
Project 2007

December 8, 2017

2

Contents

I Generalities 5

1 My first command : set editing 7

1.1 Introduction . 7

1.2 Algorithms/Photogrammetry . 7

1.3 User’s side(1) . 7

1.3.1 Basic notion . 7

1.3.2 Getting help . 8

1.3.3 basic usage . 8

1.3.3.1 Exercices . 9

1.3.4 Optional paramaters . 9

1.3.4.1 Out paramater . 9

1.3.4.2 Show paramater . 10

1.3.5 More help . 10

1.4 User’s side-2, global parameter . 11

1.4.1 Fixing project directory DirProj . 11

1.4.2 Filtering by interval FFI0, FFI1 . 11

1.4.3 Redirecting message with StdOut . 12

1.4.3.1 Exercices . 12

1.4.4 Fixing MicMac version for export NumVOut . 12

1.4.5 Predefined semantics . 12

1.4.5.1 Generalities . 12

1.4.5.2 Main pattern image [MPI] . 13

1.4.5.3 File of Directory Project [FDP] . 13

1.5 User’s side-3, most frequent error . 13

1.5.1 Generality . 13

1.5.2 Error BadBool . 13

1.5.3 Error BadOptP . 14

1.5.4 Error MultOptP . 14

1.5.5 Error OpenFile . 14

1.5.6 Error InsufP . 14

1.5.7 Error BadEnum . 14

1.5.8 Error FileSetN . 14

1.5.9 Error IntWithoutS . 14

1.6 Programmer’s side, adding a new command (1) . 14

1.6.1 Heriting from cMMVII Appli . 15

1.6.2 Link between name an class . 15

1.6.3 Specifying paramaters . 15

1.6.4 Standard access paramaters . 16

1.6.4.1 Reading set of name from file with SetNameFromString 16

1.6.4.2 Main sets with MainSetk . 16

3

4 CONTENTS

2 Programming organisation, style ... 17
2.1 Naming convention . 17
2.2 Never use std::cout, printf ... 17
2.3 Encapsulation of boost, stl .. 17
2.4 Error handling . 17
2.5 Memory check . 17
2.6 Serialization . 17
2.7 Shared pointer . 17
2.8 Enum to string . 17

3 Project management command 19
3.1 Help command . 19

II Reference documentation 21

III Annexes 23

A Référence bibliographique 25

Part I

Generalities

5

Chapter 1

My first command : set editing

1.1 Introduction

This chapter presents the first commands of MMVII. It uses a plan that will be almost systematic in
many other chapter :

— a section relative to algorithmic and photogrammetric aspect of the chapter, generally this section
may exist 1 almost totally independantly of MMVII, but it is pre-requisite as there is obviously no
interest to know the command and the code if the fundamentalls are not understood;

— a user’s guide section, relative to MMVIIat the users level, including the syntax of the command;
— one or more programmers section, relative to C++ code implemanting the command, it will be a

presentation of general organisation 2, as the detail are to be found in doxygenpages;
This chapter will be a bit specific as the part or user’s guide and programming will be much more

important than other for a single command, as many concept common to all command will be explained
here, conversely the algorithmic part will be very short.

1.2 Algorithms/Photogrammetry

The command we learn is a command usefull for editing a set of file. Almost all command of MMVI-
Irequire as parameter one or more set of file (i.e. the subset of images that we are considering for a given
computation). For single case, this set of file can be simply specified by a regular expression : for example
".*JPG" to specify all the file with a JPG extension.

However for more complex case we may want to :
— create a set from a single pattern;
— add or substract an interval, a pattern . . .
— memorize the result and reuse it.
This is what does the EditSet command, piece by piece create a XML file that memorize a ”complex”

set of file that can be used instead of a pattern.

1.3 User’s side(1)

1.3.1 Basic notion

MMVII is a command line programm. There is unique programm which name is MMVII. Any com-
mand, OneCmd, of MMVII will be called with the syntax MMVII OneCmd Args where Args are the argu-
ments of the command. To know what are the existing command there is two way :

— a basic one just enter MMVII;
— a more sophisticated one , to be written, MMVII Help t described in 3.1;
For the basic one we get:

1. i.e. may be of interest for the reader, hopefully
2. as link between concept and classes

7

8 CHAPTER 1. MY FIRST COMMAND : SET EDITING

MMVII

...

