
GNUstep Makefile Package

Copyright c© 2000 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation.

i

Table of Contents

1.1 Introduction . 1
1.2 Structure of a Makefile . 1
1.3 Running Make . 1

1.3.1 Debug Information . 1
1.3.2 Profile Information . 2
1.3.3 Static, Shared, and Dynamic Link Libraries 2

1.4 Project Types . 2
1.4.1 Aggregate (aggregate.make) . 2
1.4.2 Graphical Applications (application.make) 3
1.4.3 Bundles (bundle.make) . 3
1.4.4 Command Line C Tools (ctool.make) . 3
1.4.5 Documentation (documentation.make) . 3
1.4.6 Frameworks (framework.make) . 3
1.4.7 Java (java.make) . 3

1.4.7.1 Project Variables . 3
1.4.8 Libraries (library.make) . 4

1.4.8.1 Project Variables . 4
1.4.8.2 Example Makefile . 6

1.4.9 Native Library (native-library.make) . 8
1.4.10 NSIS Installer (nsis.make) . 8
1.4.11 Objective-C Programs (objc.make) . 9

1.4.11.1 Project Variables . 9
1.4.11.2 Example Makefile . 9

1.4.12 Palettes (palette.make) . 10
1.4.13 RPMs (rpm.make) . 10
1.4.14 Services (service.make) . 11
1.4.15 Subprojects (subproject.make) . 11
1.4.16 Command Line Tools (tool.make) . 11

1.5 Global Variables (GNUmakefile.preamble) . 12
1.6 Global Rules (GNUmakefile.postamble) . 15
1.7 Common Variables (common.make) . 15

1.7.1 Directory Paths . 16
1.7.2 Scripts . 19
1.7.3 Host and Target Platform Information . 20
1.7.4 Library Combination . 21
1.7.5 Overridable Flags . 24

1.8 Other Variables . 25

1

1.1 Introduction
The Makefile package is a system of make commands that is designed to
encapsulate all the complex details of building and installing various types
of projects from libraries to applications to documentation. This frees the
developer to focus on the details of their particular project. Only a fairly
simple main makefile need to be written which specifies the type of project
and files involved in the project.

1.2 Structure of a Makefile
Here is an example makefile (named GNUmakefile to emphasis the fact that
it relies on special features of the GNU make program).

#

An example GNUmakefile

#

Include the common variables defined by the Makefile Package

include $(GNUSTEP_MAKEFILES)/common.make

Build a simple Objective-C program

TOOL_NAME = simple

The Objective-C files to compile

simple_OBJC_FILES = simple.m

-include GNUmakefile.preamble

Include in the rules for making GNUstep command-line programs

include $(GNUSTEP_MAKEFILES)/tool.make

-include GNUmakefile.postamble

This is all that is necessary to define the project.

1.3 Running Make
Normally to compile a package which uses the Makefile Package it is purely
a matter of typing make from the top-level directory of the package, and the
package is compiled without any additional interaction.

1.3.1 Debug Information

By default the Makefile Package tells the compiler to generate debugging in-
formation when compiling Objective-C and C files. The following command
illustrates how to tell the Makefile Package to pass the appropriate flags to
the compiler so that debugging information is not put into the binary files.

make debug=no

2 GNUstep Makefile Package

1.3.2 Profile Information

By default the Makefile Package does not tell the compiler to generate pro-
filing information when compiling Objective-C and C files. The following
command illustrates how to tell the Makefile Package to pass the appropri-
ate flags to the compiler so that profiling information is put into the binary
files.

make profile=yes

1.3.3 Static, Shared, and Dynamic Link Libraries

By default the Makefile Package will generate a shared library if it is building
a library project type, and it will link with shared libraries if it is building
an application or command line tool project type. The following command
illustrates how to tell the Makefile Package not to build using shared libraries
but using static libraries instead.

make shared=no

This default is only applicable on systems that support shared libraries;
systems that do not support shared libraries will always build using static
libraries. Some systems support dynamic link libraries (DLL) which are a
form of shared libraries; on these systems, DLLs will be built by default
unless the Makefile Package is told to build using static libraries instead, as
in the above command.

