cropping. DECODERS Decoders are configured elements in FFmpeg which allow the decoding of multimedia streams. When you configure your FFmpeg build, all the supported native decoders are enabled by default. Decoders requiring an external library must be enabled manually via the corresponding "--enable-lib" option. You can list all available decoders using the configure option "--list-decoders". You can disable all the decoders with the configure option "--disable-decoders" and selectively enable / disable single decoders with the options "--enable-decoder=DECODER" / "--disable-decoder=DECODER". The option "-decoders" of the ff* tools will display the list of enabled decoders. VIDEO DECODERS A description of some of the currently available video decoders follows. rawvideo Raw video decoder. This decoder decodes rawvideo streams. Options top top_field_first Specify the assumed field type of the input video. -1 the video is assumed to be progressive (default) 0 bottom-field-first is assumed 1 top-field-first is assumed AUDIO DECODERS A description of some of the currently available audio decoders follows. ac3 AC-3 audio decoder. This decoder implements part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented RealAudio 3 (a.k.a. dnet). AC-3 Decoder Options -drc_scale value Dynamic Range Scale Factor. The factor to apply to dynamic range values from the AC-3 stream. This factor is applied exponentially. There are 3 notable scale factor ranges: drc_scale == 0 DRC disabled. Produces full range audio. 0 < drc_scale <= 1 DRC enabled. Applies a fraction of the stream DRC value. Audio reproduction is between full range and full compression. drc_scale > 1 DRC enabled. Applies drc_scale asymmetrically. Loud sounds are fully compressed. Soft sounds are enhanced. flac FLAC audio decoder. This decoder aims to implement the complete FLAC specification from Xiph. FLAC Decoder options -use_buggy_lpc The lavc FLAC encoder used to produce buggy streams with high lpc values (like the default value). This option makes it possible to decode such streams correctly by using lavc's old buggy lpc logic for decoding. ffwavesynth Internal wave synthesizer. This decoder generates wave patterns according to predefined sequences. Its use is purely internal and the format of the data it accepts is not publicly documented. libcelt libcelt decoder wrapper. libcelt allows libavcodec to decode the Xiph CELT ultra-low delay audio codec. Requires the presence of the libcelt headers and library during configuration. You need to explicitly configure the build with "--enable-libcelt". libgsm libgsm decoder wrapper. libgsm allows libavcodec to decode the GSM full rate audio codec. Requires the presence of the libgsm headers and library during configuration. You need to explicitly configure the build with "--enable-libgsm". This decoder supports both the ordinary GSM and the Microsoft variant. libilbc libilbc decoder wrapper. libilbc allows libavcodec to decode the Internet Low Bitrate Codec (iLBC) audio codec. Requires the presence of the libilbc headers and library during configuration. You need to explicitly configure the build with "--enable-libilbc". Options The following option is supported by the libilbc wrapper. enhance Enable the enhancement of the decoded audio when set to 1. The default value is 0 (disabled). libopencore-amrnb libopencore-amrnb decoder wrapper. libopencore-amrnb allows libavcodec to decode the Adaptive Multi-Rate Narrowband audio codec. Using it requires the presence of the libopencore-amrnb headers and library during configuration. You need to explicitly configure the build with "--enable-libopencore-amrnb". An FFmpeg native decoder for AMR-NB exists, so users can decode AMR-NB without this library. libopencore-amrwb libopencore-amrwb decoder wrapper. libopencore-amrwb allows libavcodec to decode the Adaptive Multi-Rate Wideband audio codec. Using it requires the presence of the libopencore-amrwb headers and library during configuration. You need to explicitly configure the build with "--enable-libopencore-amrwb". An FFmpeg native decoder for AMR-WB exists, so users can decode AMR-WB without this library. libopus libopus decoder wrapper. libopus allows libavcodec to decode the Opus Interactive Audio Codec. Requires the presence of the libopus headers and library during configuration. You need to explicitly configure the build with "--enable-libopus". An FFmpeg native decoder for Opus exists, so users can decode Opus without this library. SUBTITLES DECODERS dvbsub Options compute_clut -1 Compute clut if no matching CLUT is in the stream. 0 Never compute CLUT 1 Always compute CLUT and override the one provided in the stream. dvb_substream Selects the dvb substream, or all substreams if -1 which is default. dvdsub This codec decodes the bitmap subtitles used in DVDs; the same subtitles can also be found in VobSub file pairs and in some Matroska files. Options palette Specify the global palette used by the bitmaps. When stored in VobSub, the palette is normally specified in the index file; in Matroska, the palette is stored in the codec extra-data in the same format as in VobSub. In DVDs, the palette is stored in the IFO file, and therefore not available when reading from dumped VOB files. The format for this option is a string containing 16 24-bits hexadecimal numbers (without 0x prefix) separated by comas, for example "0d00ee, ee450d, 101010, eaeaea, 0ce60b, ec14ed, ebff0b, 0d617a, 7b7b7b, d1d1d1, 7b2a0e, 0d950c, 0f007b, cf0dec, cfa80c, 7c127b". ifo_palette Specify the IFO file from which the global palette is obtained. (experimental) forced_subs_only Only decode subtitle entries marked as forced. Some titles have forced and non-forced subtitles in the same track. Setting this flag to 1 will only keep the forced subtitles. Default value is 0. libzvbi-teletext Libzvbi allows libavcodec to decode DVB teletext pages and DVB teletext subtitles. Requires the presence of the libzvbi headers and library during configuration. You need to explicitly configure the build with "--enable-libzvbi". Options txt_page List of teletext page numbers to decode. You may use the special * string to match all pages. Pages that do not match the specified list are dropped. Default value is *. txt_chop_top Discards the top teletext line. Default value is 1. txt_format Specifies the format of the decoded subtitles. The teletext decoder is capable of decoding the teletext pages to bitmaps or to simple text, you should use "bitmap" for teletext pages, because certain graphics and colors cannot be expressed in simple text. You might use "text" for teletext based subtitles if your application can handle simple text based subtitles. Default value is bitmap. txt_left X offset of generated bitmaps, default is 0. txt_top Y offset of generated bitmaps, default is 0. txt_chop_spaces Chops leading and trailing spaces and removes empty lines from the generated text. This option is useful for teletext based subtitles where empty spaces may be present at the start or at the end of the lines or empty lines may be present between the subtitle lines because of double-sized teletext characters. Default value is 1. txt_duration Sets the display duration of the decoded teletext pages or subtitles in milliseconds. Default value is 30000 which is 30 seconds. txt_transparent Force transparent background of the generated teletext bitmaps. Default value is 0 which means an opaque background. txt_opacity Sets the opacity (0-255) of the teletext background. If txt_transparent is not set, it only affects characters between a start box and an end box, typically subtitles. Default value is 0 if txt_transparent is set, 255 otherwise. ENCODERS Encoders are configured elements in FFmpeg which allow the encoding of multimedia streams. When you configure your FFmpeg build, all the supported native encoders are enabled by default. Encoders requiring an external library must be enabled manually via the corresponding "--enable-lib" option. You can list all available encoders using the configure option "--list-encoders". You can disable all the encoders with the configure option "--disable-encoders" and selectively enable / disable single encoders with the options "--enable-encoder=ENCODER" / "--disable-encoder=ENCODER". The option "-encoders" of the ff* tools will display the list of enabled encoders. AUDIO ENCODERS A description of some of the currently available audio encoders follows. aac Advanced Audio Coding (AAC) encoder. This encoder is the default AAC encoder, natively implemented into FFmpeg. Its quality is on par or better than libfdk_aac at the default bitrate of 128kbps. This encoder also implements more options, profiles and samplerates than other encoders (with only the AAC-HE profile pending to be implemented) so this encoder has become the default and is the recommended choice. Options b Set bit rate in bits/s. Setting this automatically activates constant bit rate (CBR) mode. If this option is unspecified it is set to 128kbps. q Set quality for variable bit rate (VBR) mode. This option is valid only using the ffmpeg command-line tool. For library interface users, use global_quality. cutoff Set cutoff frequency. If unspecified will allow the encoder to dynamically adjust the cutoff to improve clarity on low bitrates. aac_coder Set AAC encoder coding method. Possible values: twoloop Two loop searching (TLS) method. This method first sets quantizers depending on band thresholds and then tries to find an optimal combination by adding or subtracting a specific value from all quantizers and adjusting some individual quantizer a little. Will tune itself based on whether aac_is, aac_ms and aac_pns are enabled. anmr Average noise to mask ratio (ANMR) trellis-based solution. This is an experimental coder which currently produces a lower quality, is more unstable and is slower than the default twoloop coder but has potential. Currently has no support for the aac_is or aac_pns options. Not currently recommended. fast Constant quantizer method. Uses a cheaper version of twoloop algorithm that doesn't try to do as many clever adjustments. Worse with low bitrates (less than 64kbps), but is better and much faster at higher bitrates. This is the default choice for a coder aac_ms Sets mid/side coding mode. The default value of "auto" will automatically use M/S with bands which will benefit from such coding. Can be forced for all bands using the value "enable", which is mainly useful for debugging or disabled using "disable". aac_is Sets intensity stereo coding tool usage. By default, it's enabled and will automatically toggle IS for similar pairs of stereo bands if it's beneficial. Can be disabled for debugging by setting the value to "disable". aac_pns Uses perceptual noise substitution to replace low entropy high frequency bands with imperceptible white noise during the decoding process. By default, it's enabled, but can be disabled for debugging purposes by using "disable". aac_tns Enables the use of a multitap FIR filter which spans through the high frequency bands to hide quantization noise during the encoding process and is reverted by the decoder. As well as decreasing unpleasant artifacts in the high range this also reduces the entropy in the high bands and allows for more bits to be used by the mid-low bands. By default it's enabled but can be disabled for debugging by setting the option to "disable". aac_ltp Enables the use of the long term prediction extension which increases coding efficiency in very low bandwidth situations such as encoding of voice or solo piano music by extending constant harmonic peaks in bands throughout frames. This option is implied by profile:a aac_low and is incompatible with aac_pred. Use in conjunction with -ar to decrease the samplerate. aac_pred Enables the use of a more traditional style of prediction where the spectral coefficients transmitted are replaced by the difference of the current coefficients minus the previous "predicted" coefficients. In theory and sometimes in practice this can improve quality for low to mid bitrate audio. This option implies the aac_main profile and is incompatible with aac_ltp. profile Sets the encoding profile, possible values: aac_low The default, AAC "Low-complexity" profile. Is the most compatible and produces decent quality. mpeg2_aac_low Equivalent to "-profile:a aac_low -aac_pns 0". PNS was introduced with the MPEG4 specifications. aac_ltp Long term prediction profile, is enabled by and will enable the aac_ltp option. Introduced in MPEG4. aac_main Main-type prediction profile, is enabled by and will enable the aac_pred option. Introduced in MPEG2. If this option is unspecified it is set to aac_low. ac3 and ac3_fixed AC-3 audio encoders. These encoders implement part of ATSC A/52:2010 and ETSI TS 102 366, as well as the undocumented RealAudio 3 (a.k.a. dnet). The ac3 encoder uses floating-point math, while the ac3_fixed encoder only uses fixed-point integer math. This does not mean that one is always faster, just that one or the other may be better suited to a particular system. The floating-point encoder will generally produce better quality audio for a given bitrate. The ac3_fixed encoder is not the default codec for any of the output formats, so it must be specified explicitly using the option "-acodec ac3_fixed" in order to use it. AC-3 Metadata The AC-3 metadata options are used to set parameters that describe the audio, but in most cases do not affect the audio encoding itself. Some of the options do directly affect or influence the decoding and playback of the resulting bitstream, while others are just for informational purposes. A few of the options will add bits to the output stream that could otherwise be used for audio data, and will thus affect the quality of the output. Those will be indicated accordingly with a note in the option list below. These parameters are described in detail in several publicly-available documents. *<> *<> *<> *<> Metadata Control Options -per_frame_metadata boolean Allow Per-Frame Metadata. Specifies if the encoder should check for changing metadata for each frame. 0 The metadata values set at initialization will be used for every frame in the stream. (default) 1 Metadata values can be changed before encoding each frame. Downmix Levels -center_mixlev level Center Mix Level. The amount of gain the decoder should apply to the center channel when downmixing to stereo. This field will only be written to the bitstream if a center channel is present. The value is specified as a scale factor. There are 3 valid values: 0.707 Apply -3dB gain 0.595 Apply -4.5dB gain (default) 0.500 Apply -6dB gain -surround_mixlev level Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s) when downmixing to stereo. This field will only be written to the bitstream if one or more surround channels are present. The value is specified as a scale factor. There are 3 valid values: 0.707 Apply -3dB gain 0.500 Apply -6dB gain (default) 0.000 Silence Surround Channel(s) Audio Production Information Audio Production Information is optional information describing the mixing environment. Either none or both of the fields are written to the bitstream. -mixing_level number Mixing Level. Specifies peak sound pressure level (SPL) in the production environment when the mix was mastered. Valid values are 80 to 111, or -1 for unknown or not indicated. The default value is -1, but that value cannot be used if the Audio Production Information is written to the bitstream. Therefore, if the "room_type" option is not the default value, the "mixing_level" option must not be -1. -room_type type Room Type. Describes the equalization used during the final mixing session at the studio or on the dubbing stage. A large room is a dubbing stage with the industry standard X-curve equalization; a small room has flat equalization. This field will not be written to the bitstream if both the "mixing_level" option and the "room_type" option have the default values. 0 notindicated Not Indicated (default) 1 large Large Room 2 small Small Room Other Metadata Options -copyright boolean Copyright Indicator. Specifies whether a copyright exists for this audio. 0 off No Copyright Exists (default) 1 on Copyright Exists -dialnorm value Dialogue Normalization. Indicates how far the average dialogue level of the program is below digital 100% full scale (0 dBFS). This parameter determines a level shift during audio reproduction that sets the average volume of the dialogue to a preset level. The goal is to match volume level between program sources. A value of -31dB will result in no volume level change, relative to the source volume, during audio reproduction. Valid values are whole numbers in the range -31 to -1, with -31 being the default. -dsur_mode mode Dolby Surround Mode. Specifies whether the stereo signal uses Dolby Surround (Pro Logic). This field will only be written to the bitstream if the audio stream is stereo. Using this option does NOT mean the encoder will actually apply Dolby Surround processing. 0 notindicated Not Indicated (default) 1 off Not Dolby Surround Encoded 2 on Dolby Surround Encoded -original boolean Original Bit Stream Indicator. Specifies whether this audio is from the original source and not a copy. 0 off Not Original Source 1 on Original Source (default) Extended Bitstream Information The extended bitstream options are part of the Alternate Bit Stream Syntax as specified in Annex D of the A/52:2010 standard. It is grouped into 2 parts. If any one parameter in a group is specified, all values in that group will be written to the bitstream. Default values are used for those that are written but have not been specified. If the mixing levels are written, the decoder will use these values instead of the ones specified in the "center_mixlev" and "surround_mixlev" options if it supports the Alternate Bit Stream Syntax. Extended Bitstream Information - Part 1 -dmix_mode mode Preferred Stereo Downmix Mode. Allows the user to select either Lt/Rt (Dolby Surround) or Lo/Ro (normal stereo) as the preferred stereo downmix mode. 0 notindicated Not Indicated (default) 1 ltrt Lt/Rt Downmix Preferred 2 loro Lo/Ro Downmix Preferred -ltrt_cmixlev level Lt/Rt Center Mix Level. The amount of gain the decoder should apply to the center channel when downmixing to stereo in Lt/Rt mode. 1.414 Apply +3dB gain 1.189 Apply +1.5dB gain 1.000 Apply 0dB gain 0.841 Apply -1.5dB gain 0.707 Apply -3.0dB gain 0.595 Apply -4.5dB gain (default) 0.500 Apply -6.0dB gain 0.000 Silence Center Channel -ltrt_surmixlev level Lt/Rt Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s) when downmixing to stereo in Lt/Rt mode. 0.841 Apply -1.5dB gain 0.707 Apply -3.0dB gain 0.595 Apply -4.5dB gain 0.500 Apply -6.0dB gain (default) 0.000 Silence Surround Channel(s) -loro_cmixlev level Lo/Ro Center Mix Level. The amount of gain the decoder should apply to the center channel when downmixing to stereo in Lo/Ro mode. 1.414 Apply +3dB gain 1.189 Apply +1.5dB gain 1.000 Apply 0dB gain 0.841 Apply -1.5dB gain 0.707 Apply -3.0dB gain 0.595 Apply -4.5dB gain (default) 0.500 Apply -6.0dB gain 0.000 Silence Center Channel -loro_surmixlev level Lo/Ro Surround Mix Level. The amount of gain the decoder should apply to the surround channel(s) when downmixing to stereo in Lo/Ro mode. 0.841 Apply -1.5dB gain 0.707 Apply -3.0dB gain 0.595 Apply -4.5dB gain 0.500 Apply -6.0dB gain (default) 0.000 Silence Surround Channel(s) Extended Bitstream Information - Part 2 -dsurex_mode mode Dolby Surround EX Mode. Indicates whether the stream uses Dolby Surround EX (7.1 matrixed to 5.1). Using this option does NOT mean the encoder will actually apply Dolby Surround EX processing. 0 notindicated Not Indicated (default) 1 on Dolby Surround EX Off 2 off Dolby Surround EX On -dheadphone_mode mode Dolby Headphone Mode. Indicates whether the stream uses Dolby Headphone encoding (multi-channel matrixed to 2.0 for use with headphones). Using this option does NOT mean the encoder will actually apply Dolby Headphone processing. 0 notindicated Not Indicated (default) 1 on Dolby Headphone Off 2 off Dolby Headphone On -ad_conv_type type A/D Converter Type. Indicates whether the audio has passed through HDCD A/D conversion. 0 standard Standard A/D Converter (default) 1 hdcd HDCD A/D Converter Other AC-3 Encoding Options -stereo_rematrixing boolean Stereo Rematrixing. Enables/Disables use of rematrixing for stereo input. This is an optional AC-3 feature that increases quality by selectively encoding the left/right channels as mid/side. This option is enabled by default, and it is highly recommended that it be left as enabled except for testing purposes. cutoff frequency Set lowpass cutoff frequency. If unspecified, the encoder selects a default determined by various other encoding parameters. Floating-Point-Only AC-3 Encoding Options These options are only valid for the floating-point encoder and do not exist for the fixed-point encoder due to the corresponding features not being implemented in fixed-point. -channel_coupling boolean Enables/Disables use of channel coupling, which is an optional AC-3 feature that increases quality by combining high frequency information from multiple channels into a single channel. The per- channel high frequency information is sent with less accuracy in both the frequency and time domains. This allows more bits to be used for lower frequencies while preserving enough information to reconstruct the high frequencies. This option is enabled by default for the floating-point encoder and should generally be left as enabled except for testing purposes or to increase encoding speed. -1 auto Selected by Encoder (default) 0 off Disable Channel Coupling 1 on Enable Channel Coupling -cpl_start_band number Coupling Start Band. Sets the channel coupling start band, from 1 to 15. If a value higher than the bandwidth is used, it will be reduced to 1 less than the coupling end band. If auto is used, the start band will be determined by the encoder based on the bit rate, sample rate, and channel layout. This option has no effect if channel coupling is disabled. -1 auto Selected by Encoder (default) flac FLAC (Free Lossless Audio Codec) Encoder Options The following options are supported by FFmpeg's flac encoder. compression_level Sets the compression level, which chooses defaults for many other options if they are not set explicitly. Valid values are from 0 to 12, 5 is the default. frame_size Sets the size of the frames in samples per channel. lpc_coeff_precision Sets the LPC coefficient precision, valid values are from 1 to 15, 15 is the default. lpc_type Sets the first stage LPC algorithm none LPC is not used fixed fixed LPC coefficients levinson cholesky lpc_passes Number of passes to use for Cholesky factorization during LPC analysis min_partition_order The minimum partition order max_partition_order The maximum partition order prediction_order_method estimation 2level 4level 8level search Bruteforce search log ch_mode Channel mode auto The mode is chosen automatically for each frame indep Channels are independently coded left_side right_side mid_side exact_rice_parameters Chooses if rice parameters are calculated exactly or approximately. if set to 1 then they are chosen exactly, which slows the code down slightly and improves compression slightly. multi_dim_quant Multi Dimensional Quantization. If set to 1 then a 2nd stage LPC algorithm is applied after the first stage to finetune the coefficients. This is quite slow and slightly improves compression. opus Opus encoder. This is a native FFmpeg encoder for the Opus format. Currently its in development and only implements the CELT part of the codec. Its quality is usually worse and at best is equal to the libopus encoder. Options b Set bit rate in bits/s. If unspecified it uses the number of channels and the layout to make a good guess. opus_delay Sets the maximum delay in milliseconds. Lower delays than 20ms will very quickly decrease quality. libfdk_aac libfdk-aac AAC (Advanced Audio Coding) encoder wrapper. The libfdk-aac library is based on the Fraunhofer FDK AAC code from the Android project. Requires the presence of the libfdk-aac headers and library during configuration. You need to explicitly configure the build with "--enable-libfdk-aac". The library is also incompatible with GPL, so if you allow the use of GPL, you should configure with "--enable-gpl --enable-nonfree --enable-libfdk-aac". This encoder is considered to produce output on par or worse at 128kbps to the the native FFmpeg AAC encoder but can often produce better sounding audio at identical or lower bitrates and has support for the AAC-HE profiles. VBR encoding, enabled through the vbr or flags +qscale options, is experimental and only works with some combinations of parameters. Support for encoding 7.1 audio is only available with libfdk-aac 0.1.3 or higher. For more information see the fdk-aac project at . Options The following options are mapped on the shared FFmpeg codec options. b Set bit rate in bits/s. If the bitrate is not explicitly specified, it is automatically set to a suitable value depending on the selected profile. In case VBR mode is enabled the option is ignored. ar Set audio sampling rate (in Hz). channels Set the number of audio channels. flags +qscale Enable fixed quality, VBR (Variable Bit Rate) mode. Note that VBR is implicitly enabled when the vbr value is positive. cutoff Set cutoff frequency. If not specified (or explicitly set to 0) it will use a value automatically computed by the library. Default value is 0. profile Set audio profile. The following profiles are recognized: aac_low Low Complexity AAC (LC) aac_he High Efficiency AAC (HE-AAC) aac_he_v2 High Efficiency AAC version 2 (HE-AACv2) aac_ld Low Delay AAC (LD) aac_eld Enhanced Low Delay AAC (ELD) If not specified it is set to aac_low. The following are private options of the libfdk_aac encoder. afterburner Enable afterburner feature if set to 1, disabled if set to 0. This improves the quality but also the required processing power. Default value is 1. eld_sbr Enable SBR (Spectral Band Replication) for ELD if set to 1, disabled if set to 0. Default value is 0. signaling Set SBR/PS signaling style. It can assume one of the following values: default choose signaling implicitly (explicit hierarchical by default, implicit if global header is disabled) implicit implicit backwards compatible signaling explicit_sbr explicit SBR, implicit PS signaling explicit_hierarchical explicit hierarchical signaling Default value is default. latm Output LATM/LOAS encapsulated data if set to 1, disabled if set to 0. Default value is 0. header_period Set StreamMuxConfig and PCE repetition period (in frames) for sending in-band configuration buffers within LATM/LOAS transport layer. Must be a 16-bits non-negative integer. Default value is 0. vbr Set VBR mode, from 1 to 5. 