Bench => This command execute (many) self verification on MicMac-V2 behaviour

Cpp11 => This command execute some test for to check my understanding of C++11

TBS => This command execute some experiments en boost serrialization

MPDTest => This used a an entry point to all quick and dirty test by MPD ...

EditSet => This command is used to edit set of file

EditRel => This command is used to edit set of pairs of files

...

We get the list of all command and short commentary on the service given by the command.

1.3.2 Getting help

Very currently, user will know what the command does, but will not remember the exact syntax. The
help key word can be used at any position for requiring this information, for example :

MMVII EditSet help

* Help project 2007/MMVII *

For command : EditSet

=> This command is used to edit set of file

=> Srce code entry in :../../MMVII/src/Appli/cMMVII_CalcSet.cpp

== Mandatory unnamed args : ==

* string [FDP] :: Full Name of Xml in/out

* string :: Operator in (+= *= -= = =0)

* string [MPI0] :: Pattern or Xml for modifying

== Optional named args : ==

* [Name=Show] int :: Show detail of set before/after , (def) 0->none, (1) modif, (2) all

* [Name=Out] string :: Destination, def=Input, no save for NONE

We get three part :
— first part give the short comment, and the name of the C++ file where the entry point of the

command is implemented (may be of interest to programmers);
— second part contains the description of mandatory args, we see that here we have three mandatory

args; for each args is indicated the type (here all strings), and after ::, the semantic of the
parameter; sometime it is inserted inside square bracket (like [FDP]) some ”predefined semantics”
that will be described later (1.4.5);

— third part contains the description of optional args, as for mandatory args, the type and a
short command is given, before this is added the name the optional parameter in the form
[Name=TheName];

As said before, help can appear at any position after OneCmd, this can be usefull when one has begin
to edit a command, and dont want to loose it, for example with parameter of next section, the following
line is perfectly valide to obtain help about EditSet :

MMVII EditSet File.xml = "F[0-3].txt" help

1.3.3 basic usage

For example, if we go in the folder MMVII-MainFolder/MMVII-TestDir/Input/Files, we can test :

MMVII EditSet File.xml = "F[0-3].txt"

1.3. USER’S SIDE(1) 9

Here we have used only the mandatory paramaters. As there is no naming for these parameters, the
order is used to make the correspondance between parameters and value, so here :

— File.xml correspond to first parameter described as "Full Name of Xml in/out";
— = correspond to second paramater, described as Operator ...;
— "F[0-3].txt" correspond to third paramater, described as Pattern ...;
Some comment on the effect of this parameter :
— File.xml is the name of the XML file that contain the initial list of name, it’s pefectly acceptable

that this file does not exist, in this case an empty list is created;
— = correspond to second paramater, is describe the operator that will be used to modify the file with

the value S3 of third parameter, its value must belong to an enumarated list with the following
meaning

= , S3 ovewrite File.xml ;

+= , S3 is added to File.xml ;

-= , S3 is subsbracted from File.xml

*= , File.xml is the intersection of S3 and its previous value;

=0 , File.xml is empty, whatever may be in S3 ;

— "F[0-3].txt" correspond to third paramater, described as Pattern ...;
We can now inspect the file File.xml which contains the name of the files present in the folder and

matching the regular expression "F[0-3].txt":

cat File.xml

<?xml version="1.0" encoding="ISO8859-1" standalone="yes" ?>

<MMVII_Serialization>

<SetOfName>

<Nb>4</Nb>

<el>F0.txt</el>

<el>F1.txt</el>

<el>F2.txt</el>

<el>F3.txt</el>

</SetOfName>

</MMVII_Serialization>

As always when a regular expression is used to specify set of file, it is understood as a filter on existing
file. So if one had used "F([0-3]|[a-z]).txt", given the file present in MMVII-MainFolder/MMVII-TestDir/Input/Files,
we woul have obtained exactly the same result.