1.4 Project Types
Projects are divided into different types described below. To create a project
of a specific type, just include the particular makefile. For example, to create
an application, include this line in your main make file:

include $(GNUSTEP_MAKEFILES)/application.make

Each project type is independent of the others. If you want to create two
different types of projects within the same directory (e.g. a tool and a java
program), include both the desired makefiles in your main make file.

The documentation for variables used to control each project type is pro-
vided at the start of each individual makefile (common.make and rules.make
document more general variables).

The documentation for installing resources (a feature shared by many
project types) is in resource-set.make.

1.4.1 Aggregate (aggregate.make)

An Aggregate project is a project that consists of several subprojects. Each
subproject can be of any other valid project type (including the Aggregate
type). The only project variable is the SUBPROJECTS variable

[Aggregate project]SUBPROJECTS
SUBPROJECTS defines the directory names that hold the subprojects that
the Aggregate project should build.

3

1.4.2 Graphical Applications (application.make)

An application is an Objective-C program that includes a GUI component,
and by default links in all the GNUstep libraries required for GUI develop-
ment, such as the Base and Gui libraries.

1.4.3 Bundles (bundle.make)

A bundle is a collection of resources and code that can be used to enhance
an existing application or tool dynamically using the NSBundle class from
the GNUstep base library.

1.4.4 Command Line C Tools (ctool.make)

A ctool is a project that only uses C language files. Otherwise it is similar
to the ObjC project type.

1.4.5 Documentation (documentation.make)

The Documentation project provides rules to use various types of docu-
mentation such as texi and LaTeX documentation, and convert them into
finished documentation (info, PostScript, HTML, etc).

1.4.6 Frameworks (framework.make)

A Framework is a collection of resources and a library that provides common
code that can be linked into a Tool or Application. In many respects it is
similar to a Bundle.

1.4.7 Java (java.make)

This project provides rules for building java programs. It also makes it easy
to make java projects that interact with the GNUstep libraries.

1.4.7.1 Project Variables

[Java project]JAVA_PACKAGE_NAME
JAVA_PACKAGE_NAME is the reverse DNS style Java package name that
resides in this project.

[Java project]JAVA_FILES
xxx_JAVA_FILES is the list of Java source code files, with a .java exten-
sion, that are compiled for the xxx project. xxx should be replaced with
the name of the Java package specified in JAVA_PACKAGE_NAME.

[Java project]JAVA_JNI_FILES
xxx_JAVA_JNI_FILES is the list of Java source code files for which javah
should produce header files for integration with Objective-C code. xxx
should be replaced with the name of the Java package specified in JAVA_
PACKAGE_NAME.

4 GNUstep Makefile Package

[Java project]JAVA_PROPERTIES_FILES
xxx_JAVA_PROPERTIES_FILES can be used to specify properties files to
install. xxx should be replaced with the name of the Java package speci-
fied in JAVA_PACKAGE_NAME.

[Java project]JAVA_MANIFEST_FILE
xxx_JAVA_MANIFEST_FILE can be used to specify a manifest fragment
that is used when building a jar file for the xxx package. xxx should be
replaced with the name of the Java package specified in JAVA_PACKAGE_
NAME.

[Java project]JAVA_JAR_NAME
xxx_JAVA_JAR_NAME can be used to specify a custom name for the jar
built by make jar. The default would be the package name (xxx) with
all dots replaced by hyphens.

1.4.8 Libraries (library.make)

The Makefile Package provides a project type for building libraries; libraries
can be built as static libraries, shared libraries, or dynamic link libraries
(DLL) if the platform supports that type of library. Static libraries are sup-
ported on all platforms; while, shared libraries and DLLs are only supported
on some platforms.