1 is lowest quality (though still pretty good) and 5 is highest quality. A value of 0 will disable VBR, and CBR (Constant Bit Rate) is enabled. Currently only the aac_low profile supports VBR encoding. VBR modes 1-5 correspond to roughly the following average bit rates: 1 32 kbps/channel 2 40 kbps/channel 3 48-56 kbps/channel 4 64 kbps/channel 5 about 80-96 kbps/channel Default value is 0. Examples · Use ffmpeg to convert an audio file to VBR AAC in an M4A (MP4) container: ffmpeg -i input.wav -codec:a libfdk_aac -vbr 3 output.m4a · Use ffmpeg to convert an audio file to CBR 64k kbps AAC, using the High-Efficiency AAC profile: ffmpeg -i input.wav -c:a libfdk_aac -profile:a aac_he -b:a 64k output.m4a libmp3lame LAME (Lame Ain't an MP3 Encoder) MP3 encoder wrapper. Requires the presence of the libmp3lame headers and library during configuration. You need to explicitly configure the build with "--enable-libmp3lame". See libshine for a fixed-point MP3 encoder, although with a lower quality. Options The following options are supported by the libmp3lame wrapper. The lame-equivalent of the options are listed in parentheses. b (-b) Set bitrate expressed in bits/s for CBR or ABR. LAME "bitrate" is expressed in kilobits/s. q (-V) Set constant quality setting for VBR. This option is valid only using the ffmpeg command-line tool. For library interface users, use global_quality. compression_level (-q) Set algorithm quality. Valid arguments are integers in the 0-9 range, with 0 meaning highest quality but slowest, and 9 meaning fastest while producing the worst quality. cutoff (--lowpass) Set lowpass cutoff frequency. If unspecified, the encoder dynamically adjusts the cutoff. reservoir Enable use of bit reservoir when set to 1. Default value is 1. LAME has this enabled by default, but can be overridden by use --nores option. joint_stereo (-m j) Enable the encoder to use (on a frame by frame basis) either L/R stereo or mid/side stereo. Default value is 1. abr (--abr) Enable the encoder to use ABR when set to 1. The lame --abr sets the target bitrate, while this options only tells FFmpeg to use ABR still relies on b to set bitrate. libopencore-amrnb OpenCORE Adaptive Multi-Rate Narrowband encoder. Requires the presence of the libopencore-amrnb headers and library during configuration. You need to explicitly configure the build with "--enable-libopencore-amrnb --enable-version3". This is a mono-only encoder. Officially it only supports 8000Hz sample rate, but you can override it by setting strict to unofficial or lower. Options b Set bitrate in bits per second. Only the following bitrates are supported, otherwise libavcodec will round to the nearest valid bitrate. 4750 5150 5900 6700 7400 7950 10200 12200 dtx Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0 (disabled). libopus libopus Opus Interactive Audio Codec encoder wrapper. Requires the presence of the libopus headers and library during configuration. You need to explicitly configure the build with "--enable-libopus". Option Mapping Most libopus options are modelled after the opusenc utility from opus- tools. The following is an option mapping chart describing options supported by the libopus wrapper, and their opusenc-equivalent in parentheses. b (bitrate) Set the bit rate in bits/s. FFmpeg's b option is expressed in bits/s, while opusenc's bitrate in kilobits/s. vbr (vbr, hard-cbr, and cvbr) Set VBR mode. The FFmpeg vbr option has the following valid arguments, with the opusenc equivalent options in parentheses: off (hard-cbr) Use constant bit rate encoding. on (vbr) Use variable bit rate encoding (the default). constrained (cvbr) Use constrained variable bit rate encoding. compression_level (comp) Set encoding algorithm complexity. Valid options are integers in the 0-10 range. 0 gives the fastest encodes but lower quality, while 10 gives the highest quality but slowest encoding. The default is 10. frame_duration (framesize) Set maximum frame size, or duration of a frame in milliseconds. The argument must be exactly the following: 2.5, 5, 10, 20, 40, 60. Smaller frame sizes achieve lower latency but less quality at a given bitrate. Sizes greater than 20ms are only interesting at fairly low bitrates. The default is 20ms. packet_loss (expect-loss) Set expected packet loss percentage. The default is 0. application (N.A.) Set intended application type. Valid options are listed below: voip Favor improved speech intelligibility. audio Favor faithfulness to the input (the default). lowdelay Restrict to only the lowest delay modes. cutoff (N.A.) Set cutoff bandwidth in Hz. The argument must be exactly one of the following: 4000, 6000, 8000, 12000, or 20000, corresponding to narrowband, mediumband, wideband, super wideband, and fullband respectively. The default is 0 (cutoff disabled). mapping_family (mapping_family) Set channel mapping family to be used by the encoder. The default value of -1 uses mapping family 0 for mono and stereo inputs, and mapping family 1 otherwise. The default also disables the surround masking and LFE bandwidth optimzations in libopus, and requires that the input contains 8 channels or fewer. Other values include 0 for mono and stereo, 1 for surround sound with masking and LFE bandwidth optimizations, and 255 for independent streams with an unspecified channel layout. apply_phase_inv (N.A.) (requires libopus >= 1.2) If set to 0, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly reducing normal stereo quality. The default is 1 (phase inversion enabled). libshine Shine Fixed-Point MP3 encoder wrapper. Shine is a fixed-point MP3 encoder. It has a far better performance on platforms without an FPU, e.g. armel CPUs, and some phones and tablets. However, as it is more targeted on performance than quality, it is not on par with LAME and other production-grade encoders quality-wise. Also, according to the project's homepage, this encoder may not be free of bugs as the code was written a long time ago and the project was dead for at least 5 years. This encoder only supports stereo and mono input. This is also CBR- only. The original project (last updated in early 2007) is at . We only support the updated fork by the Savonet/Liquidsoap project at . Requires the presence of the libshine headers and library during configuration. You need to explicitly configure the build with "--enable-libshine". See also libmp3lame. Options The following options are supported by the libshine wrapper. The shineenc-equivalent of the options are listed in parentheses. b (-b) Set bitrate expressed in bits/s for CBR. shineenc -b option is expressed in kilobits/s. libtwolame TwoLAME MP2 encoder wrapper. Requires the presence of the libtwolame headers and library during configuration. You need to explicitly configure the build with "--enable-libtwolame". Options The following options are supported by the libtwolame wrapper. The twolame-equivalent options follow the FFmpeg ones and are in parentheses. b (-b) Set bitrate expressed in bits/s for CBR. twolame b option is expressed in kilobits/s. Default value is 128k. q (-V) Set quality for experimental VBR support. Maximum value range is from -50 to 50, useful range is from -10 to 10. The higher the value, the better the quality. This option is valid only using the ffmpeg command-line tool. For library interface users, use global_quality. mode (--mode) Set the mode of the resulting audio. Possible values: auto Choose mode automatically based on the input. This is the default. stereo Stereo joint_stereo Joint stereo dual_channel Dual channel mono Mono psymodel (--psyc-mode) Set psychoacoustic model to use in encoding. The argument must be an integer between -1 and 4, inclusive. The higher the value, the better the quality. The default value is 3. energy_levels (--energy) Enable energy levels extensions when set to 1. The default value is 0 (disabled). error_protection (--protect) Enable CRC error protection when set to 1. The default value is 0 (disabled). copyright (--copyright) Set MPEG audio copyright flag when set to 1. The default value is 0 (disabled). original (--original) Set MPEG audio original flag when set to 1. The default value is 0 (disabled). libvo-amrwbenc VisualOn Adaptive Multi-Rate Wideband encoder. Requires the presence of the libvo-amrwbenc headers and library during configuration. You need to explicitly configure the build with "--enable-libvo-amrwbenc --enable-version3". This is a mono-only encoder. Officially it only supports 16000Hz sample rate, but you can override it by setting strict to unofficial or lower. Options b Set bitrate in bits/s. Only the following bitrates are supported, otherwise libavcodec will round to the nearest valid bitrate. 6600 8850 12650 14250 15850 18250 19850 23050 23850 dtx Allow discontinuous transmission (generate comfort noise) when set to 1. The default value is 0 (disabled). libvorbis libvorbis encoder wrapper. Requires the presence of the libvorbisenc headers and library during configuration. You need to explicitly configure the build with "--enable-libvorbis". Options The following options are supported by the libvorbis wrapper. The oggenc-equivalent of the options are listed in parentheses. To get a more accurate and extensive documentation of the libvorbis options, consult the libvorbisenc's and oggenc's documentations. See , , and oggenc(1). b (-b) Set bitrate expressed in bits/s for ABR. oggenc -b is expressed in kilobits/s. q (-q) Set constant quality setting for VBR. The value should be a float number in the range of -1.0 to 10.0. The higher the value, the better the quality. The default value is 3.0. This option is valid only using the ffmpeg command-line tool. For library interface users, use global_quality. cutoff (--advanced-encode-option lowpass_frequency=N) Set cutoff bandwidth in Hz, a value of 0 disables cutoff. oggenc's related option is expressed in kHz. The default value is 0 (cutoff disabled). minrate (-m) Set minimum bitrate expressed in bits/s. oggenc -m is expressed in kilobits/s. maxrate (-M) Set maximum bitrate expressed in bits/s. oggenc -M is expressed in kilobits/s. This only has effect on ABR mode. iblock (--advanced-encode-option impulse_noisetune=N) Set noise floor bias for impulse blocks. The value is a float number from -15.0 to 0.0. A negative bias instructs the encoder to pay special attention to the crispness of transients in the encoded audio. The tradeoff for better transient response is a higher bitrate. libwavpack A wrapper providing WavPack encoding through libwavpack. Only lossless mode using 32-bit integer samples is supported currently. Requires the presence of the libwavpack headers and library during configuration. You need to explicitly configure the build with "--enable-libwavpack". Note that a libavcodec-native encoder for the WavPack codec exists so users can encode audios with this codec without using this encoder. See wavpackenc. Options wavpack command line utility's corresponding options are listed in parentheses, if any. frame_size (--blocksize) Default is 32768. compression_level Set speed vs. compression tradeoff. Acceptable arguments are listed below: 0 (-f) Fast mode. 1 Normal (default) settings. 2 (-h) High quality. 3 (-hh) Very high quality. 4-8 (-hh -xEXTRAPROC) Same as 3, but with extra processing enabled. 4 is the same as -x2 and 8 is the same as -x6. mjpeg Motion JPEG encoder. Options huffman Set the huffman encoding strategy. Possible values: default Use the default huffman tables. This is the default strategy. optimal Compute and use optimal huffman tables. wavpack WavPack lossless audio encoder. This is a libavcodec-native WavPack encoder. There is also an encoder based on libwavpack, but there is virtually no reason to use that encoder. See also libwavpack. Options The equivalent options for wavpack command line utility are listed in parentheses. Shared options The following shared options are effective for this encoder. Only special notes about this particular encoder will be documented here. For the general meaning of the options, see the Codec Options chapter. frame_size (--blocksize) For this encoder, the range for this option is between 128 and 131072. Default is automatically decided based on sample rate and number of channel. For the complete formula of calculating default, see libavcodec/wavpackenc.c. compression_level (-f, -h, -hh, and -x) This option's syntax is consistent with libwavpack's. Private options joint_stereo (-j) Set whether to enable joint stereo. Valid values are: on (1) Force mid/side audio encoding. off (0) Force left/right audio encoding. auto Let the encoder decide automatically. optimize_mono Set whether to enable optimization for mono. This option is only effective for non-mono streams. Available values: on enabled off disabled VIDEO ENCODERS A description of some of the currently available video encoders follows. Hap Vidvox Hap video encoder. Options format integer Specifies the Hap format to encode. hap hap_alpha hap_q Default value is hap. chunks integer Specifies the number of chunks to split frames into, between 1 and 64. This permits multithreaded decoding of large frames, potentially at the cost of data-rate. The encoder may modify this value to divide frames evenly. Default value is 1. compressor integer Specifies the second-stage compressor to use. If set to none, chunks will be limited to 1, as chunked uncompressed frames offer no benefit. none snappy Default value is snappy. jpeg2000 The native jpeg 2000 encoder is lossy by default, the "-q:v" option can be used to set the encoding quality. Lossless encoding can be selected with "-pred 1". Options format Can be set to either "j2k" or "jp2" (the default) that makes it possible to store non-rgb pix_fmts. libkvazaar Kvazaar H.265/HEVC encoder. Requires the presence of the libkvazaar headers and library during configuration. You need to explicitly configure the build with --enable-libkvazaar. Options b Set target video bitrate in bit/s and enable rate control. kvazaar-params Set kvazaar parameters as a list of name=value pairs separated by commas (,). See kvazaar documentation for a list of options. libopenh264 Cisco libopenh264 H.264/MPEG-4 AVC encoder wrapper. This encoder requires the presence of the libopenh264 headers and library during configuration. You need to explicitly configure the build with "--enable-libopenh264". The library is detected using pkg- config. For more information about the library see . Options The following FFmpeg global options affect the configurations of the libopenh264 encoder. b Set the bitrate (as a number of bits per second). g Set the GOP size. maxrate Set the max bitrate (as a number of bits per second). flags +global_header Set global header in the bitstream. slices Set the number of slices, used in parallelized encoding. Default value is 0. This is only used when slice_mode is set to fixed. slice_mode Set slice mode. Can assume one of the following possible values: fixed a fixed number of slices rowmb one slice per row of macroblocks auto automatic number of slices according to number of threads dyn dynamic slicing Default value is auto. loopfilter Enable loop filter, if set to 1 (automatically enabled). To disable set a value of 0. profile Set profile restrictions. If set to the value of main enable CABAC (set the "SEncParamExt.iEntropyCodingModeFlag" flag to 1). max_nal_size Set maximum NAL size in bytes. allow_skip_frames Allow skipping frames to hit the target bitrate if set to 1. libtheora libtheora Theora encoder wrapper. Requires the presence of the libtheora headers and library during configuration. You need to explicitly configure the build with "--enable-libtheora". For more information about the libtheora project see . Options The following global options are mapped to internal libtheora options which affect the quality and the bitrate of the encoded stream. b Set the video bitrate in bit/s for CBR (Constant Bit Rate) mode. In case VBR (Variable Bit Rate) mode is enabled this option is ignored. flags Used to enable constant quality mode (VBR) encoding through the qscale flag, and to enable the "pass1" and "pass2" modes. g Set the GOP size. global_quality Set the global quality as an integer in lambda units. Only relevant when VBR mode is enabled with "flags +qscale". The value is converted to QP units by dividing it by "FF_QP2LAMBDA", clipped in the [0 - 10] range, and then multiplied by 6.3 to get a value in the native libtheora range [0-63]. A higher value corresponds to a higher quality. q Enable VBR mode when set to a non-negative value, and set constant quality value as a double floating point value in QP units. The value is clipped in the [0-10] range, and then multiplied by 6.3 to get a value in the native libtheora range [0-63]. This option is valid only using the ffmpeg command-line tool. For library interface users, use global_quality. Examples · Set maximum constant quality (VBR) encoding with ffmpeg: ffmpeg -i INPUT -codec:v libtheora -q:v 10 OUTPUT.ogg · Use ffmpeg to convert a CBR 1000 kbps Theora video stream: ffmpeg -i INPUT -codec:v libtheora -b:v 1000k OUTPUT.ogg libvpx VP8/VP9 format supported through libvpx. Requires the presence of the libvpx headers and library during configuration. You need to explicitly configure the build with "--enable-libvpx". Options The following options are supported by the libvpx wrapper. The vpxenc-equivalent options or values are listed in parentheses for easy migration. To reduce the duplication of documentation, only the private options and some others requiring special attention are documented here. For the documentation of the undocumented generic options, see the Codec Options chapter. To get more documentation of the libvpx options, invoke the command ffmpeg -h encoder=libvpx, ffmpeg -h encoder=libvpx-vp9 or vpxenc --help. Further information is available in the libvpx API documentation. b (target-bitrate) Set bitrate in bits/s. Note that FFmpeg's b option is expressed in bits/s, while vpxenc's target-bitrate is in kilobits/s. g (kf-max-dist) keyint_min (kf-min-dist) qmin (min-q) qmax (max-q) bufsize (buf-sz, buf-optimal-sz) Set ratecontrol buffer size (in bits). Note vpxenc's options are specified in milliseconds, the libvpx wrapper converts this value as follows: "buf-sz = bufsize * 1000 / bitrate", "buf-optimal-sz = bufsize * 1000 / bitrate * 5 / 6". rc_init_occupancy (buf-initial-sz) Set number of bits which should be loaded into the rc buffer before decoding starts. Note vpxenc's option is specified in milliseconds, the libvpx wrapper converts this value as follows: "rc_init_occupancy * 1000 / bitrate". undershoot-pct Set datarate undershoot (min) percentage of the target bitrate. overshoot-pct Set datarate overshoot (max) percentage of the target bitrate. skip_threshold (drop-frame) qcomp (bias-pct) maxrate (maxsection-pct) Set GOP max bitrate in bits/s. Note vpxenc's option is specified as a percentage of the target bitrate, the libvpx wrapper converts this value as follows: "(maxrate * 100 / bitrate)". minrate (minsection-pct) Set GOP min bitrate in bits/s. Note vpxenc's option is specified as a percentage of the target bitrate, the libvpx wrapper converts this value as follows: "(minrate * 100 / bitrate)". minrate, maxrate, b end-usage=cbr "(minrate == maxrate == bitrate)". crf (end-usage=cq, cq-level) tune (tune) psnr (psnr) ssim (ssim) quality, deadline (deadline) best Use best quality deadline. Poorly named and quite slow, this option should be avoided as it may give worse quality output than good. good Use good quality deadline. This is a good trade-off between speed and quality when used with the cpu-used option. realtime Use realtime quality deadline. speed, cpu-used (cpu-used) Set quality/speed ratio modifier. Higher values speed up the encode at the cost of quality. nr (noise-sensitivity) static-thresh Set a change threshold on blocks below which they will be skipped by the encoder. slices (token-parts) Note that FFmpeg's slices option gives the total number of partitions, while vpxenc's token-parts is given as "log2(partitions)". max-intra-rate Set maximum I-frame bitrate as a percentage of the target bitrate. A value of 0 means unlimited. force_key_frames "VPX_EFLAG_FORCE_KF" Alternate reference frame related auto-alt-ref Enable use of alternate reference frames (2-pass only). arnr-max-frames Set altref noise reduction max frame count. arnr-type Set altref noise reduction filter type: backward, forward, centered. arnr-strength Set altref noise reduction filter strength. rc-lookahead, lag-in-frames (lag-in-frames) Set number of frames to look ahead for frametype and ratecontrol. error-resilient Enable error resiliency features. VP9-specific options lossless Enable lossless mode. tile-columns Set number of tile columns to use. Note this is given as "log2(tile_columns)". For example, 8 tile columns would be requested by setting the tile-columns option to 3. tile-rows Set number of tile rows to use. Note this is given as "log2(tile_rows)". For example, 4 tile rows would be requested by setting the tile-rows option to 2. frame-parallel Enable frame parallel decodability features. aq-mode Set adaptive quantization mode (0: off (default), 1: variance 2: complexity, 3: cyclic refresh, 4: equator360). colorspace color-space Set input color space. The VP9 bitstream supports signaling the following colorspaces: rgb sRGB bt709 bt709 unspecified unknown bt470bg bt601 smpte170m smpte170 smpte240m smpte240 bt2020_ncl bt2020 row-mt boolean Enable row based multi-threading. tune-content Set content type: default (0), screen (1), film (2). corpus-complexity Corpus VBR mode is a variant of standard VBR where the complexity distribution midpoint is passed in rather than calculated for a specific clip or chunk. The valid range is [0, 10000]. 