1.3.3.1 Exercices

Try the following command and inspect the result , after each :

MMVII EditSet File.xml = "F[0-3].txt"

MMVII EditSet File.xml += "F[7-9].txt"

MMVII EditSet File.xml -= "F8.txt"

MMVII EditSet File.xml *= "F[02468].txt"

MMVII EditSet File.xml =0 ".*"

1.3.4 Optional paramaters

1.3.4.1 Out paramater

Optional parameter are given after the mandary one in a list of string Name=Value. For example until
now we have use the file File.xml both as input and output, but sometime we don’t want to modify the
input file, we can the use the optionnal Out parameter. For example if we enter :

MMVII EditSet File.xml = "F[0-3].txt"

MMVII EditSet File.xml += "F[7-9].txt" Out=File2.xml

10 CHAPTER 1. MY FIRST COMMAND : SET EDITING

After first line File.xml contains t4 names. After second line, the File.xml is unchanged while
File2.xml contains 7 names.

An interesting option, for this commans as each time a pattern is expected, is that if the file is XML

file, created by MMVII and with main tag <SetOfName>, then name used will not be the pattern itself
but the name contained in the file, for example :

MMVII EditSet File1.xml = "F[0-3].txt"

MMVII EditSet File2.xml = "F[7-9].txt"

MMVII EditSet File1.xml += File2.xml Out=File3.xml

MMVII EditSet File3.xml += File2.xml Out=File4.xml

After this command File3.xml contains the sum of File1.xml and File2.xml, here 7 name. All the
operation are set operation, in the mathematicall sense, so there is no duplicate, dans File4 contain still
7 names.

1.3.4.2 Show paramater

The Show allow to visualize the result of the operation.

MMVII EditSet File.xml =0 ".*"

MMVII EditSet File.xml = "F[0-4].txt"

MMVII EditSet File.xml += "F[0-6].txt" Show=1

-+ F5.txt

-+ F6.txt

MMVII EditSet File.xml *= "F[02468].txt" Show=2

++ F0.txt

++ F2.txt

++ F4.txt

++ F6.txt

+- F1.txt

+- F3.txt

+- F5.txt

The third command use the parameter Show, as the value is 1, only the modification are shown :
— -+ F5.txt means that the file was inially absent (−) and is present at end (+)
It is also possible to show all the result, including the names that present before and after the

modification :
— ++ F0.txt : means that the file is present before and after the operation;
— +- F1.txt : means that the file is present before and absent after the operation;

1.3.5 More help

In MMVIIthere exists many optional parameter. There are not shown by default in the help mode,
but it is possible to show :

— the standard common parameter by setting Help instead of help
— all the common parameter, including the internal common parameter by setting HELP instead of

help; the internal parameter are used by MMVIIto communicate information to sub-process when
MMVIIcalls itself; for example the parameter LevCall allow MMVIIto know if it was called by
the user or by MMVIIand to which level of imbrication; obviously it is generally a bad idea to fix
yourself the internall parameter;

Here is an example with EditSet :

MMVII EditSet File.xml *= "F[02468].txt" Show=2 HELP

...

* [Name=Out] string :: Destination, def=Input, no save for NONE

* [Name=FFI0] string [FFI0] :: File Filter Interval, Main Set ### COMMON

* [Name=FFI1] string [FFI1] :: File Filter Interval, Second Set ### COMMON

* [Name=NumVOut] int :: Num version for output format (1 or 2) ### COMMON

1.4. USER’S SIDE-2, GLOBAL PARAMETER 11

* [Name=DirProj] string [DP] :: Project Directory ### COMMON

* [Name=StdOut] string :: Redirection of Ouput (+File for add,NONEfor no out) ### COMMON

...

* [Name=LevCall] int :: Internal : Don’t Use !! ### INTERNAL

* [Name=ShowAll] bool :: Internal : Don’t Use !! ### INTERNAL

...

As some command have many option, it possible to filter the optionnal parameter using a regular
expression , with a syntax help=expr (or Help or HELP), for example :

MMVII EditSet File.xml *= "F[02468].txt" Show=2 HELP=F.*

...