1.4.8.1 Project Variables

[Library project]LIBRARY_NAME
LIBRARY_NAME should be assigned the list of name of libraries to be gen-
erated. Most UNIX systems expect that the filename for the library has
the word lib prefixed to the name; i.e. the c library has filename of libc.
Prefix the lib to the library name when it is specified in the LIBRARY_
NAME variable because the Makefile Package will not automatically prefix
it.

[Library project]C_FILES
xxx_C_FILES is the list of C files, with a .c extension, that are to be
compiled to generate the xxx library. Replace the xxx with the name of
the library as listed by the LIBRARY_NAME variable.

[Library project]OBJC_FILES
xxx_OBJC_FILES is the list of Objective-C files, with a .m extension, that
are to be compiled to generate the xxx library. Replace the xxx with the
name of the library as listed by the LIBRARY_NAME variable.

[Library project]PSWRAP_FILES
xxx_PSWRAP_FILES is the list of PostScript wrap files, with a .psw exten-
sion, that are to be compiled to generate the xxx library. PostScript wrap
files are processed by the pswrap utility which generates a .c and a .h file

5

from each .psw file; the generate .c file is the file actually compiled. Re-
place the xxx with the name of the library as listed by the LIBRARY_NAME
variable.

[Library project]HEADER_FILES
xxx_HEADER_FILES is the list of header filenames that are to be installed
with the library. If a filename has a directory path prefixed to it then
that prefix will be maintained when the headers are installed. It is up
to the user to make sure that the installation directory exists; other-
wise, an error will occur when the library is installed, see Section 1.4.8.1
[xxx HEADER FILES INSTALL DIR], page 4. Replace the xxx with
the name of the library as listed by the LIBRARY_NAME variable.

[Library project]HEADER_FILES_DIR
xxx_HEADER_FILES_DIR is the relative path from the current directory,
where the makefile is located, to where the header files specified by xxx_
HEADER_FILES are located. If a filename specified in xxx_HEADER_FILES
has a directory path prefixed to it then that path will not be removed
when the Makefile Package accesses the files, so do not specify a path with
xxx_HEADER_FILES_DIR that is already prefixed to the header filenames,
see Section 1.4.8.1 [xxx HEADER FILES INSTALL DIR], page 4. xxx_
HEADER_FILES_DIR is optional; leaving it blank or undefined, and the
Makefile Package assumes that the relative path to the header files is the
current directory where the makefile resides. Replace the xxx with the
name of the library as listed by the LIBRARY_NAME variable.

[Library project]HEADER_FILES_INSTALL_DIR
xxx_HEADER_FILES_INSTALL_DIR specifies the relative subdirectory path
below GNUSTEP_HEADERS where the header files are to be installed. If this
directory or any of its parent directories do not exist, then the Makefile
Package will create them. The Makefile Package prefixes xxx_HEADER_
FILES_INSTALL_DIR to each of the filenames in xxx_HEADER_FILES when
they are installed, so if the filenames in xxx_HEADER_FILES already have a
directory path prefixed then the user is responsible for creating that direc-
tory, the Makefile Package will not create. xxx_HEADER_FILES_INSTALL_
DIR is optional; leaving it blank or undefined, and the Makefile Package
assumes that the installation directory is just GNUSTEP_HEADERS with no
subdirectory. Replace the xxx with the name of the library as listed by
the LIBRARY_NAME variable.

[Library project]CPPFLAGS
xxx_CPPFLAGS are additional flags that will be passed to the compiler
preprocessor when compiling Objective-C and C files to generate the xxx
library. Adding flags here does not override the default CPPFLAGS, see
Section 1.7.5 [CPPFLAGS], page 24, they are in addition to CPPFLAGS.
These flags are specific to the xxx library, see Section 1.5 [ADDI-
TIONAL CPPFLAGS], page 12, to see how to specify global prepro-

6 GNUstep Makefile Package

cessor flags. Replace the xxx with the name of the listed as listed by the
LIBRARY_NAME variable.