0 (default) uses standard VBR. For more information about libvpx see: libwebp libwebp WebP Image encoder wrapper libwebp is Google's official encoder for WebP images. It can encode in either lossy or lossless mode. Lossy images are essentially a wrapper around a VP8 frame. Lossless images are a separate codec developed by Google. Pixel Format Currently, libwebp only supports YUV420 for lossy and RGB for lossless due to limitations of the format and libwebp. Alpha is supported for either mode. Because of API limitations, if RGB is passed in when encoding lossy or YUV is passed in for encoding lossless, the pixel format will automatically be converted using functions from libwebp. This is not ideal and is done only for convenience. Options -lossless boolean Enables/Disables use of lossless mode. Default is 0. -compression_level integer For lossy, this is a quality/speed tradeoff. Higher values give better quality for a given size at the cost of increased encoding time. For lossless, this is a size/speed tradeoff. Higher values give smaller size at the cost of increased encoding time. More specifically, it controls the number of extra algorithms and compression tools used, and varies the combination of these tools. This maps to the method option in libwebp. The valid range is 0 to 6. Default is 4. -qscale float For lossy encoding, this controls image quality, 0 to 100. For lossless encoding, this controls the effort and time spent at compressing more. The default value is 75. Note that for usage via libavcodec, this option is called global_quality and must be multiplied by FF_QP2LAMBDA. -preset type Configuration preset. This does some automatic settings based on the general type of the image. none Do not use a preset. default Use the encoder default. picture Digital picture, like portrait, inner shot photo Outdoor photograph, with natural lighting drawing Hand or line drawing, with high-contrast details icon Small-sized colorful images text Text-like libx264, libx264rgb x264 H.264/MPEG-4 AVC encoder wrapper. This encoder requires the presence of the libx264 headers and library during configuration. You need to explicitly configure the build with "--enable-libx264". libx264 supports an impressive number of features, including 8x8 and 4x4 adaptive spatial transform, adaptive B-frame placement, CAVLC/CABAC entropy coding, interlacing (MBAFF), lossless mode, psy optimizations for detail retention (adaptive quantization, psy-RD, psy-trellis). Many libx264 encoder options are mapped to FFmpeg global codec options, while unique encoder options are provided through private options. Additionally the x264opts and x264-params private options allows one to pass a list of key=value tuples as accepted by the libx264 "x264_param_parse" function. The x264 project website is at . The libx264rgb encoder is the same as libx264, except it accepts packed RGB pixel formats as input instead of YUV. Supported Pixel Formats x264 supports 8- to 10-bit color spaces. The exact bit depth is controlled at x264's configure time. FFmpeg only supports one bit depth in one particular build. In other words, it is not possible to build one FFmpeg with multiple versions of x264 with different bit depths. Options The following options are supported by the libx264 wrapper. The x264-equivalent options or values are listed in parentheses for easy migration. To reduce the duplication of documentation, only the private options and some others requiring special attention are documented here. For the documentation of the undocumented generic options, see the Codec Options chapter. To get a more accurate and extensive documentation of the libx264 options, invoke the command x264 --fullhelp or consult the libx264 documentation. b (bitrate) Set bitrate in bits/s. Note that FFmpeg's b option is expressed in bits/s, while x264's bitrate is in kilobits/s. bf (bframes) g (keyint) qmin (qpmin) Minimum quantizer scale. qmax (qpmax) Maximum quantizer scale. qdiff (qpstep) Maximum difference between quantizer scales. qblur (qblur) Quantizer curve blur qcomp (qcomp) Quantizer curve compression factor refs (ref) Number of reference frames each P-frame can use. The range is from 0-16. sc_threshold (scenecut) Sets the threshold for the scene change detection. trellis (trellis) Performs Trellis quantization to increase efficiency. Enabled by default. nr (nr) me_range (merange) Maximum range of the motion search in pixels. me_method (me) Set motion estimation method. Possible values in the decreasing order of speed: dia (dia) epzs (dia) Diamond search with radius 1 (fastest). epzs is an alias for dia. hex (hex) Hexagonal search with radius 2. umh (umh) Uneven multi-hexagon search. esa (esa) Exhaustive search. tesa (tesa) Hadamard exhaustive search (slowest). forced-idr Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces it to choose an IDR-frame. subq (subme) Sub-pixel motion estimation method. b_strategy (b-adapt) Adaptive B-frame placement decision algorithm. Use only on first- pass. keyint_min (min-keyint) Minimum GOP size. coder Set entropy encoder. Possible values: ac Enable CABAC. vlc Enable CAVLC and disable CABAC. It generates the same effect as x264's --no-cabac option. cmp Set full pixel motion estimation comparison algorithm. Possible values: chroma Enable chroma in motion estimation. sad Ignore chroma in motion estimation. It generates the same effect as x264's --no-chroma-me option. threads (threads) Number of encoding threads. thread_type Set multithreading technique. Possible values: slice Slice-based multithreading. It generates the same effect as x264's --sliced-threads option. frame Frame-based multithreading. flags Set encoding flags. It can be used to disable closed GOP and enable open GOP by setting it to "-cgop". The result is similar to the behavior of x264's --open-gop option. rc_init_occupancy (vbv-init) preset (preset) Set the encoding preset. tune (tune) Set tuning of the encoding params. profile (profile) Set profile restrictions. fastfirstpass Enable fast settings when encoding first pass, when set to 1. When set to 0, it has the same effect of x264's --slow-firstpass option. crf (crf) Set the quality for constant quality mode. crf_max (crf-max) In CRF mode, prevents VBV from lowering quality beyond this point. qp (qp) Set constant quantization rate control method parameter. aq-mode (aq-mode) Set AQ method. Possible values: none (0) Disabled. variance (1) Variance AQ (complexity mask). autovariance (2) Auto-variance AQ (experimental). aq-strength (aq-strength) Set AQ strength, reduce blocking and blurring in flat and textured areas. psy Use psychovisual optimizations when set to 1. When set to 0, it has the same effect as x264's --no-psy option. psy-rd (psy-rd) Set strength of psychovisual optimization, in psy-rd:psy-trellis format. rc-lookahead (rc-lookahead) Set number of frames to look ahead for frametype and ratecontrol. weightb Enable weighted prediction for B-frames when set to 1. When set to 0, it has the same effect as x264's --no-weightb option. weightp (weightp) Set weighted prediction method for P-frames. Possible values: none (0) Disabled simple (1) Enable only weighted refs smart (2) Enable both weighted refs and duplicates ssim (ssim) Enable calculation and printing SSIM stats after the encoding. intra-refresh (intra-refresh) Enable the use of Periodic Intra Refresh instead of IDR frames when set to 1. avcintra-class (class) Configure the encoder to generate AVC-Intra. Valid values are 50,100 and 200 bluray-compat (bluray-compat) Configure the encoder to be compatible with the bluray standard. It is a shorthand for setting "bluray-compat=1 force-cfr=1". b-bias (b-bias) Set the influence on how often B-frames are used. b-pyramid (b-pyramid) Set method for keeping of some B-frames as references. Possible values: none (none) Disabled. strict (strict) Strictly hierarchical pyramid. normal (normal) Non-strict (not Blu-ray compatible). mixed-refs Enable the use of one reference per partition, as opposed to one reference per macroblock when set to 1. When set to 0, it has the same effect as x264's --no-mixed-refs option. 8x8dct Enable adaptive spatial transform (high profile 8x8 transform) when set to 1. When set to 0, it has the same effect as x264's --no-8x8dct option. fast-pskip Enable early SKIP detection on P-frames when set to 1. When set to 0, it has the same effect as x264's --no-fast-pskip option. aud (aud) Enable use of access unit delimiters when set to 1. mbtree Enable use macroblock tree ratecontrol when set to 1. When set to 0, it has the same effect as x264's --no-mbtree option. deblock (deblock) Set loop filter parameters, in alpha:beta form. cplxblur (cplxblur) Set fluctuations reduction in QP (before curve compression). partitions (partitions) Set partitions to consider as a comma-separated list of. Possible values in the list: p8x8 8x8 P-frame partition. p4x4 4x4 P-frame partition. b8x8 4x4 B-frame partition. i8x8 8x8 I-frame partition. i4x4 4x4 I-frame partition. (Enabling p4x4 requires p8x8 to be enabled. Enabling i8x8 requires adaptive spatial transform (8x8dct option) to be enabled.) none (none) Do not consider any partitions. all (all) Consider every partition. direct-pred (direct) Set direct MV prediction mode. Possible values: none (none) Disable MV prediction. spatial (spatial) Enable spatial predicting. temporal (temporal) Enable temporal predicting. auto (auto) Automatically decided. slice-max-size (slice-max-size) Set the limit of the size of each slice in bytes. If not specified but RTP payload size (ps) is specified, that is used. stats (stats) Set the file name for multi-pass stats. nal-hrd (nal-hrd) Set signal HRD information (requires vbv-bufsize to be set). Possible values: none (none) Disable HRD information signaling. vbr (vbr) Variable bit rate. cbr (cbr) Constant bit rate (not allowed in MP4 container). x264opts (N.A.) Set any x264 option, see x264 --fullhelp for a list. Argument is a list of key=value couples separated by ":". In filter and psy-rd options that use ":" as a separator themselves, use "," instead. They accept it as well since long ago but this is kept undocumented for some reason. For example to specify libx264 encoding options with ffmpeg: ffmpeg -i foo.mpg -c:v libx264 -x264opts keyint=123:min-keyint=20 -an out.mkv a53cc boolean Import closed captions (which must be ATSC compatible format) into output. Only the mpeg2 and h264 decoders provide these. Default is 1 (on). x264-params (N.A.) Override the x264 configuration using a :-separated list of key=value parameters. This option is functionally the same as the x264opts, but is duplicated for compatibility with the Libav fork. For example to specify libx264 encoding options with ffmpeg: ffmpeg -i INPUT -c:v libx264 -x264-params level=30:bframes=0:weightp=0:\ cabac=0:ref=1:vbv-maxrate=768:vbv-bufsize=2000:analyse=all:me=umh:\ no-fast-pskip=1:subq=6:8x8dct=0:trellis=0 OUTPUT Encoding ffpresets for common usages are provided so they can be used with the general presets system (e.g. passing the pre option). libx265 x265 H.265/HEVC encoder wrapper. This encoder requires the presence of the libx265 headers and library during configuration. You need to explicitly configure the build with --enable-libx265. Options preset Set the x265 preset. tune Set the x265 tune parameter. profile Set profile restrictions. crf Set the quality for constant quality mode. forced-idr Normally, when forcing a I-frame type, the encoder can select any type of I-frame. This option forces it to choose an IDR-frame. x265-params Set x265 options using a list of key=value couples separated by ":". See x265 --help for a list of options. For example to specify libx265 encoding options with -x265-params: ffmpeg -i input -c:v libx265 -x265-params crf=26:psy-rd=1 output.mp4 libxvid Xvid MPEG-4 Part 2 encoder wrapper. This encoder requires the presence of the libxvidcore headers and library during configuration. You need to explicitly configure the build with "--enable-libxvid --enable-gpl". The native "mpeg4" encoder supports the MPEG-4 Part 2 format, so users can encode to this format without this library. Options The following options are supported by the libxvid wrapper. Some of the following options are listed but are not documented, and correspond to shared codec options. See the Codec Options chapter for their documentation. The other shared options which are not listed have no effect for the libxvid encoder. b g qmin qmax mpeg_quant threads bf b_qfactor b_qoffset flags Set specific encoding flags. Possible values: mv4 Use four motion vector by macroblock. aic Enable high quality AC prediction. gray Only encode grayscale. gmc Enable the use of global motion compensation (GMC). qpel Enable quarter-pixel motion compensation. cgop Enable closed GOP. global_header Place global headers in extradata instead of every keyframe. trellis me_method Set motion estimation method. Possible values in decreasing order of speed and increasing order of quality: zero Use no motion estimation (default). phods x1 log Enable advanced diamond zonal search for 16x16 blocks and half- pixel refinement for 16x16 blocks. x1 and log are aliases for phods. epzs Enable all of the things described above, plus advanced diamond zonal search for 8x8 blocks, half-pixel refinement for 8x8 blocks, and motion estimation on chroma planes. full Enable all of the things described above, plus extended 16x16 and 8x8 blocks search. mbd Set macroblock decision algorithm. Possible values in the increasing order of quality: simple Use macroblock comparing function algorithm (default). bits Enable rate distortion-based half pixel and quarter pixel refinement for 16x16 blocks. rd Enable all of the things described above, plus rate distortion- based half pixel and quarter pixel refinement for 8x8 blocks, and rate distortion-based search using square pattern. lumi_aq Enable lumi masking adaptive quantization when set to 1. Default is 0 (disabled). variance_aq Enable variance adaptive quantization when set to 1. Default is 0 (disabled). When combined with lumi_aq, the resulting quality will not be better than any of the two specified individually. In other words, the resulting quality will be the worse one of the two effects. ssim Set structural similarity (SSIM) displaying method. Possible values: off Disable displaying of SSIM information. avg Output average SSIM at the end of encoding to stdout. The format of showing the average SSIM is: Average SSIM: %f For users who are not familiar with C, %f means a float number, or a decimal (e.g. 0.939232). frame Output both per-frame SSIM data during encoding and average SSIM at the end of encoding to stdout. The format of per-frame information is: SSIM: avg: %1.3f min: %1.3f max: %1.3f For users who are not familiar with C, %1.3f means a float number rounded to 3 digits after the dot (e.g. 0.932). ssim_acc Set SSIM accuracy. Valid options are integers within the range of 0-4, while 0 gives the most accurate result and 4 computes the fastest. mpeg2 MPEG-2 video encoder. Options seq_disp_ext integer Specifies if the encoder should write a sequence_display_extension to the output. -1 auto Decide automatically to write it or not (this is the default) by checking if the data to be written is different from the default or unspecified values. 0 never Never write it. 1 always Always write it. video_format integer Specifies the video_format written into the sequence display extension indicating the source of the video pictures. The default is unspecified, can be component, pal, ntsc, secam or mac. For maximum compatibility, use component. png PNG image encoder. Private options dpi integer Set physical density of pixels, in dots per inch, unset by default dpm integer Set physical density of pixels, in dots per meter, unset by default ProRes Apple ProRes encoder. FFmpeg contains 2 ProRes encoders, the prores-aw and prores-ks encoder. The used encoder can be chosen with the "-vcodec" option. Private Options for prores-ks profile integer Select the ProRes profile to encode proxy lt standard hq 4444 4444xq quant_mat integer Select quantization matrix. auto default proxy lt standard hq If set to auto, the matrix matching the profile will be picked. If not set, the matrix providing the highest quality, default, will be picked. bits_per_mb integer How many bits to allot for coding one macroblock. Different profiles use between 200 and 2400 bits per macroblock, the maximum is 8000. mbs_per_slice integer Number of macroblocks in each slice (1-8); the default value (8) should be good in almost all situations. vendor string Override the 4-byte vendor ID. A custom vendor ID like apl0 would claim the stream was produced by the Apple encoder. alpha_bits integer Specify number of bits for alpha component. Possible values are 0, 8 and 16. Use 0 to disable alpha plane coding. Speed considerations In the default mode of operation the encoder has to honor frame constraints (i.e. not produce frames with size bigger than requested) while still making output picture as good as possible. A frame containing a lot of small details is harder to compress and the encoder would spend more time searching for appropriate quantizers for each slice. Setting a higher bits_per_mb limit will improve the speed. For the fastest encoding speed set the qscale parameter (4 is the recommended value) and do not set a size constraint. QSV encoders The family of Intel QuickSync Video encoders (MPEG-2, H.264 and HEVC) The ratecontrol method is selected as follows: · When global_quality is specified, a quality-based mode is used. Specifically this means either - CQP - constant quantizer scale, when the qscale codec flag is also set (the -qscale ffmpeg option). - LA_ICQ - intelligent constant quality with lookahead, when the look_ahead option is also set. - ICQ -- intelligent constant quality otherwise. · Otherwise, a bitrate-based mode is used. For all of those, you should specify at least the desired average bitrate with the b option. - LA - VBR with lookahead, when the look_ahead option is specified. - VCM - video conferencing mode, when the vcm option is set. - CBR - constant bitrate, when maxrate is specified and equal to the average bitrate. - VBR - variable bitrate, when maxrate is specified, but is higher than the average bitrate. - AVBR - average VBR mode, when maxrate is not specified. This mode is further configured by the avbr_accuracy and avbr_convergence options. Note that depending on your system, a different mode than the one you specified may be selected by the encoder. Set the verbosity level to verbose or higher to see the actual settings used by the QSV runtime. Additional libavcodec global options are mapped to MSDK options as follows: · g/gop_size -> GopPicSize · bf/max_b_frames+1 -> GopRefDist · rc_init_occupancy/rc_initial_buffer_occupancy -> InitialDelayInKB · slices -> NumSlice · refs -> NumRefFrame · b_strategy/b_frame_strategy -> BRefType · cgop/CLOSED_GOP codec flag -> GopOptFlag · For the CQP mode, the i_qfactor/i_qoffset and b_qfactor/b_qoffset set the difference between QPP and QPI, and QPP and QPB respectively. · Setting the coder option to the value vlc will make the H.264 encoder use CAVLC instead of CABAC. snow Options iterative_dia_size dia size for the iterative motion estimation VAAPI encoders Wrappers for hardware encoders accessible via VAAPI. These encoders only accept input in VAAPI hardware surfaces. If you have input in software frames, use the hwupload filter to upload them to the GPU. The following standard libavcodec options are used: · g / gop_size · bf / max_b_frames · profile · level · b / bit_rate · maxrate / rc_max_rate · bufsize / rc_buffer_size · rc_init_occupancy / rc_initial_buffer_occupancy · compression_level Speed / quality tradeoff: higher values are faster / worse quality. · q / global_quality Size / quality tradeoff: higher values are smaller / worse quality. · qmin (only: qmax is not supported) · i_qfactor / i_quant_factor · i_qoffset / i_quant_offset · b_qfactor / b_quant_factor · b_qoffset / b_quant_offset h264_vaapi profile sets the value of profile_idc and the constraint_set*_flags. level sets the value of level_idc. low_power Use low-power encoding mode. coder Set entropy encoder (default is cabac). Possible values: ac cabac Use CABAC. vlc cavlc Use CAVLC. hevc_vaapi profile and level set the values of general_profile_idc and general_level_idc respectively. mjpeg_vaapi Always encodes using the standard quantisation and huffman tables - global_quality scales the standard quantisation table (range 1-100). mpeg2_vaapi profile and level set the value of profile_and_level_indication. No rate control is supported. vp8_vaapi B-frames are not supported. global_quality sets the q_idx used for non-key frames (range 0-127). loop_filter_level loop_filter_sharpness Manually set the loop filter parameters. vp9_vaapi global_quality sets the q_idx used for P-frames (range 0-255). loop_filter_level loop_filter_sharpness Manually set the loop filter parameters. B-frames are supported, but the output stream is always in encode order rather than display order. If B-frames are enabled, it may be necessary to use the vp9_raw_reorder bitstream filter to modify the output stream to display frames in the correct order. Only normal frames are produced - the vp9_superframe bitstream filter may be required to produce a stream usable with all decoders. vc2 SMPTE VC-2 (previously BBC Dirac Pro). This codec was primarily aimed at professional broadcasting but since it supports yuv420, yuv422 and yuv444 at 8 (limited range or full range), 10 or 12 bits, this makes it suitable for other tasks which require low overhead and low compression (like screen recording). Options b Sets target video bitrate. Usually that's around 1:6 of the uncompressed video bitrate (e.g. for 1920x1080 50fps yuv422p10 that's around 400Mbps). Higher values (close to the uncompressed bitrate) turn on lossless compression mode. field_order Enables field coding when set (e.g. to tt - top field first) for interlaced inputs. Should increase compression with interlaced content as it splits the fields and encodes each separately. wavelet_depth Sets the total amount of wavelet transforms to apply, between 1 and 5 (default). Lower values reduce compression and quality. Less capable decoders may not be able to handle values of wavelet_depth over 3. wavelet_type Sets the transform type. Currently only 5_3 (LeGall) and 9_7 (Deslauriers-Dubuc) are implemented, with 9_7 being the one with better compression and thus is the default. slice_width slice_height Sets the slice size for each slice. Larger values result in better compression. For compatibility with other more limited decoders use slice_width of 32 and slice_height of 8. tolerance Sets the undershoot tolerance of the rate control system in percent. This is to prevent an expensive search from being run. qm Sets the quantization matrix preset to use by default or when wavelet_depth is set to 5 - default Uses the default quantization matrix from the specifications, extended with values for the fifth level. This provides a good balance between keeping detail and omitting artifacts. - flat Use a completely zeroed out quantization matrix. This increases PSNR but might reduce perception. Use in bogus benchmarks. - color Reduces detail but attempts to preserve color at extremely low bitrates. SUBTITLES ENCODERS dvdsub This codec encodes the bitmap subtitle format that is used in DVDs. Typically they are stored in VOBSUB file pairs (*.idx + *.sub), and they can also be used in Matroska files. Options even_rows_fix When set to 1, enable a work-around that makes the number of pixel rows even in all subtitles. This fixes a problem with some players that cut off the bottom row if the number is odd. The work-around just adds a fully transparent row if needed. The overhead is low, typically one byte per subtitle on average. By default, this work-around is disabled. BITSTREAM FILTERS When you configure your FFmpeg build, all the supported bitstream filters are enabled by default. You can list all available ones using the configure option "--list-bsfs". You can disable all the bitstream filters using the configure option "--disable-bsfs", and selectively enable any bitstream filter using the option "--enable-bsf=BSF", or you can disable a particular bitstream filter using the option "--disable-bsf=BSF". The option "-bsfs" of the ff* tools will display the list of all the supported bitstream filters included in your build. The ff* tools have a -bsf option applied per stream, taking a comma- separated list of filters, whose parameters follow the filter name after a '='. ffmpeg -i INPUT -c:v copy -bsf:v filter1[=opt1=str1:opt2=str2][,filter2] OUTPUT Below is a description of the currently available bitstream filters, with their parameters, if any. aac_adtstoasc Convert MPEG-2/4 AAC ADTS to an MPEG-4 Audio