== Optional named args : ==

* [Name=FFI0] string :: File Filter Interval, Main Set ### COMMON

* [Name=FFI1] string :: File Filter Interval, Second Set ### COMMON

1.4 User’s side-2, global parameter

1.4.1 Fixing project directory DirProj

In MMVII the notion of project is closely related to the folder where are stored a given set of data,
basically one can consider for universall the rule ”one project/one folder”. MMVII uses the following
rule to determine the directory of project :

— many command have a parameter that fix the project folder, for example with EditSet the first
parameter fix the project directory, they are indicated by [FDP] (see 1.4.5);

— when there is no command to fix the folder, by default MMVIIfix the project folder to "./".;
— it is also possible to fix this directory with the optionnal parameter DirProj.
For example, if we go in the folder MMVII-MainFolder/MMVII-TestDir/Input/, we can test :

MMVII EditSet Files/FileX.xml = "F[0].txt"

MMVII EditSet Files/FileX.xml = "F[0].txt" Show=2

++ F0.txt

MMVII EditSet FileX.xml = "F[0].txt" Show=2 DirProj=Files/

++ F0.txt

In the first two command, the project folder is computed from Files/FileX.xml. In the last com-
mand, it is computed from DirProj=Files/.

1.4.2 Filtering by interval FFI0, FFI1

Intervall can be used for different ordered type, for string the order is the standard lexicographic
order. Interval are describe on command line usign square barcket, "[" and "]", separated by a comma
",". Rather than a formal definition, explain by example :

— one can use closed interval : [a100.jpg,a150.jpg] filter the string S such that a100.jpg ≤ S and
S ≤ a100.jpg

— one can use open interval :]a100.jpg,a150.jpg[filter the string S such that a100.jpg < S and
S < a100.jpg

— interval can be semi open as [a100.jpg,a150.jpg[with obvious interpretation;
— interval can be semi finite : [a100.jpg,[filter the string a100.jpg ≤ S, and no upper bound;
— finally one can create union of intervall by simply concatening the string:],a110jpg[[a140.jpg,[

filter the string such that S < a110.jpg or a140.jpg ≤ S
The common optional parameter FFI0 (and FFI1) can be used to do this filtering, for example , if we

go in the folder MMVII-MainFolder/MMVII-TestDir/Input/Files, we can test :

MMVII EditSet File.xml = "F.*txt" FFI0="[F1.txt,F3.txt[]F7.txt,["

...

<el>F1.txt</el>

12 CHAPTER 1. MY FIRST COMMAND : SET EDITING

<el>F2.txt</el>

<el>F8.txt</el>

<el>F9.txt</el>

In this example, the parameter FFI0 has been used to filter "F.*txt", and gives the result described
with the 4 names. Of course, the question is ”How the user can knows that the filter FFI0 will apply to
this parameter ?”. This here where comes the ”predefined semantics” [MPI0] that is shown in the help
(see 1.4.5).

1.4.3 Redirecting message with StdOut

By defaut MMVII print several messages on the console. When user want to print the messages in a
file File.txt, it is possible to :

— just append the messages at the end to the possibily existing file by StdOut=File.txt;
— just append the messages to the possibily existing file and still print the messages on the console

by StdOut=+File.txt;
— print the messages in this file, and reset if it exist, StdOut=0File.txt;
— print the messages in this file, and reset if it exist, and still print the messages on the console by

StdOut=0+File.txt;
— print nothing by StdOut=NONE.

This has for consequences that the name of the file of redirection cannot begin by + or 0.

1.4.3.1 Exercices

Try the following command and inspect the result , after each :

File Mes.txt grows

MMVII EditSet File.xml = "F[0-3].txt" StdOut=Mes.txt Show=2

MMVII EditSet File.xml = "F[0-3].txt" StdOut=+Mes.txt Show=2

MMVII EditSet File.xml = "F[0-3].txt" StdOut=Mes.txt Show=2

File Mes.txt reiniliazed

MMVII EditSet File.xml = "F[0-3].txt" StdOut=0Mes.txt Show=2

MMVII EditSet File.xml = "F[0-3].txt" StdOut=0+Mes.txt Show=2

MMVII EditSet File.xml = "F[0-3].txt" StdOut=+0Mes.txt Show=2

No output

MMVII EditSet File.xml = "F[0-3].txt" StdOut=NONE Show=2

1.4.4 Fixing MicMac version for export NumVOut

As versions 1 and 2 of MicMac will coexist for several (many ?) years, it is usefull that new tools
are able to import/export. For import, the solution is easy, MMVII, recognize by analyzing the first tag
which version is it (if any). For export the rule are more complicated but quite logical, they use the
common optionnal parameter NumVOut :

— if NumVOut is set (to 1 or 2) this fix the num version for export;
— else if there at least one file of V 2 was imported, the export will be in V 2;
— else if there at least one file of V 1 was imported, the export will be in V 1;
— else the export will be in V 2;

1.4.5 Predefined semantics

1.4.5.1 Generalities

Many parameters of many command of MMVIIcorrespond to the same meaning/semantic, this is the
case for ”main set of images”, ”main orientation”, . . . These predefined semantic are indicated in square
bracket after the types, for example with command EditSet we can see [FDP], [MPI0], [FFI0],[FFI1]

[DP] :

1.5. USER’S SIDE-3, MOST FREQUENT ERROR 13

MMVII EditSet HELP

...