[Library project]OBJCFLAGS
xxx_OBJCFLAGS are additional flags that will be passed to the compiler
when compiling Objective-C files to generate the xxx library. Adding
flags here does not override the default OBJCFLAGS, see Section 1.7.5 [OB-
JCFLAGS], page 24, they are in addition to OBJCFLAGS. These flags are
specific to the xxx library, see Section 1.5 [ADDITIONAL OBJCFLAGS],
page 12, to see how to specify global compiler flags. Replace the xxx with
the name of the library as listed by the LIBRARY_NAME variable.

[Library project]CFLAGS
xxx_CFLAGS are additional flags that will be passed to the compiler when
compiling C files to generate the xxx library. Adding flags here does not
override the default CFLAGS, see Section 1.7.5 [CFLAGS], page 24, they
are in addition to CFLAGS. These flags are specific to the xxx library,
see Section 1.5 [ADDITIONAL CFLAGS], page 12, to see how to specify
global compiler flags. Replace the xxx with the name of the library as
listed by the LIBRARY_NAME variable.

[Library project]LDFLAGS
xxx_LDFLAGS are additional flags that will be passed to the linker when
it creates the xxx library. Adding flags here does not override the default
LDFLAGS, see Section 1.7.5 [LDFLAGS], page 24, they are in addition
to LDFLAGS. These flags are specific to the xxx library, see Section 1.5
[ADDITIONAL LDFLAGS], page 12, to see how to specify global linker
flags. Replace the xxx with the name of the library as listed by the
LIBRARY_NAME variable.

[Library project]INCLUDE_DIRS
xxx_INCLUDE_DIRS is the list of additional directories that the compiler
will search when it is looking for include files; these flags are specific to the
xxx library, see Section 1.5 [ADDITIONAL INCLUDE DIRS], page 12,
to see how to specify additional global include directories. The directories
should be specified as ‘-I’ flags to the compiler. The additional include
directories will be placed before the normal GNUstep and system in-
clude directories, and before any global include directories specified with
ADDITIONAL_INCLUDE_DIRS, so they will always be searched first. Re-
place the xxx with the name of the library as listed by the LIBRARY_NAME
variable.

1.4.8.2 Example Makefile

This example makefile illustrates two libraries, libone and libtwo, that are
to be generated.

#

An example GNUmakefile

7

#

Include the common variables defined by the Makefile Package

include $(GNUSTEP_MAKEFILES)/common.make

Two libraries

LIBRARY_NAME = libone libtwo

#

The files for the libone library

#

The Objective-C files to compile

libone_OBJC_FILES = one.m draw.m

The C source files to be compiled

libone_C_FILES = parse.c

The PostScript wrap source files to be compiled

libone_PSWRAP_FILES = drawing.psw

The header files for the library

libone_HEADER_FILES_DIR = ./one

libone_HEADER_FILES_INSTALL_DIR = one

libone_HEADER_FILES = one.h draw.h

#

The files for the libtwo library

#

The Objective-C files to compile

libtwo_OBJC_FILES = two.m another.m test.m

The header files for the library

libtwo_HEADER_FILES_DIR = ./two

libtwo_HEADER_FILES_INSTALL_DIR = two

libtwo_HEADER_FILES = two.h another.h test.h common.h

Option include to set any additional variables

-include GNUmakefile.preamble

Include in the rules for making libraries

include $(GNUSTEP_MAKEFILES)/library.make

Option include to define any additional rules

-include GNUmakefile.postamble

Notice that the libone library has Objective-C, C, and PostScript wrap
files to be compiled; while, the libtwo library only has some Objective-C
files.

The header files for the libone library reside in the one subdirectory
from where the sources are located, and the header files will be installed into
the one subdirectory within GNUSTEP_HEADERS. Likewise the header files for

8 GNUstep Makefile Package

the libtwo library reside in the two subdirectory from where the sources
are located, and the header files will be installed into the two subdirectory
within GNUSTEP_HEADERS.

1.4.9 Native Library (native-library.make)

A "native library" is a project which is to be built as a shared library on
most targets and as a framework on Darwin. (Currently this is only the
case for apple-apple-apple.) In other words, it is to be built as the most
appropriate native equivalent of a traditional shared library (see Section 1.4.8
[library.make], page 4, and Section 1.4.6 [framework.make], page 3).