Specific Configuration bitstream. This filter creates an MPEG-4 AudioSpecificConfig from an MPEG-2/4 ADTS header and removes the ADTS header. This filter is required for example when copying an AAC stream from a raw ADTS AAC or an MPEG-TS container to MP4A-LATM, to an FLV file, or to MOV/MP4 files and related formats such as 3GP or M4A. Please note that it is auto-inserted for MP4A-LATM and MOV/MP4 and related formats. chomp Remove zero padding at the end of a packet. dca_core Extract the core from a DCA/DTS stream, dropping extensions such as DTS-HD. dump_extra Add extradata to the beginning of the filtered packets. freq The additional argument specifies which packets should be filtered. It accepts the values: k keyframe add extradata to all key packets e all add extradata to all packets If not specified it is assumed e. For example the following ffmpeg command forces a global header (thus disabling individual packet headers) in the H.264 packets generated by the "libx264" encoder, but corrects them by adding the header stored in extradata to the key packets: ffmpeg -i INPUT -map 0 -flags:v +global_header -c:v libx264 -bsf:v dump_extra out.ts eac3_core Extract the core from a E-AC-3 stream, dropping extra channels. extract_extradata Extract the in-band extradata. Certain codecs allow the long-term headers (e.g. MPEG-2 sequence headers, or H.264/HEVC (VPS/)SPS/PPS) to be transmitted either "in- band" (i.e. as a part of the bitstream containing the coded frames) or "out of band" (e.g. on the container level). This latter form is called "extradata" in FFmpeg terminology. This bitstream filter detects the in-band headers and makes them available as extradata. remove When this option is enabled, the long-term headers are removed from the bitstream after extraction. filter_units Remove units with types in or not in a given set from the stream. pass_types List of unit types or ranges of unit types to pass through while removing all others. This is specified as a '|'-separated list of unit type values or ranges of values with '-'. remove_types Identical to pass_types, except the units in the given set removed and all others passed through. Extradata is unchanged by this transformation, but note that if the stream contains inline parameter sets then the output may be unusable if they are removed. For example, to remove all non-VCL NAL units from an H.264 stream: ffmpeg -i INPUT -c:v copy -bsf:v 'filter_units=pass_types=1-5' OUTPUT To remove all AUDs, SEI and filler from an H.265 stream: ffmpeg -i INPUT -c:v copy -bsf:v 'filter_units=remove_types=35|38-40' OUTPUT hapqa_extract Extract Rgb or Alpha part of an HAPQA file, without recompression, in order to create an HAPQ or an HAPAlphaOnly file. texture Specifies the texture to keep. color alpha Convert HAPQA to HAPQ ffmpeg -i hapqa_inputfile.mov -c copy -bsf:v hapqa_extract=texture=color -tag:v HapY -metadata:s:v:0 encoder="HAPQ" hapq_file.mov Convert HAPQA to HAPAlphaOnly ffmpeg -i hapqa_inputfile.mov -c copy -bsf:v hapqa_extract=texture=alpha -tag:v HapA -metadata:s:v:0 encoder="HAPAlpha Only" hapalphaonly_file.mov h264_metadata Modify metadata embedded in an H.264 stream. aud Insert or remove AUD NAL units in all access units of the stream. insert remove sample_aspect_ratio Set the sample aspect ratio of the stream in the VUI parameters. video_format video_full_range_flag Set the video format in the stream (see H.264 section E.2.1 and table E-2). colour_primaries transfer_characteristics matrix_coefficients Set the colour description in the stream (see H.264 section E.2.1 and tables E-3, E-4 and E-5). chroma_sample_loc_type Set the chroma sample location in the stream (see H.264 section E.2.1 and figure E-1). tick_rate Set the tick rate (num_units_in_tick / time_scale) in the VUI parameters. This is the smallest time unit representable in the stream, and in many cases represents the field rate of the stream (double the frame rate). fixed_frame_rate_flag Set whether the stream has fixed framerate - typically this indicates that the framerate is exactly half the tick rate, but the exact meaning is dependent on interlacing and the picture structure (see H.264 section E.2.1 and table E-6). crop_left crop_right crop_top crop_bottom Set the frame cropping offsets in the SPS. These values will replace the current ones if the stream is already cropped. These fields are set in pixels. Note that some sizes may not be representable if the chroma is subsampled or the stream is interlaced (see H.264 section 7.4.2.1.1). sei_user_data Insert a string as SEI unregistered user data. The argument must be of the form UUID+string, where the UUID is as hex digits possibly separated by hyphens, and the string can be anything. For example, 086f3693-b7b3-4f2c-9653-21492feee5b8+hello will insert the string ``hello'' associated with the given UUID. delete_filler Deletes both filler NAL units and filler SEI messages. h264_mp4toannexb Convert an H.264 bitstream from length prefixed mode to start code prefixed mode (as defined in the Annex B of the ITU-T H.264 specification). This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer "mpegts"). For example to remux an MP4 file containing an H.264 stream to mpegts format with ffmpeg, you can use the command: ffmpeg -i INPUT.mp4 -codec copy -bsf:v h264_mp4toannexb OUTPUT.ts Please note that this filter is auto-inserted for MPEG-TS (muxer "mpegts") and raw H.264 (muxer "h264") output formats. h264_redundant_pps This applies a specific fixup to some Blu-ray streams which contain redundant PPSs modifying irrelevant parameters of the stream which confuse other transformations which require correct extradata. A new single global PPS is created, and all of the redundant PPSs within the stream are removed. hevc_metadata Modify metadata embedded in an HEVC stream. aud Insert or remove AUD NAL units in all access units of the stream. insert remove sample_aspect_ratio Set the sample aspect ratio in the stream in the VUI parameters. video_format video_full_range_flag Set the video format in the stream (see H.265 section E.3.1 and table E.2). colour_primaries transfer_characteristics matrix_coefficients Set the colour description in the stream (see H.265 section E.3.1 and tables E.3, E.4 and E.5). chroma_sample_loc_type Set the chroma sample location in the stream (see H.265 section E.3.1 and figure E.1). tick_rate Set the tick rate in the VPS and VUI parameters (num_units_in_tick / time_scale). Combined with num_ticks_poc_diff_one, this can set a constant framerate in the stream. Note that it is likely to be overridden by container parameters when the stream is in a container. num_ticks_poc_diff_one Set poc_proportional_to_timing_flag in VPS and VUI and use this value to set num_ticks_poc_diff_one_minus1 (see H.265 sections 7.4.3.1 and E.3.1). Ignored if tick_rate is not also set. crop_left crop_right crop_top crop_bottom Set the conformance window cropping offsets in the SPS. These values will replace the current ones if the stream is already cropped. These fields are set in pixels. Note that some sizes may not be representable if the chroma is subsampled (H.265 section 7.4.3.2.1). hevc_mp4toannexb Convert an HEVC/H.265 bitstream from length prefixed mode to start code prefixed mode (as defined in the Annex B of the ITU-T H.265 specification). This is required by some streaming formats, typically the MPEG-2 transport stream format (muxer "mpegts"). For example to remux an MP4 file containing an HEVC stream to mpegts format with ffmpeg, you can use the command: ffmpeg -i INPUT.mp4 -codec copy -bsf:v hevc_mp4toannexb OUTPUT.ts Please note that this filter is auto-inserted for MPEG-TS (muxer "mpegts") and raw HEVC/H.265 (muxer "h265" or "hevc") output formats. imxdump Modifies the bitstream to fit in MOV and to be usable by the Final Cut Pro decoder. This filter only applies to the mpeg2video codec, and is likely not needed for Final Cut Pro 7 and newer with the appropriate -tag:v. For example, to remux 30 MB/sec NTSC IMX to MOV: ffmpeg -i input.mxf -c copy -bsf:v imxdump -tag:v mx3n output.mov mjpeg2jpeg Convert MJPEG/AVI1 packets to full JPEG/JFIF packets. MJPEG is a video codec wherein each video frame is essentially a JPEG image. The individual frames can be extracted without loss, e.g. by ffmpeg -i ../some_mjpeg.avi -c:v copy frames_%d.jpg Unfortunately, these chunks are incomplete JPEG images, because they lack the DHT segment required for decoding. Quoting from : Avery Lee, writing in the rec.video.desktop newsgroup in 2001, commented that "MJPEG, or at least the MJPEG in AVIs having the MJPG fourcc, is restricted JPEG with a fixed -- and *omitted* -- Huffman table. The JPEG must be YCbCr colorspace, it must be 4:2:2, and it must use basic Huffman encoding, not arithmetic or progressive. . . . You can indeed extract the MJPEG frames and decode them with a regular JPEG decoder, but you have to prepend the DHT segment to them, or else the decoder won't have any idea how to decompress the data. The exact table necessary is given in the OpenDML spec." This bitstream filter patches the header of frames extracted from an MJPEG stream (carrying the AVI1 header ID and lacking a DHT segment) to produce fully qualified JPEG images. ffmpeg -i mjpeg-movie.avi -c:v copy -bsf:v mjpeg2jpeg frame_%d.jpg exiftran -i -9 frame*.jpg ffmpeg -i frame_%d.jpg -c:v copy rotated.avi mjpegadump Add an MJPEG A header to the bitstream, to enable decoding by Quicktime. mov2textsub Extract a representable text file from MOV subtitles, stripping the metadata header from each subtitle packet. See also the text2movsub filter. mp3decomp Decompress non-standard compressed MP3 audio headers. mpeg2_metadata Modify metadata embedded in an MPEG-2 stream. display_aspect_ratio Set the display aspect ratio in the stream. The following fixed values are supported: 4/3 16/9 221/100 Any other value will result in square pixels being signalled instead (see H.262 section 6.3.3 and table 6-3). frame_rate Set the frame rate in the stream. This is constructed from a table of known values combined with a small multiplier and divisor - if the supplied value is not exactly representable, the nearest representable value will be used instead (see H.262 section 6.3.3 and table 6-4). video_format Set the video format in the stream (see H.262 section 6.3.6 and table 6-6). colour_primaries transfer_characteristics matrix_coefficients Set the colour description in the stream (see H.262 section 6.3.6 and tables 6-7, 6-8 and 6-9). mpeg4_unpack_bframes Unpack DivX-style packed B-frames. DivX-style packed B-frames are not valid MPEG-4 and were only a workaround for the broken Video for Windows subsystem. They use more space, can cause minor AV sync issues, require more CPU power to decode (unless the player has some decoded picture queue to compensate the 2,0,2,0 frame per packet style) and cause trouble if copied into a standard container like mp4 or mpeg-ps/ts, because MPEG-4 decoders may not be able to decode them, since they are not valid MPEG-4. For example to fix an AVI file containing an MPEG-4 stream with DivX- style packed B-frames using ffmpeg, you can use the command: ffmpeg -i INPUT.avi -codec copy -bsf:v mpeg4_unpack_bframes OUTPUT.avi noise Damages the contents of packets or simply drops them without damaging the container. Can be used for fuzzing or testing error resilience/concealment. Parameters: amount A numeral string, whose value is related to how often output bytes will be modified. Therefore, values below or equal to 0 are forbidden, and the lower the more frequent bytes will be modified, with 1 meaning every byte is modified. dropamount A numeral string, whose value is related to how often packets will be dropped. Therefore, values below or equal to 0 are forbidden, and the lower the more frequent packets will be dropped, with 1 meaning every packet is dropped. The following example applies the modification to every byte but does not drop any packets. ffmpeg -i INPUT -c copy -bsf noise[=1] output.mkv null This bitstream filter passes the packets through unchanged. remove_extra Remove extradata from packets. It accepts the following parameter: freq Set which frame types to remove extradata from. k Remove extradata from non-keyframes only. keyframe Remove extradata from keyframes only. e, all Remove extradata from all frames. text2movsub Convert text subtitles to MOV subtitles (as used by the "mov_text" codec) with metadata headers. See also the mov2textsub filter. trace_headers Log trace output containing all syntax elements in the coded stream headers (everything above the level of individual coded blocks). This can be useful for debugging low-level stream issues. Supports H.264, H.265 and MPEG-2. vp9_superframe Merge VP9 invisible (alt-ref) frames back into VP9 superframes. This fixes merging of split/segmented VP9 streams where the alt-ref frame was split from its visible counterpart. vp9_superframe_split Split VP9 superframes into single frames. vp9_raw_reorder Given a VP9 stream with correct timestamps but possibly out of order, insert additional show-existing-frame packets to correct the ordering. FORMAT OPTIONS The libavformat library provides some generic global options, which can be set on all the muxers and demuxers. In addition each muxer or demuxer may support so-called private options, which are specific for that component. Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use. The list of supported options follows: avioflags flags (input/output) Possible values: direct Reduce buffering. probesize integer (input) Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher value will enable detecting more information in case it is dispersed into the stream, but will increase latency. Must be an integer not lesser than 32. It is 5000000 by default. packetsize integer (output) Set packet size. fflags flags (input/output) Set format flags. Possible values: ignidx Ignore index. fastseek Enable fast, but inaccurate seeks for some formats. genpts Generate PTS. nofillin Do not fill in missing values that can be exactly calculated. noparse Disable AVParsers, this needs "+nofillin" too. igndts Ignore DTS. discardcorrupt Discard corrupted frames. sortdts Try to interleave output packets by DTS. keepside Do not merge side data. latm Enable RTP MP4A-LATM payload. nobuffer Reduce the latency introduced by optional buffering bitexact Only write platform-, build- and time-independent data. This ensures that file and data checksums are reproducible and match between platforms. Its primary use is for regression testing. shortest Stop muxing at the end of the shortest stream. It may be needed to increase max_interleave_delta to avoid flushing the longer streams before EOF. seek2any integer (input) Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default is 0. analyzeduration integer (input) Specify how many microseconds are analyzed to probe the input. A higher value will enable detecting more accurate information, but will increase latency. It defaults to 5,000,000 microseconds = 5 seconds. cryptokey hexadecimal string (input) Set decryption key. indexmem integer (input) Set max memory used for timestamp index (per stream). rtbufsize integer (input) Set max memory used for buffering real-time frames. fdebug flags (input/output) Print specific debug info. Possible values: ts max_delay integer (input/output) Set maximum muxing or demuxing delay in microseconds. fpsprobesize integer (input) Set number of frames used to probe fps. audio_preload integer (output) Set microseconds by which audio packets should be interleaved earlier. chunk_duration integer (output) Set microseconds for each chunk. chunk_size integer (output) Set size in bytes for each chunk. err_detect, f_err_detect flags (input) Set error detection flags. "f_err_detect" is deprecated and should be used only via the ffmpeg tool. Possible values: crccheck Verify embedded CRCs. bitstream Detect bitstream specification deviations. buffer Detect improper bitstream length. explode Abort decoding on minor error detection. careful Consider things that violate the spec and have not been seen in the wild as errors. compliant Consider all spec non compliancies as errors. aggressive Consider things that a sane encoder should not do as an error. max_interleave_delta integer (output) Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and defaults to 1000000 (1 second). To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one packet for each stream before actually writing any packets to the output file. When some streams are "sparse" (i.e. there are large gaps between successive packets), this can result in excessive buffering. This field specifies the maximum difference between the timestamps of the first and the last packet in the muxing queue, above which libavformat will output a packet regardless of whether it has queued a packet for all the streams. If set to 0, libavformat will continue buffering packets until it has a packet for each stream, regardless of the maximum timestamp difference between the buffered packets. use_wallclock_as_timestamps integer (input) Use wallclock as timestamps if set to 1. Default is 0. avoid_negative_ts integer (output) Possible values: make_non_negative Shift timestamps to make them non-negative. Also note that this affects only leading negative timestamps, and not non- monotonic negative timestamps. make_zero Shift timestamps so that the first timestamp is 0. auto (default) Enables shifting when required by the target format. disabled Disables shifting of timestamp. When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and subtitles desynching and relative timestamp differences are preserved compared to how they would have been without shifting. skip_initial_bytes integer (input) Set number of bytes to skip before reading header and frames if set to 1. Default is 0. correct_ts_overflow integer (input) Correct single timestamp overflows if set to 1. Default is 1. flush_packets integer (output) Flush the underlying I/O stream after each packet. Default is -1 (auto), which means that the underlying protocol will decide, 1 enables it, and has the effect of reducing the latency, 0 disables it and may increase IO throughput in some cases. output_ts_offset offset (output) Set the output time offset. offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1) manual. The offset is added by the muxer to the output timestamps. Specifying a positive offset means that the corresponding streams are delayed bt the time duration specified in offset. Default value is 0 (meaning that no offset is applied). format_whitelist list (input) "," separated list of allowed demuxers. By default all are allowed. dump_separator string (input) Separator used to separate the fields printed on the command line about the Stream parameters. For example to separate the fields with newlines and indention: ffprobe -dump_separator " " -i ~/videos/matrixbench_mpeg2.mpg max_streams integer (input) Specifies the maximum number of streams. This can be used to reject files that would require too many resources due to a large number of streams. Format stream specifiers Format stream specifiers allow selection of one or more streams that match specific properties. Possible forms of stream specifiers are: stream_index Matches the stream with this index. stream_type[:stream_index] stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd' for data, and 't' for attachments. If stream_index is given, then it matches the stream number stream_index of this type. Otherwise, it matches all streams of this type. p:program_id[:stream_index] If stream_index is given, then it matches the stream with number stream_index in the program with the id program_id. Otherwise, it matches all streams in the program. #stream_id Matches the stream by a format-specific ID. The exact semantics of stream specifiers is defined by the "avformat_match_stream_specifier()" function declared in the libavformat/avformat.h header. DEMUXERS Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type of file. When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list all available ones using the configure option "--list-demuxers". You can disable all the demuxers using the configure option "--disable-demuxers", and selectively enable a single demuxer with the option "--enable-demuxer=DEMUXER", or disable it with the option "--disable-demuxer=DEMUXER". The option "-demuxers" of the ff* tools will display the list of enabled demuxers. Use "-formats" to view a combined list of enabled demuxers and muxers. The description of some of the currently available demuxers follows. aa Audible Format 2, 3, and 4 demuxer. This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files. applehttp Apple HTTP Live Streaming demuxer. This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant index number. By setting the discard flags on AVStreams (by pressing 'a' or 'v' in ffplay), the caller can decide which variant streams to actually receive. The total bitrate of the variant that the stream belongs to is available in a metadata key named "variant_bitrate". apng Animated Portable Network Graphics demuxer. This demuxer is used to demux APNG files. All headers, but the PNG signature, up to (but not including) the first fcTL chunk are transmitted as extradata. Frames are then split as being all the chunks between two fcTL ones, or between the last fcTL and IEND chunks. -ignore_loop bool Ignore the loop variable in the file if set. -max_fps int Maximum framerate in frames per second (0 for no limit). -default_fps int Default framerate in frames per second when none is specified in the file (0 meaning as fast as possible). asf Advanced Systems Format demuxer. This demuxer is used to demux ASF files and MMS network streams. -no_resync_search bool Do not try to resynchronize by looking for a certain optional start code. concat Virtual concatenation script demuxer. This demuxer reads a list of files and other directives from a text file and demuxes them one after the other, as if all their packets had been muxed together. The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts where the previous one finishes. Note that it is done globally and may cause gaps if all streams do not have exactly the same length. All files must have the same streams (same codecs, same time base, etc.). The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect (because it was computed using the bit-rate or because the file is truncated, for example), it can cause artifacts. The "duration" directive can be used to override the duration stored in each file. Syntax The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces and lines starting with '#' are ignored. The following directive is recognized: "file path" Path to a file to read; special characters and spaces must be escaped with backslash or single quotes. All subsequent file-related directives apply to that file. "ffconcat version 1.0" Identify the script type and version. It also sets the safe option to 1 if it was -1. To make FFmpeg recognize the format automatically, this directive must appear exactly as is (no extra space or byte-order-mark) on the very first line of the script. "duration dur" Duration of the file. This information can be specified from the file; specifying it here may be more efficient or help if the information from the file is not available or accurate. If the duration is set for all files, then it is possible to seek in the whole concatenated video. "inpoint timestamp" In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp. Seeking is done so that all streams can be presented successfully at In point. This directive works best with intra frame codecs, because for non- intra frame ones you will usually get extra packets before the actual In point and the decoded content will most likely contain frames before In point too. For each file, packets before the file In point will have timestamps less than the calculated start timestamp of the file (negative in case of the first file), and the duration of the files (if not specified by the "duration" directive) will be reduced based on their specified In point. Because of potential packets before the specified In point, packet timestamps may overlap between two concatenated files. "outpoint timestamp" Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the streams, it handles it as an end of file condition and skips the current and all the remaining packets from all streams. Out point is exclusive, which means that the demuxer will not output packets with a decoding timestamp greater or equal to Out point. This directive works best with intra frame codecs and formats where all streams are tightly interleaved. For non-intra frame codecs you will usually get additional packets with presentation timestamp after Out point therefore the decoded content will most likely contain frames after Out point too. If your streams are not tightly interleaved you may not get all the packets from all streams before Out point and you may only will be able to decode the earliest stream until Out point. The duration of the files (if not specified by the "duration" directive) will be reduced based on their specified Out point. "file_packet_metadata key=value" Metadata of the packets of the file. The specified metadata will be set for each file packet. You can specify this directive multiple times to add multiple metadata entries. "stream" Introduce a stream in the virtual file. All subsequent stream- related directives apply to the last introduced stream. Some streams properties must be set in order to allow identifying the matching streams in the subfiles. If no streams are defined in the script, the streams from the first file are copied. "exact_stream_id id" Set the id of the stream. If this directive is given, the string with the corresponding id in the subfiles will be used. This is especially useful for MPEG-PS (VOB) files, where the order of the streams is not reliable. Options This demuxer accepts the following option: safe If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a protocol specification and is relative and all components only contain characters from the portable character set (letters, digits, period, underscore and hyphen) and have no period at the beginning of a component. If set to 0, any file name is accepted. The default is 1. -1 is equivalent to 1 if the format was automatically probed and 0 otherwise. auto_convert If set to 1, try to perform automatic conversions on packet data to make the streams concatenable. The default is 1. Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in MP4 format. This is necessary in particular if there are resolution changes. segment_time_metadata If set to 1, every packet will contain the lavf.concat.start_time and the lavf.concat.duration packet metadata values which are the start_time and the duration of the respective file segments in the concatenated output expressed in microseconds. The duration metadata is only set if it is known based on the concat file. The default is 0. Examples · Use absolute filenames and include some comments: # my first filename file /mnt/share/file-1.wav # my second filename including whitespace file '/mnt/share/file 2.wav' # my third filename including whitespace plus single quote file '/mnt/share/file 3'\''.wav' · Allow for input format auto-probing, use safe filenames and set the duration of the first file: ffconcat version 1.0 file file-1.wav duration 20.0 file subdir/file-2.wav dash Dynamic Adaptive Streaming over HTTP demuxer. This demuxer presents all AVStreams found in the manifest. By setting the discard flags on AVStreams the caller can decide which streams to actually receive. Each stream mirrors the "id" and "bandwidth" properties from the "" as metadata keys named "id" and "variant_bitrate" respectively. flv, live_flv Adobe Flash Video Format demuxer. This demuxer is used to demux FLV files and RTMP network streams. In case of live network streams, if you force format, you may use live_flv option instead of flv to survive timestamp discontinuities. ffmpeg -f flv -i myfile.flv ... ffmpeg -f live_flv -i rtmp:///anything/key .... -flv_metadata bool Allocate the streams according to the onMetaData array content. gif Animated GIF demuxer. It accepts the following options: min_delay Set the minimum valid delay between frames in hundredths of seconds. Range is 0 to 6000. Default value is 2. max_gif_delay Set the maximum valid delay between frames in hundredth of seconds. Range is 0 to 65535. Default value is 65535 (nearly eleven minutes), the maximum value allowed by the specification. default_delay Set the default delay between frames in hundredths of seconds. Range is 0 to 6000. Default value is 10. ignore_loop GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set to 0, then looping will occur and will cycle the number of times according to the GIF. Default value is 1. For example, with the overlay filter, place an infinitely looping GIF over another video: ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv Note that in the above example the shortest option for overlay filter is used to end the output video at the length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops infinitely. hls HLS demuxer It accepts the following options: live_start_index segment index to start live streams at (negative values are from the end). allowed_extensions ',' separated list of file extensions that hls is allowed to access. max_reload Maximum number of times a insufficient list is attempted to be reloaded. Default value is 1000. http_persistent Use persistent HTTP connections. Applicable only for HTTP streams. Enabled by default. http_multiple Use multiple HTTP connections for downloading HTTP segments. Enabled by default for HTTP/1.1 servers. image2 Image file demuxer. This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the pattern is specified by the option pattern_type. The pattern may contain a suffix which is used to automatically determine the format of the images contained in the files. The size, the pixel format, and the format of each image must be the same for all the files in the sequence. This demuxer accepts the following options: framerate Set the frame rate for the video stream. It defaults to 25. loop If set to 1, loop over the input. Default value is 0. pattern_type Select the pattern type used to interpret the provided filename. pattern_type accepts one of the following values. none Disable pattern matching, therefore the video will only contain the specified image. You should use this option if you do not want to create sequences from multiple images and your filenames may contain special pattern characters. sequence Select a sequence pattern type, used to specify a sequence of files indexed by sequential numbers. A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the characters representing a sequential number in each filename matched by the pattern. If the form "%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the total number of 0-padded digits representing the number. The literal character '%' can be specified in the pattern with the string "%%". If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by the pattern must contain a number inclusively contained between start_number and start_number+start_number_range-1, and all the following numbers must be sequential. For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg" will match a sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ..., i%m%g-10.jpg, etc. Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a single image file img.jpeg you can employ the command: ffmpeg -i img.jpeg img.png glob Select a glob wildcard pattern type. The pattern is interpreted like a "glob()" pattern. This is only selectable if libavformat was compiled with globbing support. glob_sequence (deprecated, will be removed) Select a mixed glob wildcard/sequence pattern. If your version of libavformat was compiled with globbing support, and the provided pattern contains at least one glob meta character among "%*?[]{}" that is preceded by an unescaped "%", the pattern is interpreted like a "glob()" pattern, otherwise it is interpreted like a sequence pattern. All glob special characters "%*?[]{}" must be prefixed with "%". To escape a literal "%" you shall use "%%". For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by "foo-" and terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the filenames prefixed with "foo-", followed by a sequence of three characters, and terminating with ".jpeg". This pattern type is deprecated in favor of glob and sequence. Default value is glob_sequence. pixel_format Set the pixel format of the images to read. If not specified the pixel format is guessed from the first image file in the sequence. start_number Set the index of the file matched by the image file pattern to start to read from. Default value is 0. start_number_range Set the index interval range to check when looking for the first image file in the sequence, starting from start_number. Default value is 5. ts_from_file If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of timestamps is not provided: images go in the same order as without this option. Default value is 0. If set to 2, will set frame timestamp to the modification time of the image file in nanosecond precision. video_size Set the video size of the images to read. If not specified the video size is guessed from the first image file in the sequence. Examples · Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg, img-002.jpeg, ..., assuming an input frame rate of 10 frames per second: ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv · As above, but start by reading from a file with index 100 in the sequence: ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv · Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png" suffix: ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv libgme The Game Music Emu library is a collection of video game music file emulators. See for more information. Some files have multiple tracks. The demuxer will pick the first track by default. The track_index option can be used to select a different track. Track indexes start at 0. The demuxer exports the number of tracks as tracks meta data entry. For very large files, the max_size option may have to be adjusted. libopenmpt libopenmpt based module demuxer See for more information. Some files have multiple subsongs (tracks) this can be set with the subsong option. It accepts the following options: subsong Set the subsong index. This can be either 'all', 'auto', or the index of the subsong. Subsong indexes start at 0. The default is 'auto'. The default value is to let libopenmpt choose. layout Set the channel layout. Valid values are 1, 2, and 4 channel layouts. The default value is STEREO. sample_rate Set the sample rate for libopenmpt to output. Range is from 1000 to INT_MAX. The value default is 48000. mov/mp4/3gp/QuickTime QuickTime / MP4 demuxer. This demuxer accepts the following options: enable_drefs Enable loading of external tracks, disabled by default. Enabling this can theoretically leak information in some use cases. use_absolute_path Allows loading of external tracks via absolute paths, disabled by default. Enabling this poses a security risk. It should only be enabled if the source is known to be non malicious. mpegts MPEG-2 transport stream demuxer. This demuxer accepts the following options: resync_size Set size limit for looking up a new synchronization. Default value is 65536. fix_teletext_pts Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the first program which the teletext stream is part of and is not discarded. Default value is 1, set this option to 0 if you want your teletext packet PTS and DTS values untouched. ts_packetsize Output option carrying the raw packet size in bytes. Show the detected raw packet size, cannot be set by the user. scan_all_pmts Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic setting, 1 means enabled, 0 means disabled). Default value is -1. mpjpeg MJPEG encapsulated in multi-part MIME demuxer. This demuxer allows reading of MJPEG, where each frame is represented as a part of multipart/x-mixed-replace stream. strict_mime_boundary Default implementation applies a relaxed standard to multi-part MIME boundary detection, to prevent regression with numerous existing endpoints not generating a proper MIME MJPEG stream. Turning this option on by setting it to 1 will result in a stricter check of the boundary value. rawvideo Raw video demuxer. This demuxer allows one to read raw video data. Since there is no header specifying the assumed video parameters, the user must specify them in order to be able to decode the data correctly. This demuxer accepts the following options: framerate Set input video frame rate. Default value is 25. pixel_format Set the input video pixel format. Default value is "yuv420p". video_size Set the input video size. This value must be specified explicitly. For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of "rgb24", a video size of "320x240", and a frame rate of 10 images per second, use the command: ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw sbg SBaGen script demuxer. This demuxer reads the script language used by SBaGen to generate binaural beats sessions. A SBG script looks like that: -SE a: 300-2.5/3 440+4.5/0 b: 300-2.5/0 440+4.5/3 off: - NOW == a +0:07:00 == b +0:14:00 == a +0:21:00 == b +0:30:00 off A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps (including the script start time) or only relative ones, then its layout is fixed, and the conversion is straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference for relative timestamps will be taken from the current time of day at the time the script is read, and the script layout will be frozen according to that reference. That means that if the script is directly played, the actual times will match the absolute timestamps up to the sound controller's clock accuracy, but if the user somehow pauses the playback or seeks, all times will be shifted accordingly. tedcaptions JSON captions used for . TED does not provide links to the captions, but they can be guessed from the page. The file tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them. This demuxer accepts the following option: start_time Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync the captions with the downloadable videos, because they include a 15s intro. Example: convert the captions to a format most players understand: ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt MUXERS Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of file. When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all available muxers using the configure option "--list-muxers". You can disable all the muxers with the configure option "--disable-muxers" and selectively enable / disable single muxers with the options "--enable-muxer=MUXER" / "--disable-muxer=MUXER". The option "-muxers" of the ff* tools will display the list of enabled muxers. Use "-formats" to view a combined list of enabled demuxers and muxers. A description of some of the currently available muxers follows. aiff Audio Interchange File Format muxer. Options It accepts the following options: write_id3v2 Enable ID3v2 tags writing when set to 1. Default is 0 (disabled). id3v2_version Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and ID3v2.4) are supported. The default is version 4. asf Advanced Systems Format muxer. Note that Windows Media Audio (wma) and Windows Media Video (wmv) use this muxer too. Options It accepts the following options: packet_size Set the muxer packet size. By tuning this setting you may reduce data fragmentation or muxer overhead depending on your source. Default value is 3200, minimum is 100, maximum is 64k. avi Audio Video Interleaved muxer. Options It accepts the following options: reserve_index_space Reserve the specified amount of bytes for the OpenDML master index of each stream within the file header. By default additional master indexes are embedded within the data packets if there is no space left in the first master index and are linked together as a chain of indexes. This index structure can cause problems for some use cases, e.g. third-party software strictly relying on the OpenDML index specification or when file seeking is slow. Reserving enough index space in the file header avoids these problems. The required index space depends on the output file size and should be about 16 bytes per gigabyte. When this option is omitted or set to zero the necessary index space is guessed. write_channel_mask Write the channel layout mask into the audio stream header. This option is enabled by default. Disabling the channel mask can be useful in specific scenarios, e.g. when merging multiple audio streams into one for compatibility with software that only supports a single audio stream in AVI (see the "amerge" section in the ffmpeg-filters manual). chromaprint Chromaprint fingerprinter This muxer feeds audio data to the Chromaprint library, which generates a fingerprint for the provided audio data. It takes a single signed native-endian 16-bit raw audio stream. Options silence_threshold Threshold for detecting silence, ranges from 0 to 32767. -1 for default (required for use with the AcoustID service). algorithm Algorithm index to fingerprint with. fp_format Format to output the fingerprint as. Accepts the following options: raw Binary raw fingerprint compressed Binary compressed fingerprint base64 Base64 compressed fingerprint crc CRC (Cyclic Redundancy Check) testing format. This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC. The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal number 0-padded to 8 digits containing the CRC for all the decoded input frames. See also the framecrc muxer. Examples For example to compute the CRC of the input, and store it in the file out.crc: ffmpeg -i INPUT -f crc out.crc You can print the CRC to stdout with the command: ffmpeg -i INPUT -f crc - You can select the output format of each frame with ffmpeg by specifying the audio and video codec and format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the input video converted to MPEG-2 video, use the command: ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc - flv Adobe Flash Video Format muxer. This muxer accepts the following options: flvflags flags Possible values: aac_seq_header_detect Place AAC sequence header based on audio stream data. no_sequence_end Disable sequence end tag. no_metadata Disable metadata tag. no_duration_filesize Disable duration and filesize in metadata when they are equal to zero at the end of stream. (Be used to non-seekable living stream). add_keyframe_index Used to facilitate seeking; particularly for HTTP pseudo streaming. dash Dynamic Adaptive Streaming over HTTP (DASH) muxer that creates segments and manifest files according to the MPEG-DASH standard ISO/IEC 23009-1:2014. For more information see: · ISO DASH Specification: · WebM DASH Specification: It creates a MPD manifest file and segment files for each stream. The segment filename might contain pre-defined identifiers used with SegmentTemplate as defined in section 5.3.9.4.4 of the standard. Available identifiers are "$RepresentationID$", "$Number$", "$Bandwidth$" and "$Time$". ffmpeg -re -i -map 0 -map 0 -c:a libfdk_aac -c:v libx264 -b:v:0 800k -b:v:1 300k -s:v:1 320x170 -profile:v:1 baseline -profile:v:0 main -bf 1 -keyint_min 120 -g 120 -sc_threshold 0 -b_strategy 0 -ar:a:1 22050 -use_timeline 1 -use_template 1 -window_size 5 -adaptation_sets "id=0,streams=v id=1,streams=a" -f dash /path/to/out.mpd -min_seg_duration microseconds Set the segment length in microseconds. -window_size size Set the maximum number of segments kept in the manifest. -extra_window_size size Set the maximum number of segments kept outside of the manifest before removing from disk. -remove_at_exit remove Enable (1) or disable (0) removal of all segments when finished. -use_template template Enable (1) or disable (0) use of SegmentTemplate instead of SegmentList. -use_timeline timeline Enable (1) or disable (0) use of SegmentTimeline in SegmentTemplate. -single_file single_file Enable (1) or disable (0) storing all segments in one file, accessed using byte ranges. -single_file_name file_name DASH-templated name to be used for baseURL. Implies single_file set to "1". -init_seg_name init_name DASH-templated name to used for the initialization segment. Default is "init-stream$RepresentationID$.m4s" -media_seg_name segment_name DASH-templated name to used for the media segments. Default is "chunk-stream$RepresentationID$-$Number%05d$.m4s" -utc_timing_url utc_url URL of the page that will return the UTC timestamp in ISO format. Example: "https://time.akamai.com/?iso" -http_user_agent user_agent Override User-Agent field in HTTP header. Applicable only for HTTP output. -http_persistent http_persistent Use persistent HTTP connections. Applicable only for HTTP output. -hls_playlist hls_playlist Generate HLS playlist files as well. The master playlist is generated with the filename master.m3u8. One media playlist file is generated for each stream with filenames media_0.m3u8, media_1.m3u8, etc. -streaming streaming Enable (1) or disable (0) chunk streaming mode of output. In chunk streaming mode, each frame will be a moof fragment which forms a chunk. -adaptation_sets adaptation_sets Assign streams to AdaptationSets. Syntax is "id=x,streams=a,b,c id=y,streams=d,e" with x and y being the IDs of the adaptation sets and a,b,c,d and e are the indices of the mapped streams. To map all video (or audio) streams to an AdaptationSet, "v" (or "a") can be used as stream identifier instead of IDs. When no assignment is defined, this defaults to an AdaptationSet for each stream. -timeout timeout Set timeout for socket I/O operations. Applicable only for HTTP output. framecrc Per-packet CRC (Cyclic Redundancy Check) testing format. This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC. The output of the muxer consists of a line for each audio and video packet of the form: , , , , , 0x CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet. Examples For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.crc: ffmpeg -i INPUT -f framecrc out.crc To print the information to stdout, use the command: ffmpeg -i INPUT -f framecrc - With ffmpeg, you can select the output format to which the audio and video frames are encoded before computing the CRC for each packet by specifying the audio and video codec. For example, to compute the CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input video frame converted to MPEG-2 video, use the command: ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc - See also the crc muxer. framehash Per-packet hash testing format. This muxer computes and prints a cryptographic hash for each audio and video packet. This can be used for packet-by-packet equality checks without having to individually do a binary comparison on each. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash, but the output of explicit conversions to other codecs can also be used. It uses the SHA-256 cryptographic hash function by default, but supports several other algorithms. The output of the muxer consists of a line for each audio and video packet of the form: , , , , , hash is a hexadecimal number representing the computed hash for the packet. hash algorithm Use the cryptographic hash function specified by the string algorithm. Supported values include "MD5", "murmur3", "RIPEMD128", "RIPEMD160", "RIPEMD256", "RIPEMD320", "SHA160", "SHA224", "SHA256" (default), "SHA512/224", "SHA512/256", "SHA384", "SHA512", "CRC32" and "adler32". Examples To compute the SHA-256 hash of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.sha256: ffmpeg -i INPUT -f framehash out.sha256 To print the information to stdout, using the MD5 hash function, use the command: ffmpeg -i INPUT -f framehash -hash md5 - See also the hash muxer. framemd5 Per-packet MD5 testing format. This is a variant of the framehash muxer. Unlike that muxer, it defaults to using the MD5 hash function. Examples To compute the MD5 hash of the audio and video frames in INPUT, converted to raw audio and video packets, and store it in the file out.md5: ffmpeg -i INPUT -f framemd5 out.md5 To print the information to stdout, use the command: ffmpeg -i INPUT -f framemd5 - See also the framehash and md5 muxers. gif Animated GIF muxer. It accepts the following options: loop Set the number of times to loop the output. Use "-1" for no loop, 0 for looping indefinitely (default). final_delay Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until the next frame. The default is "-1", which is a special value to tell the muxer to re-use the previous delay. In case of a loop, you might want to customize this value to mark a pause for instance. For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops: ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif Note 1: if you wish to extract the frames into separate GIF files, you need to force the image2 muxer: ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif" Note 2: the GIF format has a very large time base: the delay between two frames can therefore not be smaller than one centi second. hash Hash testing format. This muxer computes and prints a cryptographic hash of all the input audio and video frames. This can be used for equality checks without having to do a complete binary comparison. By default audio frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash, but the output of explicit conversions to other codecs can also be used. Timestamps are ignored. It uses the SHA-256 cryptographic hash function by default, but supports several other algorithms. The output of the muxer consists of a single line of the form: algo=hash, where algo is a short string representing the hash function used, and hash is a hexadecimal number representing the computed hash. hash algorithm Use the cryptographic hash function specified by the string algorithm. Supported values include "MD5", "murmur3", "RIPEMD128", "RIPEMD160", "RIPEMD256", "RIPEMD320", "SHA160", "SHA224", "SHA256" (default), "SHA512/224", "SHA512/256", "SHA384", "SHA512", "CRC32" and "adler32". Examples To compute the SHA-256 hash of the input converted to raw audio and video, and store it in the file out.sha256: ffmpeg -i INPUT -f hash out.sha256 To print an MD5 hash to stdout use the command: ffmpeg -i INPUT -f hash -hash md5 - See also the framehash muxer. hls Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming (HLS) specification. It creates a playlist file, and one or more segment files. The output filename specifies the playlist filename. By default, the muxer creates a file for each segment produced. These files have the same name as the playlist, followed by a sequential number and a .ts extension. Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time constraint. For example, to convert an input file with ffmpeg: ffmpeg -i in.mkv -c:v h264 -flags +cgop -g 30 -hls_time 1 out.m3u8 This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts, out2.ts, etc. See also the segment muxer, which provides a more generic and flexible implementation of a segmenter, and can be used to perform HLS segmentation. Options This muxer supports the following options: hls_init_time seconds Set the initial target segment length in seconds. Default value is 0. Segment will be cut on the next key frame after this time has passed on the first m3u8 list. After the initial playlist is filled ffmpeg will cut segments at duration equal to "hls_time" hls_time seconds Set the target segment length in seconds. Default value is 2. Segment will be cut on the next key frame after this time has passed. hls_list_size size Set the maximum number of playlist entries. If set to 0 the list file will contain all the segments. Default value is 5. hls_delete_threshold size Set the number of unreferenced segments to keep on disk before "hls_flags delete_segments" deletes them. Increase this to allow continue clients to download segments which were recently referenced in the playlist. Default value is 1, meaning segments older than "hls_list_size+1" will be deleted. hls_ts_options options_list Set output format options using a :-separated list of key=value parameters. Values containing ":" special characters must be escaped. hls_wrap wrap This is a deprecated option, you can use "hls_list_size" and "hls_flags delete_segments" instead it This option is useful to avoid to fill the disk with many segment files, and limits the maximum number of segment files written to disk to wrap. hls_start_number_source Start the playlist sequence number ("#EXT-X-MEDIA-SEQUENCE") according to the specified source. Unless "hls_flags single_file" is set, it also specifies source of starting sequence numbers of segment and subtitle filenames. In any case, if "hls_flags append_list" is set and read playlist sequence number is greater than the specified start sequence number, then that value will be used as start value. It accepts the following values: generic (default) Set the starting sequence numbers according to start_number option value. epoch The start number will be the seconds since epoch (1970-01-01 00:00:00) datetime The start number will be based on the current date/time as YYYYmmddHHMMSS. e.g. 20161231235759. start_number number Start the playlist sequence number ("#EXT-X-MEDIA-SEQUENCE") from the specified number when hls_start_number_source value is generic. (This is the default case.) Unless "hls_flags single_file" is set, it also specifies starting sequence numbers of segment and subtitle filenames. Default value is 0. hls_allow_cache allowcache Explicitly set whether the client MAY \fIs0(1) or MUST NOT \fIs0(0) cache media segments. hls_base_url baseurl Append baseurl to every entry in the playlist. Useful to generate playlists with absolute paths. Note that the playlist sequence number must be unique for each segment and it is not to be confused with the segment filename sequence number which can be cyclic, for example if the wrap option is specified. hls_segment_filename filename Set the segment filename. Unless "hls_flags single_file" is set, filename is used as a string format with the segment number: ffmpeg -i in.nut -hls_segment_filename 'file%03d.ts' out.m3u8 This example will produce the playlist, out.m3u8, and segment files: file000.ts, file001.ts, file002.ts, etc. filename may contain full path or relative path specification, but only the file name part without any path info will be contained in the m3u8 segment list. Should a relative path be specified, the path of the created segment files will be relative to the current working directory. When use_localtime_mkdir is set, the whole expanded value of filename will be written into the m3u8 segment list. When "var_stream_map" is set with two or more variant streams, the filename pattern must contain the string "%v", this string specifies the position of variant stream index in the generated segment file names. ffmpeg -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ -hls_segment_filename 'file_%v_%03d.ts' out_%v.m3u8 This example will produce the playlists segment file sets: file_0_000.ts, file_0_001.ts, file_0_002.ts, etc. and file_1_000.ts, file_1_001.ts, file_1_002.ts, etc. The string "%v" may be present in the filename or in the last directory name containing the file. If the string is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of segments corresponding to different variant streams in subdirectories. ffmpeg -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ -hls_segment_filename 'vs%v/file_%03d.ts' vs%v/out.m3u8 This example will produce the playlists segment file sets: vs0/file_000.ts, vs0/file_001.ts, vs0/file_002.ts, etc. and vs1/file_000.ts, vs1/file_001.ts, vs1/file_002.ts, etc. use_localtime Use strftime() on filename to expand the segment filename with localtime. The segment number is also available in this mode, but to use it, you need to specify second_level_segment_index hls_flag and %%d will be the specifier. ffmpeg -i in.nut -use_localtime 1 -hls_segment_filename 'file-%Y%m%d-%s.ts' out.m3u8 This example will produce the playlist, out.m3u8, and segment files: file-20160215-1455569023.ts, file-20160215-1455569024.ts, etc. Note: On some systems/environments, the %s specifier is not available. See "strftime()" documentation. ffmpeg -i in.nut -use_localtime 1 -hls_flags second_level_segment_index -hls_segment_filename 'file-%Y%m%d-%%04d.ts' out.m3u8 This example will produce the playlist, out.m3u8, and segment files: file-20160215-0001.ts, file-20160215-0002.ts, etc. use_localtime_mkdir Used together with -use_localtime, it will create all subdirectories which is expanded in filename. ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename '%Y%m%d/file-%Y%m%d-%s.ts' out.m3u8 This example will create a directory 201560215 (if it does not exist), and then produce the playlist, out.m3u8, and segment files: 20160215/file-20160215-1455569023.ts, 20160215/file-20160215-1455569024.ts, etc. ffmpeg -i in.nut -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename '%Y/%m/%d/file-%Y%m%d-%s.ts' out.m3u8 This example will create a directory hierarchy 2016/02/15 (if any of them do not exist), and then produce the playlist, out.m3u8, and segment files: 2016/02/15/file-20160215-1455569023.ts, 2016/02/15/file-20160215-1455569024.ts, etc. hls_key_info_file key_info_file Use the information in key_info_file for segment encryption. The first line of key_info_file specifies the key URI written to the playlist. The key URL is used to access the encryption key during playback. The second line specifies the path to the key file used to obtain the key during the encryption process. The key file is read as a single packed array of 16 octets in binary format. The optional third line specifies the initialization vector (IV) as a hexadecimal string to be used instead of the segment sequence number (default) for encryption. Changes to key_info_file will result in segment encryption with the new key/IV and an entry in the playlist for the new key URI/IV if "hls_flags periodic_rekey" is enabled. Key info file format: (optional) Example key URIs: http://server/file.key /path/to/file.key file.key Example key file paths: file.key /path/to/file.key Example IV: 0123456789ABCDEF0123456789ABCDEF Key info file example: http://server/file.key /path/to/file.key 0123456789ABCDEF0123456789ABCDEF Example shell script: #!/bin/sh BASE_URL=${1:-'.'} openssl rand 16 > file.key echo $BASE_URL/file.key > file.keyinfo echo file.key >> file.keyinfo echo $(openssl rand -hex 16) >> file.keyinfo ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \ -hls_key_info_file file.keyinfo out.m3u8 -hls_enc enc Enable (1) or disable (0) the AES128 encryption. When enabled every segment generated is encrypted and the encryption key is saved as playlist name.key. -hls_enc_key key Hex-coded 16byte key to encrypt the segments, by default it is randomly generated. -hls_enc_key_url keyurl If set, keyurl is prepended instead of baseurl to the key filename in the playlist. -hls_enc_iv iv Hex-coded 16byte initialization vector for every segment instead of the autogenerated ones. hls_segment_type flags Possible values: mpegts If this flag is set, the hls segment files will format to mpegts. the mpegts files is used in all hls versions. fmp4 If this flag is set, the hls segment files will format to fragment mp4 looks like dash. the fmp4 files is used in hls after version 7. hls_fmp4_init_filename filename set filename to the fragment files header file, default filename is init.mp4. When "var_stream_map" is set with two or more variant streams, the filename pattern must contain the string "%v", this string specifies the position of variant stream index in the generated init file names. The string "%v" may be present in the filename or in the last directory name containing the file. If the string is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of init files corresponding to different variant streams in subdirectories. hls_flags flags Possible values: single_file If this flag is set, the muxer will store all segments in a single MPEG-TS file, and will use byte ranges in the playlist. HLS playlists generated with this way will have the version number 4. For example: ffmpeg -i in.nut -hls_flags single_file out.m3u8 Will produce the playlist, out.m3u8, and a single segment file, out.ts. delete_segments Segment files removed from the playlist are deleted after a period of time equal to the duration of the segment plus the duration of the playlist. append_list Append new segments into the end of old segment list, and remove the "#EXT-X-ENDLIST" from the old segment list. round_durations Round the duration info in the playlist file segment info to integer values, instead of using floating point. discont_start Add the "#EXT-X-DISCONTINUITY" tag to the playlist, before the first segment's information. omit_endlist Do not append the "EXT-X-ENDLIST" tag at the end of the playlist. periodic_rekey The file specified by "hls_key_info_file" will be checked periodically and detect updates to the encryption info. Be sure to replace this file atomically, including the file containing the AES encryption key. independent_segments Add the "#EXT-X-INDEPENDENT-SEGMENTS" to playlists that has video segments and when all the segments of that playlist are guaranteed to start with a Key frame. split_by_time Allow segments to start on frames other than keyframes. This improves behavior on some players when the time between keyframes is inconsistent, but may make things worse on others, and can cause some oddities during seeking. This flag should be used with the "hls_time" option. program_date_time Generate "EXT-X-PROGRAM-DATE-TIME" tags. second_level_segment_index Makes it possible to use segment indexes as %%d in hls_segment_filename expression besides date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes, %%0xd format is available where x is the required width. second_level_segment_size Makes it possible to use segment sizes (counted in bytes) as %%s in hls_segment_filename expression besides date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes, %%0xs format is available where x is the required width. second_level_segment_duration Makes it possible to use segment duration (calculated in microseconds) as %%t in hls_segment_filename expression besides date/time values when use_localtime is on. To get fixed width numbers with trailing zeroes, %%0xt format is available where x is the required width. ffmpeg -i sample.mpeg \ -f hls -hls_time 3 -hls_list_size 5 \ -hls_flags second_level_segment_index+second_level_segment_size+second_level_segment_duration \ -use_localtime 1 -use_localtime_mkdir 1 -hls_segment_filename "segment_%Y%m%d%H%M%S_%%04d_%%08s_%%013t.ts" stream.m3u8 This will produce segments like this: segment_20170102194334_0003_00122200_0000003000000.ts, segment_20170102194334_0004_00120072_0000003000000.ts etc. temp_file Write segment data to filename.tmp and rename to filename only once the segment is complete. A webserver serving up segments can be configured to reject requests to *.tmp to prevent access to in-progress segments before they have been added to the m3u8 playlist. hls_playlist_type event Emit "#EXT-X-PLAYLIST-TYPE:EVENT" in the m3u8 header. Forces hls_list_size to 0; the playlist can only be appended to. hls_playlist_type vod Emit "#EXT-X-PLAYLIST-TYPE:VOD" in the m3u8 header. Forces hls_list_size to 0; the playlist must not change. method Use the given HTTP method to create the hls files. ffmpeg -re -i in.ts -f hls -method PUT http://example.com/live/out.m3u8 This example will upload all the mpegts segment files to the HTTP server using the HTTP PUT method, and update the m3u8 files every "refresh" times using the same method. Note that the HTTP server must support the given method for uploading files. http_user_agent Override User-Agent field in HTTP header. Applicable only for HTTP output. var_stream_map Map string which specifies how to group the audio, video and subtitle streams into different variant streams. The variant stream groups are separated by space. Expected string format is like this "a:0,v:0 a:1,v:1 ....". Here a:, v:, s: are the keys to specify audio, video and subtitle streams respectively. Allowed values are 0 to 9 (limited just based on practical usage). When there are two or more variant streams, the output filename pattern must contain the string "%v", this string specifies the position of variant stream index in the output media playlist filenames. The string "%v" may be present in the filename or in the last directory name containing the file. If the string is present in the directory name, then sub-directories are created after expanding the directory name pattern. This enables creation of variant streams in subdirectories. ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ http://example.com/live/out_%v.m3u8 This example creates two hls variant streams. The first variant stream will contain video stream of bitrate 1000k and audio stream of bitrate 64k and the second variant stream will contain video stream of bitrate 256k and audio stream of bitrate 32k. Here, two media playlist with file names out_0.m3u8 and out_1.m3u8 will be created. ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k \ -map 0:v -map 0:a -map 0:v -f hls -var_stream_map "v:0 a:0 v:1" \ http://example.com/live/out_%v.m3u8 This example creates three hls variant streams. The first variant stream will be a video only stream with video bitrate 1000k, the second variant stream will be an audio only stream with bitrate 64k and the third variant stream will be a video only stream with bitrate 256k. Here, three media playlist with file names out_0.m3u8, out_1.m3u8 and out_2.m3u8 will be created. ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -map 0:v -map 0:a -map 0:v -map 0:a -f hls -var_stream_map "v:0,a:0 v:1,a:1" \ http://example.com/live/vs_%v/out.m3u8 This example creates the variant streams in subdirectories. Here, the first media playlist is created at http://example.com/live/vs_0/out.m3u8 and the second one at http://example.com/live/vs_1/out.m3u8. ffmpeg -re -i in.ts -b:a:0 32k -b:a:1 64k -b:v:0 1000k -b:v:1 3000k \ -map 0:a -map 0:a -map 0:v -map 0:v -f hls \ -var_stream_map "a:0,agroup:aud_low a:1,agroup:aud_high v:0,agroup:aud_low v:1,agroup:aud_high" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8 This example creates two audio only and two video only variant streams. In addition to the #EXT-X-STREAM-INF tag for each variant stream in the master playlist, #EXT-X-MEDIA tag is also added for the two audio only variant streams and they are mapped to the two video only variant streams with audio group names 'aud_low' and 'aud_high'. By default, a single hls variant containing all the encoded streams is created. cc_stream_map Map string which specifies different closed captions groups and their attributes. The closed captions stream groups are separated by space. Expected string format is like this "ccgroup:,instreamid:,language: ....". 'ccgroup' and 'instreamid' are mandatory attributes. 'language' is an optional attribute. The closed captions groups configured using this option are mapped to different variant streams by providing the same 'ccgroup' name in the "var_stream_map" string. If "var_stream_map" is not set, then the first available ccgroup in "cc_stream_map" is mapped to the output variant stream. The examples for these two use cases are given below. ffmpeg -re -i in.ts -b:v 1000k -b:a 64k -a53cc 1 -f hls \ -cc_stream_map "ccgroup:cc,instreamid:CC1,language:en" \ -master_pl_name master.m3u8 \ http://example.com/live/out.m3u8 This example adds "#EXT-X-MEDIA" tag with "TYPE=CLOSED-CAPTIONS" in the master playlist with group name 'cc', langauge 'en' (english) and INSTREAM-ID 'CC1'. Also, it adds "CLOSED-CAPTIONS" attribute with group name 'cc' for the output variant stream. ffmpeg -re -i in.ts -b:v:0 1000k -b:v:1 256k -b:a:0 64k -b:a:1 32k \ -a53cc:0 1 -a53cc:1 1\ -map 0:v -map 0:a -map 0:v -map 0:a -f hls \ -cc_stream_map "ccgroup:cc,instreamid:CC1,language:en ccgroup:cc,instreamid:CC2,language:sp" \ -var_stream_map "v:0,a:0,ccgroup:cc v:1,a:1,ccgroup:cc" \ -master_pl_name master.m3u8 \ http://example.com/live/out_%v.m3u8 This example adds two "#EXT-X-MEDIA" tags with "TYPE=CLOSED-CAPTIONS" in the master playlist for the INSTREAM-IDs 'CC1' and 'CC2'. Also, it adds "CLOSED-CAPTIONS" attribute with group name 'cc' for the two output variant streams. master_pl_name Create HLS master playlist with the given name. ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 http://example.com/live/out.m3u8 This example creates HLS master playlist with name master.m3u8 and it is published at http://example.com/live/ master_pl_publish_rate Publish master play list repeatedly every after specified number of segment intervals. ffmpeg -re -i in.ts -f hls -master_pl_name master.m3u8 \ -hls_time 2 -master_pl_publish_rate 30 http://example.com/live/out.m3u8 This example creates HLS master playlist with name master.m3u8 and keep publishing it repeatedly every after 30 segments i.e. every after 60s. http_persistent Use persistent HTTP connections. Applicable only for HTTP output. timeout Set timeout for socket I/O operations. Applicable only for HTTP output. ico ICO file muxer. Microsoft's icon file format (ICO) has some strict limitations that should be noted: · Size cannot exceed 256 pixels in any dimension · Only BMP and PNG images can be stored · If a BMP image is used, it must be one of the following pixel formats: BMP Bit Depth FFmpeg Pixel Format 1bit pal8 4bit pal8 8bit pal8 16bit rgb555le 24bit bgr24 32bit bgra · If a BMP image is used, it must use the BITMAPINFOHEADER DIB header · If a PNG image is used, it must use the rgba pixel format image2 Image file muxer. The image file muxer writes video frames to image files. The output filenames are specified by a pattern, which can be used to produce sequentially numbered series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position of the characters representing a numbering in the filenames. If the form "%0Nd" is used, the string representing the number in each filename is 0-padded to N digits. The literal character '%' can be specified in the pattern with the string "%%". If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the number 1, all the following numbers will be sequential. The pattern may contain a suffix which is used to automatically determine the format of the image files to write. For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form img-001.bmp, img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" will specify a sequence of filenames of the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc. Examples The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg, img-002.jpeg, ..., taking one image every second from the input video: ffmpeg -i in.avi -vsync cfr -r 1 -f image2 'img-%03d.jpeg' Note that with ffmpeg, if the format is not specified with the "-f" option and the output filename specifies an image file format, the image2 muxer is automatically selected, so the previous command can be written as: ffmpeg -i in.avi -vsync cfr -r 1 'img-%03d.jpeg' Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single image file img.jpeg from the start of the input video you can employ the command: ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg The strftime option allows you to expand the filename with date and time information. Check the documentation of the "strftime()" function for the syntax. For example to generate image files from the "strftime()" "%Y-%m-%d_%H-%M-%S" pattern, the following ffmpeg command can be used: ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg" You can set the file name with current frame's PTS: ffmpeg -f v4l2 -r 1 -i /dev/video0 -copyts -f image2 -frame_pts true %d.jpg" Options frame_pts If set to 1, expand the filename with pts from pkt->pts. Default value is 0. start_number Start the sequence from the specified number. Default value is 1. update If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the corresponding file will be continuously overwritten with new images. Default value is 0. strftime If set to 1, expand the filename with date and time information from "strftime()". Default value is 0. The image muxer supports the .Y.U.V image file format. This format is special in that that each image frame consists of three files, for each of the YUV420P components. To read or write this image file format, specify the name of the '.Y' file. The muxer will automatically open the '.U' and '.V' files as required. matroska Matroska container muxer. This muxer implements the matroska and webm container specs. Metadata The recognized metadata settings in this muxer are: title Set title name provided to a single track. language Specify the language of the track in the Matroska languages form. The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for French), or a language code mixed with a country code for specialities in languages (like "fre- ca" for Canadian French). stereo_mode Set stereo 3D video layout of two views in a single video track. The following values are recognized: mono video is not stereo left_right Both views are arranged side by side, Left-eye view is on the left bottom_top Both views are arranged in top-bottom orientation, Left-eye view is at bottom top_bottom Both views are arranged in top-bottom orientation, Left-eye view is on top checkerboard_rl Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first checkerboard_lr Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first row_interleaved_rl Each view is constituted by a row based interleaving, Right-eye view is first row row_interleaved_lr Each view is constituted by a row based interleaving, Left-eye view is first row col_interleaved_rl Both views are arranged in a column based interleaving manner, Right-eye view is first column col_interleaved_lr Both views are arranged in a column based interleaving manner, Left-eye view is first column anaglyph_cyan_red All frames are in anaglyph format viewable through red-cyan filters right_left Both views are arranged side by side, Right-eye view is on the left anaglyph_green_magenta All frames are in anaglyph format viewable through green- magenta filters block_lr Both eyes laced in one Block, Left-eye view is first block_rl Both eyes laced in one Block, Right-eye view is first For example a 3D WebM clip can be created using the following command line: ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm Options This muxer supports the following options: reserve_index_space By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the file, because it cannot know in advance how much space to leave for the index at the beginning of the file. However for some use cases -- e.g. streaming where seeking is possible but slow -- it is useful to put the index at the beginning of the file. If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file header and then try to write the cues there when the muxing finishes. If the available space does not suffice, muxing will fail. A safe size for most use cases should be about 50kB per hour of video. Note that cues are only written if the output is seekable and this option will have no effect if it is not. md5 MD5 testing format. This is a variant of the hash muxer. Unlike that muxer, it defaults to using the MD5 hash function. Examples To compute the MD5 hash of the input converted to raw audio and video, and store it in the file out.md5: ffmpeg -i INPUT -f md5 out.md5 You can print the MD5 to stdout with the command: ffmpeg -i INPUT -f md5 - See also the hash and framemd5 muxers. mov, mp4, ismv MOV/MP4/ISMV (Smooth Streaming) muxer. The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about all packets stored in one location (written at the end of the file, it can be moved to the start for better playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file consists of a number of fragments, where packets and metadata about these packets are stored together. Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted (while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when writing very long files (since writing normal MOV/MP4 files stores info about every single packet in memory until the file is closed). The downside is that it is less compatible with other applications. Options Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments: -moov_size bytes Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the end. If the space reserved is insufficient, muxing will fail. -movflags frag_keyframe Start a new fragment at each video keyframe. -frag_duration duration Create fragments that are duration microseconds long. -frag_size size Create fragments that contain up to size bytes of payload data. -movflags frag_custom Allow the caller to manually choose when to cut fragments, by calling "av_write_frame(ctx, NULL)" to write a fragment with the packets written so far. (This is only useful with other applications integrating libavformat, not from ffmpeg.) -min_frag_duration duration Don't create fragments that are shorter than duration microseconds long. If more than one condition is specified, fragments are cut when one of the specified conditions is fulfilled. The exception to this is "-min_frag_duration", which has to be fulfilled for any of the other conditions to apply. Additionally, the way the output file is written can be adjusted through a few other options: -movflags empty_moov Write an initial moov atom directly at the start of the file, without describing any samples in it. Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file, containing only a short portion of the file. With this option set, there is no initial mdat atom, and the moov atom only describes the tracks but has a zero duration. This option is implicitly set when writing ismv (Smooth Streaming) files. -movflags separate_moof Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes one moof/mdat pair for each track, making it easier to separate tracks. This option is implicitly set when writing ismv (Smooth Streaming) files. -movflags faststart Run a second pass moving the index (moov atom) to the beginning of the file. This operation can take a while, and will not work in various situations such as fragmented output, thus it is not enabled by default. -movflags rtphint Add RTP hinting tracks to the output file. -movflags disable_chpl Disable Nero chapter markers (chpl atom). Normally, both Nero chapters and a QuickTime chapter track are written to the file. With this option set, only the QuickTime chapter track will be written. Nero chapters can cause failures when the file is reprocessed with certain tagging programs, like mp3Tag 2.61a and iTunes 11.3, most likely other versions are affected as well. -movflags omit_tfhd_offset Do not write any absolute base_data_offset in tfhd atoms. This avoids tying fragments to absolute byte positions in the file/streams. -movflags default_base_moof Similarly to the omit_tfhd_offset, this flag avoids writing the absolute base_data_offset field in tfhd atoms, but does so by using the new default-base-is-moof flag instead. This flag is new from 14496-12:2012. This may make the fragments easier to parse in certain circumstances (avoiding basing track fragment location calculations on the implicit end of the previous track fragment). -write_tmcd Specify "on" to force writing a timecode track, "off" to disable it and "auto" to write a timecode track only for mov and mp4 output (default). -movflags negative_cts_offsets Enables utilization of version 1 of the CTTS box, in which the CTS offsets can be negative. This enables the initial sample to have DTS/CTS of zero, and reduces the need for edit lists for some cases such as video tracks with B-frames. Additionally, eases conformance with the DASH-IF interoperability guidelines. Example Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer. Example: ffmpeg -re <> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1) Audible AAX Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation secret. ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4 mp3 The MP3 muxer writes a raw MP3 stream with the following optional features: · An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4 are supported, the "id3v2_version" private option controls which one is used (3 or 4). Setting "id3v2_version" to 0 disables the ID3v2 header completely. The muxer supports writing attached pictures (APIC frames) to the ID3v2 header. The pictures are supplied to the muxer in form of a video stream with a single packet. There can be any number of those streams, each will correspond to a single APIC frame. The stream metadata tags title and comment map to APIC description and picture type respectively. See for allowed picture types. Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio frames until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible to avoid excessive buffering. · A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default, but will be written only if the output is seekable. The "write_xing" private option can be used to disable it. The frame contains various information that may be useful to the decoder, like the audio duration or encoder delay. · A legacy ID3v1 tag at the end of the file (disabled by default). It may be enabled with the "write_id3v1" private option, but as its capabilities are very limited, its usage is not recommended. Examples: Write an mp3 with an ID3v2.3 header and an ID3v1 footer: ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3 To attach a picture to an mp3 file select both the audio and the picture stream with "map": ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1 -metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3 Write a "clean" MP3 without any extra features: ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3 mpegts MPEG transport stream muxer. This muxer implements ISO 13818-1 and part of ETSI EN 300 468. The recognized metadata settings in mpegts muxer are "service_provider" and "service_name". If they are not set the default for "service_provider" is FFmpeg and the default for "service_name" is Service01. Options The muxer options are: mpegts_transport_stream_id integer Set the transport_stream_id. This identifies a transponder in DVB. Default is 0x0001. mpegts_original_network_id integer Set the original_network_id. This is unique identifier of a network in DVB. Its main use is in the unique identification of a service through the path Original_Network_ID, Transport_Stream_ID. Default is 0x0001. mpegts_service_id integer Set the service_id, also known as program in DVB. Default is 0x0001. mpegts_service_type integer Set the program service_type. Default is "digital_tv". Accepts the following options: hex_value Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468. digital_tv Digital TV service. digital_radio Digital Radio service. teletext Teletext service. advanced_codec_digital_radio Advanced Codec Digital Radio service. mpeg2_digital_hdtv MPEG2 Digital HDTV service. advanced_codec_digital_sdtv Advanced Codec Digital SDTV service. advanced_codec_digital_hdtv Advanced Codec Digital HDTV service. mpegts_pmt_start_pid integer Set the first PID for PMT. Default is 0x1000. Max is 0x1f00. mpegts_start_pid integer Set the first PID for data packets. Default is 0x0100. Max is 0x0f00. mpegts_m2ts_mode boolean Enable m2ts mode if set to 1. Default value is "-1" which disables m2ts mode. muxrate integer Set a constant muxrate. Default is VBR. pes_payload_size integer Set minimum PES packet payload in bytes. Default is 2930. mpegts_flags flags Set mpegts flags. Accepts the following options: resend_headers Reemit PAT/PMT before writing the next packet. latm Use LATM packetization for AAC. pat_pmt_at_frames Reemit PAT and PMT at each video frame. system_b Conform to System B (DVB) instead of System A (ATSC). initial_discontinuity Mark the initial packet of each stream as discontinuity. resend_headers integer Reemit PAT/PMT before writing the next packet. This option is deprecated: use mpegts_flags instead. mpegts_copyts boolean Preserve original timestamps, if value is set to 1. Default value is "-1", which results in shifting timestamps so that they start from 0. omit_video_pes_length boolean Omit the PES packet length for video packets. Default is 1 (true). pcr_period integer Override the default PCR retransmission time in milliseconds. Ignored if variable muxrate is selected. Default is 20. pat_period double Maximum time in seconds between PAT/PMT tables. sdt_period double Maximum time in seconds between SDT tables. tables_version integer Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively). This option allows updating stream structure so that standard consumer may detect the change. To do so, reopen output "AVFormatContext" (in case of API usage) or restart ffmpeg instance, cyclically changing tables_version value: ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111 ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111 ... ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111 ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111 ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111 ... Example ffmpeg -i file.mpg -c copy \ -mpegts_original_network_id 0x1122 \ -mpegts_transport_stream_id 0x3344 \ -mpegts_service_id 0x5566 \ -mpegts_pmt_start_pid 0x1500 \ -mpegts_start_pid 0x150 \ -metadata service_provider="Some provider" \ -metadata service_name="Some Channel" \ out.ts mxf, mxf_d10 MXF muxer. Options The muxer options are: store_user_comments bool Set if user comments should be stored if available or never. IRT D-10 does not allow user comments. The default is thus to write them for mxf but not for mxf_d10 null Null muxer. This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes. For example to benchmark decoding with ffmpeg you can use the command: ffmpeg -benchmark -i INPUT -f null out.null Note that the above command does not read or write the out.null file, but specifying the output file is required by the ffmpeg syntax. Alternatively you can write the command as: ffmpeg -benchmark -i INPUT -f null - nut -syncpoints flags Change the syncpoint usage in nut: default use the normal low-overhead seeking aids. none do not use the syncpoints at all, reducing the overhead but making the stream non-seekable; Use of this option is not recommended, as the resulting files are very damage sensitive and seeking is not possible. Also in general the overhead from syncpoints is negligible. Note, -C 0 can be used to disable all growing data tables, allowing to mux endless streams with limited memory and without these disadvantages. timestamped extend the syncpoint with a wallclock field. The none and timestamped flags are experimental. -write_index bool Write index at the end, the default is to write an index. ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor ogg Ogg container muxer. -page_duration duration Preferred page duration, in microseconds. The muxer will attempt to create pages that are approximately duration microseconds long. This allows the user to compromise between seek granularity and container overhead. The default is 1 second. A value of 0 will fill all segments, making pages as large as possible. A value of 1 will effectively use 1 packet-per-page in most situations, giving a small seek granularity at the cost of additional container overhead. -serial_offset value Serial value from which to set the streams serial number. Setting it to different and sufficiently large values ensures that the produced ogg files can be safely chained. segment, stream_segment, ssegment Basic stream segmenter. This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename pattern can be set in a fashion similar to image2, or by using a "strftime" template if the strftime option is enabled. "stream_segment" is a variant of the muxer used to write to streaming output formats, i.e. which do not require global headers, and is recommended for outputting e.g. to MPEG transport stream segments. "ssegment" is a shorter alias for "stream_segment". Every segment starts with a keyframe of the selected reference stream, which is set through the reference_stream option. Note that if you want accurate splitting for a video file, you need to make the input key frames correspond to the exact splitting times expected by the segmenter, or the segment muxer will start the new segment with the key frame found next after the specified start time. The segment muxer works best with a single constant frame rate video. Optionally it can generate a list of the created segments, by setting the option segment_list. The list type is specified by the segment_list_type option. The entry filenames in the segment list are set by default to the basename of the corresponding segment files. See also the hls muxer, which provides a more specific implementation for HLS segmentation. Options The segment muxer supports the following options: increment_tc 1|0 if set to 1, increment timecode between each segment If this is selected, the input need to have a timecode in the first video stream. Default value is 0. reference_stream specifier Set the reference stream, as specified by the string specifier. If specifier is set to "auto", the reference is chosen automatically. Otherwise it must be a stream specifier (see the ``Stream specifiers'' chapter in the ffmpeg manual) which specifies the reference stream. The default value is "auto". segment_format format Override the inner container format, by default it is guessed by the filename extension. segment_format_options options_list Set output format options using a :-separated list of key=value parameters. Values containing the ":" special character must be escaped. segment_list name Generate also a listfile named name. If not specified no listfile is generated. segment_list_flags flags Set flags affecting the segment list generation. It currently supports the following flags: cache Allow caching (only affects M3U8 list files). live Allow live-friendly file generation. segment_list_size size Update the list file so that it contains at most size segments. If 0 the list file will contain all the segments. Default value is 0. segment_list_entry_prefix prefix Prepend prefix to each entry. Useful to generate absolute paths. By default no prefix is applied. segment_list_type type Select the listing format. The following values are recognized: flat Generate a flat list for the created segments, one segment per line. csv, ext Generate a list for the created segments, one segment per line, each line matching the format (comma-separated values): ,, segment_filename is the name of the output file generated by the muxer according to the provided pattern. CSV escaping (according to RFC4180) is applied if required. segment_start_time and segment_end_time specify the segment start and end time expressed in seconds. A list file with the suffix ".csv" or ".ext" will auto-select this format. ext is deprecated in favor or csv. ffconcat Generate an ffconcat file for the created segments. The resulting file can be read using the FFmpeg concat demuxer. A list file with the suffix ".ffcat" or ".ffconcat" will auto- select this format. m3u8 Generate an extended M3U8 file, version 3, compliant with . A list file with the suffix ".m3u8" will auto-select this format. If not specified the type is guessed from the list file name suffix. segment_time time Set segment duration to time, the value must be a duration specification. Default value is "2". See also the segment_times option. Note that splitting may not be accurate, unless you force the reference stream key-frames at the given time. See the introductory notice and the examples below. segment_atclocktime 1|0 If set to "1" split at regular clock time intervals starting from 00:00 o'clock. The time value specified in segment_time is used for setting the length of the splitting interval. For example with segment_time set to "900" this makes it possible to create files at 12:00 o'clock, 12:15, 12:30, etc. Default value is "0". segment_clocktime_offset duration Delay the segment splitting times with the specified duration when using segment_atclocktime. For example with segment_time set to "900" and segment_clocktime_offset set to "300" this makes it possible to create files at 12:05, 12:20, 12:35, etc. Default value is "0". segment_clocktime_wrap_duration duration Force the segmenter to only start a new segment if a packet reaches the muxer within the specified duration after the segmenting clock time. This way you can make the segmenter more resilient to backward local time jumps, such as leap seconds or transition to standard time from daylight savings time. Default is the maximum possible duration which means starting a new segment regardless of the elapsed time since the last clock time. segment_time_delta delta Specify the accuracy time when selecting the start time for a segment, expressed as a duration specification. Default value is "0". When delta is specified a key-frame will start a new segment if its PTS satisfies the relation: PTS >= start_time - time_delta This option is useful when splitting video content, which is always split at GOP boundaries, in case a key frame is found just before the specified split time. In particular may be used in combination with the ffmpeg option force_key_frames. The key frame times specified by force_key_frames may not be set accurately because of rounding issues, with the consequence that a key frame time may result set just before the specified time. For constant frame rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the specified time and the time set by force_key_frames. segment_times times Specify a list of split points. times contains a list of comma separated duration specifications, in increasing order. See also the segment_time option. segment_frames frames Specify a list of split video frame numbers. frames contains a list of comma separated integer numbers, in increasing order. This option specifies to start a new segment whenever a reference stream key frame is found and the sequential number (starting from 0) of the frame is greater or equal to the next value in the list. segment_wrap limit Wrap around segment index once it reaches limit. segment_start_number number Set the sequence number of the first segment. Defaults to 0. strftime 1|0 Use the "strftime" function to define the name of the new segments to write. If this is selected, the output segment name must contain a "strftime" function template. Default value is 0. break_non_keyframes 1|0 If enabled, allow segments to start on frames other than keyframes. This improves behavior on some players when the time between keyframes is inconsistent, but may make things worse on others, and can cause some oddities during seeking. Defaults to 0. reset_timestamps 1|0 Reset timestamps at the beginning of each segment, so that each segment will start with near-zero timestamps. It is meant to ease the playback of the generated segments. May not work with some combinations of muxers/codecs. It is set to 0 by default. initial_offset offset Specify timestamp offset to apply to the output packet timestamps. The argument must be a time duration specification, and defaults to 0. write_empty_segments 1|0 If enabled, write an empty segment if there are no packets during the period a segment would usually span. Otherwise, the segment will be filled with the next packet written. Defaults to 0. Make sure to require a closed GOP when encoding and to set the GOP size to fit your segment time constraint. Examples · Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and write the list of generated segments to out.list: ffmpeg -i in.mkv -codec hevc -flags +cgop -g 60 -map 0 -f segment -segment_list out.list out%03d.nut · Segment input and set output format options for the output segments: ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4 · Segment the input file according to the split points specified by the segment_times option: ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut · Use the ffmpeg force_key_frames option to force key frames in the input at the specified location, together with the segment option segment_time_delta to account for possible roundings operated when setting key frame times. ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \ -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut In order to force key frames on the input file, transcoding is required. · Segment the input file by splitting the input file according to the frame numbers sequence specified with the segment_frames option: ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut · Convert the in.mkv to TS segments using the "libx264" and "aac" encoders: ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a aac -f ssegment -segment_list out.list out%03d.ts · Segment the input file, and create an M3U8 live playlist (can be used as live HLS source): ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \ -segment_list_flags +live -segment_time 10 out%03d.mkv smoothstreaming Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional web server. window_size Specify the number of fragments kept in the manifest. Default 0 (keep all). extra_window_size Specify the number of fragments kept outside of the manifest before removing from disk. Default 5. lookahead_count Specify the number of lookahead fragments. Default 2. min_frag_duration Specify the minimum fragment duration (in microseconds). Default 5000000. remove_at_exit Specify whether to remove all fragments when finished. Default 0 (do not remove). fifo The fifo pseudo-muxer allows the separation of encoding and muxing by using first-in-first-out queue and running the actual muxer in a separate thread. This is especially useful in combination with the tee muxer and can be used to send data to several destinations with different reliability/writing speed/latency. API users should be aware that callback functions (interrupt_callback, io_open and io_close) used within its AVFormatContext must be thread- safe. The behavior of the fifo muxer if the queue fills up or if the output fails is selectable, · output can be transparently restarted with configurable delay between retries based on real time or time of the processed stream. · encoding can be blocked during temporary failure, or continue transparently dropping packets in case fifo queue fills up. fifo_format Specify the format name. Useful if it cannot be guessed from the output name suffix. queue_size Specify size of the queue (number of packets). Default value is 60. format_opts Specify format options for the underlying muxer. Muxer options can be specified as a list of key=value pairs separated by ':'. drop_pkts_on_overflow bool If set to 1 (true), in case the fifo queue fills up, packets will be dropped rather than blocking the encoder. This makes it possible to continue streaming without delaying the input, at the cost of omitting part of the stream. By default this option is set to 0 (false), so in such cases the encoder will be blocked until the muxer processes some of the packets and none of them is lost. attempt_recovery bool If failure occurs, attempt to recover the output. This is especially useful when used with network output, since it makes it possible to restart streaming transparently. By default this option is set to 0 (false). max_recovery_attempts Sets maximum number of successive unsuccessful recovery attempts after which the output fails permanently. By default this option is set to 0 (unlimited). recovery_wait_time duration Waiting time before the next recovery attempt after previous unsuccessful recovery attempt. Default value is 5 seconds. recovery_wait_streamtime bool If set to 0 (false), the real time is used when waiting for the recovery attempt (i.e. the recovery will be attempted after at least recovery_wait_time seconds). If set to 1 (true), the time of the processed stream is taken into account instead (i.e. the recovery will be attempted after at least recovery_wait_time seconds of the stream is omitted). By default, this option is set to 0 (false). recover_any_error bool If set to 1 (true), recovery will be attempted regardless of type of the error causing the failure. By default this option is set to 0 (false) and in case of certain (usually permanent) errors the recovery is not attempted even when attempt_recovery is set to 1. restart_with_keyframe bool Specify whether to wait for the keyframe after recovering from queue overflow or failure. This option is set to 0 (false) by default. Examples · Stream something to rtmp server, continue processing the stream at real-time rate even in case of temporary failure (network outage) and attempt to recover streaming every second indefinitely. ffmpeg -re -i ... -c:v libx264 -c:a aac -f fifo -fifo_format flv -map 0:v -map 0:a -drop_pkts_on_overflow 1 -attempt_recovery 1 -recovery_wait_time 1 rtmp://example.com/live/stream_name tee The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be used, for example, to both stream a video to the network and save it to disk at the same time. It is different from specifying several outputs to the ffmpeg command- line tool because the audio and video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is not useful when using the libavformat API directly because it is then possible to feed the same packets to several muxers directly. use_fifo bool If set to 1, slave outputs will be processed in separate thread using fifo muxer. This allows to compensate for different speed/latency/reliability of outputs and setup transparent recovery. By default this feature is turned off. fifo_options Options to pass to fifo pseudo-muxer instances. See fifo. The slave outputs are specified in the file name given to the muxer, separated by '|'. If any of the slave name contains the '|' separator, leading or trailing spaces or any special character, it must be escaped (see the "Quoting and escaping" section in the ffmpeg-utils(1) manual). Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated by ':', between square brackets. If the options values contain a special character or the ':' separator, they must be escaped; note that this is a second level escaping. The following special options are also recognized: f Specify the format name. Useful if it cannot be guessed from the output name suffix. bsfs[/spec] Specify a list of bitstream filters to apply to the specified output. use_fifo bool This allows to override tee muxer use_fifo option for individual slave muxer. fifo_options This allows to override tee muxer fifo_options for individual slave muxer. See fifo. It is possible to specify to which streams a given bitstream filter applies, by appending a stream specifier to the option separated by "/". spec must be a stream specifier (see Format stream specifiers). If the stream specifier is not specified, the bitstream filters will be applied to all streams in the output. Several bitstream filters can be specified, separated by ",". select Select the streams that should be mapped to the slave output, specified by a stream specifier. If not specified, this defaults to all the input streams. You may use multiple stream specifiers separated by commas (",") e.g.: "a:0,v" onfail Specify behaviour on output failure. This can be set to either "abort" (which is default) or "ignore". "abort" will cause whole process to fail in case of failure on this slave output. "ignore" will ignore failure on this output, so other outputs will continue without being affected. Examples · Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the streams need to be explicitly mapped): ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a "archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/" · As above, but continue streaming even if output to local file fails (for example local drive fills up): ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a "[onfail=ignore]archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/" · Use ffmpeg to encode the input, and send the output to three different destinations. The "dump_extra" bitstream filter is used to add extradata information to all the output video keyframes packets, as requested by the MPEG-TS format. The select option is applied to out.aac in order to make it contain only audio packets. ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac" · As below, but select only stream "a:1" for the audio output. Note that a second level escaping must be performed, as ":" is a special character used to separate options. ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\'a:1\']out.aac" Note: some codecs may need different options depending on the output format; the auto-detection of this can not work with the tee muxer. The main example is the global_header flag. webm_dash_manifest WebM DASH Manifest muxer. This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It also supports manifest generation for DASH live streams. For more information see: · WebM DASH Specification: · ISO DASH Specification: Options This muxer supports the following options: adaptation_sets This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x and y are the unique identifiers of the adaptation sets and a,b,c,d and e are the indices of the corresponding audio and video streams. Any number of adaptation sets can be added using this option. live Set this to 1 to create a live stream DASH Manifest. Default: 0. chunk_start_index Start index of the first chunk. This will go in the startNumber attribute of the SegmentTemplate element in the manifest. Default: 0. chunk_duration_ms Duration of each chunk in milliseconds. This will go in the duration attribute of the SegmentTemplate element in the manifest. Default: 1000. utc_timing_url URL of the page that will return the UTC timestamp in ISO format. This will go in the value attribute of the UTCTiming element in the manifest. Default: None. time_shift_buffer_depth Smallest time (in seconds) shifting buffer for which any Representation is guaranteed to be available. This will go in the timeShiftBufferDepth attribute of the MPD element. Default: 60. minimum_update_period Minimum update period (in seconds) of the manifest. This will go in the minimumUpdatePeriod attribute of the MPD element. Default: 0. Example ffmpeg -f webm_dash_manifest -i video1.webm \ -f webm_dash_manifest -i video2.webm \ -f webm_dash_manifest -i audio1.webm \ -f webm_dash_manifest -i audio2.webm \ -map 0 -map 1 -map 2 -map 3 \ -c copy \ -f webm_dash_manifest \ -adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \ manifest.xml webm_chunk WebM Live Chunk Muxer. This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that support WebM Live streams via DASH. Options This muxer supports the following options: chunk_start_index Index of the first chunk (defaults to 0). header Filename of the header where the initialization data will be written. audio_chunk_duration Duration of each audio chunk in milliseconds (defaults to 5000). Example ffmpeg -f v4l2 -i /dev/video0 \ -f alsa -i hw:0 \ -map 0:0 \ -c:v libvpx-vp9 \ -s 640x360 -keyint_min 30 -g 30 \ -f webm_chunk \ -header webm_live_video_360.hdr \ -chunk_start_index 1 \ webm_live_video_360_%d.chk \ -map 1:0 \ -c:a libvorbis \ -b:a 128k \ -f webm_chunk \ -header webm_live_audio_128.hdr \ -chunk_start_index 1 \ -audio_chunk_duration 1000 \ webm_live_audio_128_%d.chk METADATA FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and then load it back using the metadata muxer/demuxer. The file format is as follows: 1. A file consists of a header and a number of metadata tags divided into sections, each on its own line. 2. The header is a ;FFMETADATA string, followed by a version number (now 1). 3. Metadata tags are of the form key=value 4. Immediately after header follows global metadata 5. After global metadata there may be sections with per-stream/per-chapter metadata. 6. A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets ([, ]) and ends with next section or end of file. 7. At the beginning of a chapter section there may be an optional timebase to be used for start/end values. It must be in form TIMEBASE=num/den, where num and den are integers. If the timebase is missing then start/end times are assumed to be in milliseconds. Next a chapter section must contain chapter start and end times in form START=num, END=num, where num is a positive integer. 8. Empty lines and lines starting with ; or # are ignored. 9. Metadata keys or values containing special characters (=, ;, #, \ and a newline) must be escaped with a backslash \. 10. Note that whitespace in metadata (e.g. foo = bar) is considered to be a part of the tag (in the example above key is foo , value is bar). A ffmetadata file might look like this: ;FFMETADATA1 title=bike\\shed ;this is a comment artist=FFmpeg troll team [CHAPTER] TIMEBASE=1/1000 START=0 #chapter ends at 0:01:00 END=60000 title=chapter \#1 [STREAM] title=multi\ line By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file. Extracting an ffmetadata file with ffmpeg goes as follows: ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE Reinserting edited metadata information from the FFMETADATAFILE file can be done as: ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT PROTOCOL OPTIONS The libavformat library provides some generic global options, which can be set on all the protocols. In addition each protocol may support so- called private options, which are specific for that component. Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use. The list of supported options follows: protocol_whitelist list (input) Set a ","-separated list of allowed protocols. "ALL" matches all protocols. Protocols prefixed by "-" are disabled. All protocols are allowed by default but protocols used by an another protocol (nested protocols) are restricted to a per protocol subset. PROTOCOLS Protocols are configured elements in FFmpeg that enable access to resources that require specific protocols. When you configure your FFmpeg build, all the supported protocols are enabled by default. You can list all available ones using the configure option "--list-protocols". You can disable all the protocols using the configure option "--disable-protocols", and selectively enable a protocol using the option "--enable-protocol=PROTOCOL", or you can disable a particular protocol using the option "--disable-protocol=PROTOCOL". The option "-protocols" of the ff* tools will display the list of supported protocols. All protocols accept the following options: rw_timeout Maximum time to wait for (network) read/write operations to complete, in microseconds. A description of the currently available protocols follows. async Asynchronous data filling wrapper for input stream. Fill data in a background thread, to decouple I/O operation from demux thread. async: async:http://host/resource async:cache:http://host/resource bluray Read BluRay playlist. The accepted options are: angle BluRay angle chapter Start chapter (1...N) playlist Playlist to read (BDMV/PLAYLIST/?????.mpls) Examples: Read longest playlist from BluRay mounted to /mnt/bluray: bluray:/mnt/bluray Read angle 2 of playlist 4 from BluRay mounted to /mnt/bluray, start from chapter 2: -playlist 4 -angle 2 -chapter 2 bluray:/mnt/bluray cache Caching wrapper for input stream. Cache the input stream to temporary file. It brings seeking capability to live streams. cache: concat Physical concatenation protocol. Read and seek from many resources in sequence as if they were a unique resource. A URL accepted by this protocol has the syntax: concat:||...| where URL1, URL2, ..., URLN are the urls of the resource to be concatenated, each one possibly specifying a distinct protocol. For example to read a sequence of files split1.mpeg, split2.mpeg, split3.mpeg with ffplay use the command: ffplay concat:split1.mpeg\|split2.mpeg\|split3.mpeg Note that you may need to escape the character "|" which is special for many shells. crypto AES-encrypted stream reading protocol. The accepted options are: key Set the AES decryption key binary block from given hexadecimal representation. iv Set the AES decryption initialization vector binary block from given hexadecimal representation. Accepted URL formats: crypto: crypto+ data Data in-line in the URI. See . For example, to convert a GIF file given inline with ffmpeg: ffmpeg -i "" smiley.png file File access protocol. Read from or write to a file. A file URL can have the form: file: where filename is the path of the file to read. An URL that does not have a protocol prefix will be assumed to be a file URL. Depending on the build, an URL that looks like a Windows path with the drive letter at the beginning will also be assumed to be a file URL (usually not the case in builds for unix-like systems). For example to read from a file input.mpeg with ffmpeg use the command: ffmpeg -i file:input.mpeg output.mpeg This protocol accepts the following options: truncate Truncate existing files on write, if set to 1. A value of 0 prevents truncating. Default value is 1. blocksize Set I/O operation maximum block size, in bytes. Default value is "INT_MAX", which results in not limiting the requested block size. Setting this value reasonably low improves user termination request reaction time, which is valuable for files on slow medium. ftp FTP (File Transfer Protocol). Read from or write to remote resources using FTP protocol. Following syntax is required. ftp://[user[:password]@]server[:port]/path/to/remote/resource.mpeg This protocol accepts the following options. timeout Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By default it is set to -1, which means that the timeout is not specified. ftp-anonymous-password Password used when login as anonymous user. Typically an e-mail address should be used. ftp-write-seekable Control seekability of connection during encoding. If set to 1 the resource is supposed to be seekable, if set to 0 it is assumed not to be seekable. Default value is 0. NOTE: Protocol can be used as output, but it is recommended to not do it, unless special care is taken (tests, customized server configuration etc.). Different FTP servers behave in different way during seek operation. ff* tools may produce incomplete content due to server limitations. This protocol accepts the following options: follow If set to 1, the protocol will retry reading at the end of the file, allowing reading files that still are being written. In order for this to terminate, you either need to use the rw_timeout option, or use the interrupt callback (for API users). gopher Gopher protocol. hls Read Apple HTTP Live Streaming compliant segmented stream as a uniform one. The M3U8 playlists describing the segments can be remote HTTP resources or local files, accessed using the standard file protocol. The nested protocol is declared by specifying "+proto" after the hls URI scheme name, where proto is either "file" or "http". hls+http://host/path/to/remote/resource.m3u8 hls+file://path/to/local/resource.m3u8 Using this protocol is discouraged - the hls demuxer should work just as well (if not, please report the issues) and is more complete. To use the hls demuxer instead, simply use the direct URLs to the m3u8 files. http HTTP (Hyper Text Transfer Protocol). This protocol accepts the following options: seekable Control seekability of connection. If set to 1 the resource is supposed to be seekable, if set to 0 it is assumed not to be seekable, if set to -1 it will try to autodetect if it is seekable. Default value is -1. chunked_post If set to 1 use chunked Transfer-Encoding for posts, default is 1. content_type Set a specific content type for the POST messages or for listen mode. http_proxy set HTTP proxy to tunnel through e.g. http://example.com:1234 headers Set custom HTTP headers, can override built in default headers. The value must be a string encoding the headers. multiple_requests Use persistent connections if set to 1, default is 0. post_data Set custom HTTP post data. referer Set the Referer header. Include 'Referer: URL' header in HTTP request. user_agent Override the User-Agent header. If not specified the protocol will use a string describing the libavformat build. ("Lavf/") user-agent This is a deprecated option, you can use user_agent instead it. timeout Set timeout in microseconds of socket I/O operations used by the underlying low level operation. By default it is set to -1, which means that the timeout is not specified. reconnect_at_eof If set then eof is treated like an error and causes reconnection, this is useful for live / endless streams. reconnect_streamed If set then even streamed/non seekable streams will be reconnected on errors. reconnect_delay_max Sets the maximum delay in seconds after which to give up reconnecting mime_type Export the MIME type. http_version Exports the HTTP response version number. Usually "1.0" or "1.1". icy If set to 1 request ICY (SHOUTcast) metadata from the server. If the server supports this, the metadata has to be retrieved by the application by reading the icy_metadata_headers and icy_metadata_packet options. The default is 1. icy_metadata_headers If the server supports ICY metadata, this contains the ICY-specific HTTP reply headers, separated by newline characters. icy_metadata_packet If the server supports ICY metadata, and icy was set to 1, this contains the last non-empty metadata packet sent by the server. It should be polled in regular intervals by applications interested in mid-stream metadata updates. cookies Set the cookies to be sent in future requests. The format of each cookie is the same as the value of a Set-Cookie HTTP response field. Multiple cookies can be delimited by a newline character. offset Set initial byte offset. end_offset Try to limit the request to bytes preceding this offset. method When used as a client option it sets the HTTP method for the request. When used as a server option it sets the HTTP method that is going to be expected from the client(s). If the expected and the received HTTP method do not match the client will be given a Bad Request response. When unset the HTTP method is not checked for now. This will be replaced by autodetection in the future. listen If set to 1 enables experimental HTTP server. This can be used to send data when used as an output option, or read data from a client with HTTP POST when used as an input option. If set to 2 enables experimental multi-client HTTP server. This is not yet implemented in ffmpeg.c and thus must not be used as a command line option. # Server side (sending): ffmpeg -i somefile.ogg -c copy -listen 1 -f ogg http://: # Client side (receiving): ffmpeg -i http://: -c copy somefile.ogg # Client can also be done with wget: wget http://: -O somefile.ogg # Server side (receiving): ffmpeg -listen 1 -i http://: -c copy somefile.ogg # Client side (sending): ffmpeg -i somefile.ogg -chunked_post 0 -c copy -f ogg http://: # Client can also be done with wget: wget --post-file=somefile.ogg http://: HTTP Cookies Some HTTP requests will be denied unless cookie values are passed in with the request. The cookies option allows these cookies to be specified. At the very least, each cookie must specify a value along with a path and domain. HTTP requests that match both the domain and path will automatically include the cookie value in the HTTP Cookie header field. Multiple cookies can be delimited by a newline. The required syntax to play a stream specifying a cookie is: ffplay -cookies "nlqptid=nltid=tsn; path=/; domain=somedomain.com;" http://somedomain.com/somestream.m3u8 Icecast Icecast protocol (stream to Icecast servers) This protocol accepts the following options: ice_genre Set the stream genre. ice_name Set the stream name. ice_description Set the stream description. ice_url Set the stream website URL. ice_public Set if the stream should be public. The default is 0 (not public). user_agent Override the User-Agent header. If not specified a string of the form "Lavf/" will be used. password Set the Icecast mountpoint password. content_type Set the stream content type. This must be set if it is different from audio/mpeg. legacy_icecast This enables support for Icecast versions < 2.4.0, that do not support the HTTP PUT method but the SOURCE method. icecast://[[:]@]:/ mmst MMS (Microsoft Media Server) protocol over TCP. mmsh MMS (Microsoft Media Server) protocol over HTTP. The required syntax is: mmsh://[:][/][/] md5 MD5 output protocol. Computes the MD5 hash of the data to be written, and on close writes this to the designated output or stdout if none is specified. It can be used to test muxers without writing an actual file. Some examples follow. # Write the MD5 hash of the encoded AVI file to the file output.avi.md5. ffmpeg -i input.flv -f avi -y md5:output.avi.md5 # Write the MD5 hash of the encoded AVI file to stdout. ffmpeg -i input.flv -f avi -y md5: Note that some formats (typically MOV) require the output protocol to be seekable, so they will fail with the MD5 output protocol. pipe UNIX pipe access protocol. Read and write from UNIX pipes. The accepted syntax is: pipe:[] number is the number corresponding to the file descriptor of the pipe (e.g. 0 for stdin, 1 for stdout, 2 for stderr). If number is not specified, by default the stdout file descriptor will be used for writing, stdin for reading. For example to read from stdin with ffmpeg: cat test.wav | ffmpeg -i pipe:0 # ...this is the same as... cat test.wav | ffmpeg -i pipe: For writing to stdout with ffmpeg: ffmpeg -i test.wav -f avi pipe:1 | cat > test.avi # ...this is the same as... ffmpeg -i test.wav -f avi pipe: | cat > test.avi This protocol accepts the following options: blocksize Set I/O operation maximum block size, in bytes. Default value is "INT_MAX", which results in not limiting the requested block size. Setting this value reasonably low improves user termination request reaction time, which is valuable if data transmission is slow. Note that some formats (typically MOV), require the output protocol to be seekable, so they will fail with the pipe output protocol. prompeg Pro-MPEG Code of Practice #3 Release 2 FEC protocol. The Pro-MPEG CoP#3 FEC is a 2D parity-check forward error correction mechanism for MPEG-2 Transport Streams sent over RTP. This protocol must be used in conjunction with the "rtp_mpegts" muxer and the "rtp" protocol. The required syntax is: -f rtp_mpegts -fec prompeg=