* string [FDP] :: Full Name of Xml in/out

* string [MPI0] :: Pattern or Xml for modifying

...

* [Name=FFI0] string [FFI0] :: File Filter Interval, Main Set ### COMMON

* [Name=FFI1] string [FFI1] :: File Filter Interval, Second Set ### COMMON

* [Name=DirProj] string [DP] :: Project Directory ### COMMON

..

We desribe after this semantic (but not for common parameter, as they have already been described).

1.4.5.2 Main pattern image [MPI]

Many command have a parameter which is the main set/pattern of files (generally images). This
parameter is described by the predefined semantic [MPI0]. If this parameter exists, then it is possible to
use [FFI0] to filter the set (if there is no [MPI0] then use of [FFI0] is forbidden).

Some command have several main sets, in this case one of their parameter will have the predefined
semantic [MPI1], which can be filtered by [FFI1]. See the command EditRel.

1.4.5.3 File of Directory Project [FDP]

The notion of project directory was introduced in 1.4.1. Generally there is no need to specify it,
as there is one ”main” file parameter that fix this directory. This parameter can be recognized by the
predefined semantic [FDP], in EditSet command, this is first parameter that corresponds to this.

1.5 User’s side-3, most frequent error

1.5.1 Generality

When a command fails, it generates an error message and generally wait for the user to press ”return
key”. The first part of the message contains the type of error, it can be :

— Level=[Internal Error] : this mean that some incoherence in MMVIIwas encontered, probably
in this case user cannot do many thing but report to forum or devlopping team mentionning the
complete message;

— Level=[UserEr:XXXX] : this means that the error is probably due to a bad manipulation of the
user, where XXX is the reference of the error;

For example :

MMVII EditSet File.xml = "F.*txt" ShowAll=tru

Level=[UserEr:BadBool]

Mes=[Bad value for boolean :[tru]]

Let comment the message :
— Mes=[Bad value for boolean :[tru]] : this as short message, which will be generally sufficient

to analyse the error, here the error occured because ShowAll is of type boolean and tru is not a
valide string to create a boolean;

— Level=[UserEr:BadBool] : this line indicate the reference of the error, this reference can be used
, if the short message is unsufficient, as an entry in this documentation to get more information
on the error;

1.5.2 Error BadBool

This error occurs when a parameter of boolean type is initialized with an unvalid string. Valide string
for boolean are : {0,1,false,true} (case unsensitive). Example, parameter ShowAll being boolean :

MMVII EditSet File.xml = "F.*txt" ShowAll=tru

14 CHAPTER 1. MY FIRST COMMAND : SET EDITING

1.5.3 Error BadOptP

This error occurs when an optionnal parameter name do not match any the expected paramater name.
Example, typing AllShow instead of ShowAll.

MMVII EditSet File.xml = "F.*txt" AllShow=true

1.5.4 Error MultOptP

This error occurs when the same optional parameter was used several time. Example doubling the
NumVOut :

MMVII EditSet File.xml = ".*txt" NumVOut=1 NumVOut=1

1.5.5 Error OpenFile

This error occurs when MMVIIcannot open a file, in read or write mode, several reason can exist :
hard disk full, rights on the file system, directory do not exist. Example :

MMVII EditSet File.xml = ".*txt" Out=o/o.xml

1.5.6 Error InsufP

This error occurs when the number of parameter is inferior to the number of mandatory parameters.
Example, omiting the operator in EditSet:

MMVII EditSet File.xml "F.*txt"

1.5.7 Error BadEnum

This error occurs when a string cannot create a specific enum. Example, typing eq instead of = in
EditSet.