[Native Library project]NATIVE_LIBRARY_NAME
NATIVE_LIBRARY_NAME should be the name of the native library, without
the ’lib’. All the other variables are the same as the ones used in libraries
and frameworks.

To compile something against a native library, you can use ADDITIONAL_
NATIVE_LIBS += MyLibrary This will be converted into -lMyLibrary link
flag on for most targets and into -framework MyLibrary link flag for apple-
apple-apple.

To add the corresponding flags, you can use ADDITIONAL_
NATIVE_LIB_DIRS += ../MyPath This will be converted into -
L../MyPath/$(GNUSTEP OBJ DIR) flag on for most targets and into
-F../MyPath flag for apple-apple-apple.

1.4.10 NSIS Installer (nsis.make)

The NSIS make project provides rules for automatically generating NSIS
installers for Windows operating systems. In order to get this functionality,
include Master/nsis.make from the Makefiles directory in your GNUmake-
file.

include $(GNUSTEP_MAKEFILES)/Master/nsis.make

To create an installer file by itself, run make nsifile. To create the
full installer executable, run make nsis. Note that in order to do this, you
must be either running on a Windows computer with a release of the NSIS
compiler (from http://nsis.sourceforge.net) or you need to be using a
cross-compiler and cross-compiled NSIS script compiler. (NOTE: This does
not currently work - you need to use the GUI NSIS compiler to compile the
installer scripts).

Currently the nsis make package only makes installers for Applications.
It will use the nsi-app.template file in the GNUstep Makefiles directory.
If you want, you can provide your own template with customized script
instructions by creating a file called PACKAGE_NAME.nsi.in, where PACKAGE_
NAME is the same as the name of your package (see below).

You also need to define several variables in your main make file. Except
for PACKAGE_NAME, which is required, all the following variables are optional.

http://nsis.sourceforge.net

9

[NSIS]PACKAGE_NAME
PACKAGE_NAME defines the name of the NSIS installer. In most cases this
will be the same as the name of your project type. For instance, if you are
creating a application, and have set APP_NAME to ‘MyApplication’, Then
set PACKAGE_NAME to the same thing, or just use PACKAGE_NAME=$(APP_
NAME). if PACKAGE_NAME is not set, it defaults to unnamed-package

[NSIS]PACKAGE_VERSION
Set PACKAGE_VERSION to the release version number of your package. If
not set, it defaults to 0.0.1

[NSIS]GNUSTEP_INSTALLATION_DOMAIN
Set GNUSTEP_INSTALLATION_DOMAIN to the domain where you want to
install the software. This should be either SYSTEM), LOCAL, or USER. If
not set it defaults to LOCAL.

1.4.11 Objective-C Programs (objc.make)

The Makefile Package provides a project type that is useful for building
Objective-C programs that do not depend upon the GNUstep libraries.
Objective-C programs which only use the Objective-C Runtime Library and
the classes it defines are candidates for this project type.

1.4.11.1 Project Variables

Most of the project variables work the same as in Library projects (see
Section 1.4.8 [library.make], page 4).

[Objective-C program project]OBJC_PROGRAM_NAME
OBJC_PROGRAM_NAME is the list of names of Objective-C programs that
are to be built; each name should be unique as it is the name of the
executable file that will be generated.

[Objective-C program project]OBJC_LIBS
xxx_OBJC_LIBS is the list of additional libraries that the linker will
use when linking to create the xxx Objective-C program executable
file. These libraries are specific to the xxx Objective-C program, see
Section 1.5 [ADDITIONAL OBJC LIBS], page 12, to see how to specify
additional global libraries. These libraries are placed before all of the
Objective-C Runtime and system libraries, and before the global libraries
specified with ADDITIONAL_OBJC_LIBS, so that they will be searched first
when linking. The additional libraries should be specified as ‘-l’ flags to
the linker as the following example illustrates. Replace the xxx with the
name of the program as listed by the OBJC_PROGRAM_NAME variable.

1.4.11.2 Example Makefile

This makefile illustrates two Objective-C programs, simple and list that
are to be generated.

#

10 GNUstep Makefile Package

An example GNUmakefile

#

Include the common variables defined by the Makefile Package

include $(GNUSTEP_MAKEFILES)/common.make

Build a simple Objective-C program

OBJC_PROGRAM_NAME = simple list

Have the Objective-C runtime macro be defined for simple program

simple_CPPFLAGS = $(RUNTIME_DEFINE)

The Objective-C files to compile for simple program

simple_OBJC_FILES = simple.m

The Objective-C files to compile for list program

list_OBJC_FILES = list.m linkedlist.m

The C files to compile for list program

list_C_FILES = sort.c

Option include to set any additional variables

-include GNUmakefile.preamble

Include in the rules for making Objective-C programs

include $(GNUSTEP_MAKEFILES)/objc.make

Option include to define any additional rules

-include GNUmakefile.postamble

The simple Objective-C program only consists of single Objective-C file;
while, the list Objective-C program consists of two Objective-C files and
one C file. The simple Objective-C program use the variable defined by
the Makefile Package, RUNTIME_DEFINE, to define a macro based upon the
Objective-C Runtime library; presumably simple.m has code which is de-
pendent upon the Objective-C Runtime.

1.4.12 Palettes (palette.make)

A palette is a Bundle that provides some kind of GUI functionality. Other-
wise it is similar to the Bundle project.

1.4.13 RPMs (rpm.make)

The RPM project provides rules for automatically generating RPM spec
files in order to make RPM distributions. Note that this project makefile
is included automatically when you include any other project type in your
GNUmakefile. It is non necessary to include rpm.make.

Except for PACKAGE_NAME, which is required, all the following variables
are optional. It is recommended that you set them anyway in order to provide
the standard information that is present in most RPM distributions.

11

[RPM]PACKAGE_NAME
PACKAGE_NAME defines the name of the RPM distribution. In most
cases this will be the same as the name of your project type. For
instance, if you are creating a application, and have set APP_NAME to
‘MyApplication’, Then set PACKAGE_NAME to the same thing, or just use
PACKAGE_NAME=$(APP_NAME). if PACKAGE_NAME is not set, it defaults to
unnamed-package

[RPM]PACKAGE_VERSION
Set PACKAGE_VERSION to the release version number of your package. If
not set, it defaults to 0.0.1

[RPM]GNUSTEP_INSTALLATION_DOMAIN
Set GNUSTEP_INSTALLATION_DOMAIN to the domain where you want to
install the software. This should be either SYSTEM), LOCAL, or USER. If
not set it defaults to LOCAL.

[RPM]PACKAGE_NEEDS_CONFIGURE
Set this to YES if a configure script needs to be run before compilation

In addition you need to provide a stub spec file named for the package
name, such as this example libobjc.spec.in file:

Release: 1
Source: ftp://ftp.gnustep.org/pub/gnustep/libs/%{gs_name}-%{gs_version}.
tar.gz
Copyright: GPL
Group: Development/Libraries
Summary: Objective-C Runtime Library
Packager: Adam Fedor <fedor@gnu.org>
Vendor: The GNUstep Project
URL: http://www.gnustep.org/

%description
Library containing the Objective-C runtime.

1.4.14 Services (service.make)

A Service is like a Tool that provides a service to a running GNUstep pro-
gram.

1.4.15 Subprojects (subproject.make)

A Subproject provides a way to organize code in a large application into
subunits. The code in the subproject is merged in with the main tool or
application.

1.4.16 Command Line Tools (tool.make)

A tool is an ObjC project that by default links in the GNUstep base library.
Otherwise it is similar to the ObjC project type.