MMVII EditSet File.xm eq "F.*txt"

1.5.8 Error FileSetN

This error occurs when a File a file was expected to be a set of name and : the file exist (else
it would be just an empty set) but is not a correct xml file in V1 or V2 format. Exemple under
MMVII-MainFolder/MMVII-TestDir/Input/Files, using the file BadFile.xml :

MMVII EditSet BadFile.xml = .*txt

1.5.9 Error IntWithoutS

This error occurs when a file filter image (FFI0,FFI1) were used but the corresponding main pattern
is not member of the command, for example :

MMVII EditSet BadFile.xml = .*txt FFI1=[,]

1.6 Programmer’s side, adding a new command (1)

In this chapter we will see the main roadmap to follow for adding a new command in MMVII.

1.6. PROGRAMMER’S SIDE, ADDING A NEW COMMAND (1) 15

1.6.1 Heriting from cMMVII Appli

A first and easy principle is ”One command/One class” and ”this class must inherit from cMMVII Appli.
In our case the class corresponding to EditSet is the class cAppli EditSet defined in file :

— MMVII-MainFolder//src/cMMVII CalcSet.cpp

As cMMVII Appli is pure virtual class, the concrete class must override 3 methods :
— int Exe(); : this method execute the action of the command;
— cCollecSpecArg2007 & ArgObl(cCollecSpecArg2007 &) this method communicate the specifi-

cation of mandatory parameters;
— cCollecSpecArg2007 & ArgOpt(cCollecSpecArg2007 &) this method communicate the specifi-

cation of optional parameters;

1.6.2 Link between name an class

The first thing MMVIIhas to do is to create the object heriting from cMMVII Appli from the command
name (here create a cAppli EditSet from EditSet). To avoid huge compilation this creation is done
without declaration of all the class in header; the philosophy is to have ”hidden” derived class definition
in ”.cpp” files and just export an allocator. More precisely this is done via the class cSpecMMVII Appli

which is the specification of an application, it contains :
— an allocator function able to create a cMMVII Appli from command line (see type tMMVII AppliAllocator),

here this is the function Alloc EditSet;
— the name of the command, here EditSet;
— the comment of the command;
— three vector of specification : features (what main group the command belongs to), type of input,

type of output; these specification are used in the help command to look for a given command
(satisfying a requets of the user such that ”which command deal with oriention and produce ply
data?”);

— the file where the spec is created (using macro FILE) to help recovering file from command
name.

Once the spec is created, it must be added to vector containing all the specification, this is done
simply by adding a line as

— TheRes.push back(&TheSpecEditSet);

in file src/Appli/cSpecMMVII Appli.cpp.

1.6.3 Specifying paramaters

The specification of parameters is done by the methods ArgObl and ArgOpt. They both return a
cCollecSpecArg2007 with are an agregation of cSpecOneArg2007. A cSpecOneArg2007 contains the
specification of one parameters, it is a virtual class that contains :

— the variable that will be initialzed, this variable which can be of different type as it is contained
in the derived classes;

— a vector of predefined semantics, a predefined semantic is create from one enum eTA2007 and an
optional additional string;

— the comment associated to the parameter;
— the name of the parameter (aways empty string "" for mandatory parameters);
Let’s make a brief comment with class EditSet, first mandatory parameters :

cCollecSpecArg2007 & cAppli_EditSet::ArgObl(cCollecSpecArg2007 & anArgObl)

{

return

anArgObl

<< Arg2007(mXmlIn,"Full Name of Xml in/out",{eTA2007::FileDirProj})

<< Arg2007(mOp,"Operator in ("+StrAllVall<eOpAff>()+")")

<< Arg2007(mPat,"Pattern or Xml for modifying",{{eTA2007::MPatIm,"0"}});

}

Let’s comment :

16 CHAPTER 1. MY FIRST COMMAND : SET EDITING

— The function Arg2007 is template and adapt to the type of the l-value , here all the parameter
are string , but could be int . . . or any type pre-instatiated in cReadOneArgCL.cpp using macrp
MACRO INSTANTIATE ARG2007;

— the StrAllVall<eOpAff>() function is used to generate the string of all valid operators;
— the first parameter will fix the project directory, we indicate this by a having the semantic
{eTA2007::FileDirProj}

— the third parameter will be the first main set of file, with indicate it by the semantic eTA2007::MPatIm,"0";

cCollecSpecArg2007 & cAppli_EditSet::ArgOpt(cCollecSpecArg2007 & anArgOpt)

{

return

anArgOpt

<< AOpt2007(mShow,"Show","Show detail of set before/after , (def) 0->none, (1) modif, (2) all",{})

<< AOpt2007(mXmlOut,"Out","Destination, def=Input, no save for " + MMVII_NONE,{});

}

Here we use the template function AOpt2007, it is used with a bool (parameter mShow) and a
std::string (parameter mXmlOut). We see also that there is one more parameter : the name of the
parameter that MicMac user will see (here Show or Out).

1.6.4 Standard access paramaters

Many command have paramaters that have more or less the same meaning. It is possible to avoid
code redundancy via standard acces function and/or use of predefined semantic.

1.6.4.1 Reading set of name from file with SetNameFromString

1.6.4.2 Main sets with MainSetk

Chapter 2

Programming organisation, style ...

2.1 Naming convention

2.2 Never use std::cout, printf ...

2.3 Encapsulation of boost, stl ..

2.4 Error handling

2.5 Memory check

2.6 Serialization

2.7 Shared pointer

2.8 Enum to string

The enum/string conversion is a recurent problem of C++ which as far as I know is still an issue. A
possible solution would be to use some code genration which from easy to read an write text file woul
generate it. But I tried to limitate the code generation in MMVII.

In file Serial/uti e2string.cpp is implemanted the used solution , it consist to create data for each
enum for which we want to do the conversion Serial/uti e2string.cpp.

17

18 CHAPTER 2. PROGRAMMING ORGANISATION, STYLE ...

Chapter 3

Project management command

3.1 Help command

19

20 CHAPTER 3. PROJECT MANAGEMENT COMMAND

Part II

Reference documentation

21

Part III

Annexes

23

Appendix A

Référence bibliographique

25

26 APPENDIX A. RÉFÉRENCE BIBLIOGRAPHIQUE

Bibliography

[Tomasi Kanabe 98] S. Roy, I.J. Cox , 1998, ”Shape and Motion from Image Streams under Orthography:
a Factorization Method”, International Journal of Computer Vision, 9:2, 137-154 (1992)

[Cox-Roy 98] S. Roy, I.J. Cox , 1998, ”A Maximum-Flow formulation of the N-camera Stereo Correspon-
dence Problem”, Proc. IEEE Internation Conference on Computer Vision, pp 492–499, Bombay.

[Fraser C. 97] C. Fraser, 1997, ”Digital camera self-calibration”, ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 52, issue 4, pp. 149-159,

[Penard L. 2006] L. Pnard, N. Paparoditis, M. Pierrot-Deseilligny. ”Reconstruction 3D automatique de
faades de btiments en multi-vues.”, RFIA (Reconnaissance des Formes et Intelligence Artificielle),
Tours, France, January 2006.

27

Index

BadBool, 13
BadEnum, 14
BadOptP, 14

EditSet, 7

FileSetN, 14

Help, 19

InsufP, 14
IntWithoutS, 14

MultOptP, 14

OpenFile, 14

28

	I Generalities
	My first command : set editing
	Introduction
	Algorithms/Photogrammetry
	User's side(1)
	Basic notion
	Getting help
	basic usage
	Exercices

	Optional paramaters
	Out paramater
	Show paramater

	More help

	User's side-2, global parameter
	Fixing project directory DirProj
	Filtering by interval FFI0, FFI1
	Redirecting message with StdOut
	Exercices

	Fixing MicMac version for export NumVOut
	Predefined semantics
	Generalities
	Main pattern image [MPI]
	File of Directory Project [FDP]

	User's side-3, most frequent error
	Generality
	Error BadBool
	Error BadOptP
	Error MultOptP
	Error OpenFile
	Error InsufP
	Error BadEnum
	Error FileSetN
	Error IntWithoutS

	Programmer's side, adding a new command (1)
	Heriting from cMMVII_Appli
	Link between name an class
	Specifying paramaters
	Standard access paramaters
	Reading set of name from file with SetNameFromString
	Main sets with MainSetk

	Programming organisation, style ...
	Naming convention
	Never use std::cout, printf …
	Encapsulation of boost, stl ..
	Error handling
	Memory check
	Serialization
	Shared pointer
	Enum to string

	Project management command
	Help command

	II Reference documentation
	III Annexes
	Référence bibliographique