12 GNUstep Makefile Package

1.5 Global Variables (GNUmakefile.preamble)
GNUmakefile.preamble is an optional file that may be put within the pack-
age for declaring global makefile variables for the package. The filename,
GNUmakefile.preamble, is just a convention; likewise, the variables defined
within it can be put in the normal GNUmakefile versus in this special file.
However, the reason for this convention is that the GNUmakefile may be au-
tomatically maintained by a project management system, like Project Cen-
ter, so any changes made to GNUmakefile may be discarded by that project
management system.

The file, GNUmakefile.preamble, in the Makefile Package is a template
that can be used the project’s GNUmakefile.preamble. It is not necessary to
have a GNUmakefile.preamble with the project unless it is actually needed,
the Makefile Package will only include it if it is available, see Section 1.2
[Makefile Structure], page 1, for information on how the Makefile Package
includes a GNUmakefile.preamble.

The rest of this section describes the individual global variables that
the Makefile Package uses which are generally placed in the package’s
GNUmakefile.preamble.

[Variable]ADDITIONAL_CPPFLAGS
ADDITIONAL_CPPFLAGS are additional flags that will be passed to the
compiler preprocessor. Generally any macros to be defined for all files
are placed here; the are passed for both Objective-C and C files that
are compiled. RUNTIME_DEFINE, FOUNDATION_DEFINE, GUI_DEFINE, and
GUI_BACKEND_DEFINE are some makefile variables which define macros
that can be assigned to ADDITIONAL_CPPFLAGS. The following example
illustrates the use of ADDITIONAL_CPPFLAGS to define a macro for the
Objective-C Runtime Library plus an additional macro that is specific to
the package.

ADDITIONAL_CPPFLAGS = $(RUNTIME_DEFINE) -DVERBOSE=1

[Variable]ADDITIONAL_OBJCFLAGS
ADDITIONAL_OBJCFLAGS are additional flags that will be passed to the
compiler when compiling Objective-C files. Adding flags here does not
override the default OBJCFLAGS, see Section 1.7.5 [OBJCFLAGS], page 24,
they are in addition to OBJCFLAGS. Generally ADDITIONAL_OBJCFLAGS are
placed before OBJCFLAGS when the compiler is executed, but one should
avoid having any placement sensitive flags because the order of the flags
is not guaranteed. The following example illustrates how you can pass
additional Objective-C flags.

ADDITIONAL_OBJCFLAGS = -Wno-protocol

[Variable]ADDITIONAL_CFLAGS
ADDITIONAL_CFLAGS are additional flags that will be passed to the com-
piler when compiling C files. Adding flags here does not override the

13

default CFLAGS, see Section 1.7.5 [CFLAGS], page 24, they are in addi-
tion to CFLAGS. Generally ADDITIONAL_CFLAGS are placed before CFLAGS
when the compiler is executed, but one should avoid having any place-
ment sensitive flags because the order of the flags is not guaranteed. The
following example illustrates how you can pass additional C flags.

ADDITIONAL_CFLAGS = -finline-functions

[Variable]ADDITIONAL_LDFLAGS
ADDITIONAL_LDFLAGS are additional flags that will be passed to the linker
when it creates an executable; these flags are passed when linking a com-
mand line tool, and application, or an Objective-C program. Adding flags
here does not override the default LDFLAGS, see Section 1.7.5 [LDFLAGS],
page 24, they are in addition to LDFLAGS. Generally ADDITIONAL_LDFLAGS
are placed before LDFLAGS when the linker is executed, but one should
avoid having any placement sensitive flags because the order of the flags
is not guaranteed. The following example illustrates how you can pass
addition linker flags.

ADDITIONAL_LDFLAGS = -v

[Variable]ADDITIONAL_INCLUDE_DIRS
ADDITIONAL_INCLUDE_DIRS is the list of additional directories that the
compiler will search when it is looking for include files. The directories
should be specified as ‘-I’ flags to the compiler. The additional include
directories will be placed before the normal GNUstep and system include
directories, so they will always be searched first. The following example
illustrates two additional include directories; /usr/local/gnu/include
will be searched first, then /usr/gnu/include, and finally the GNUstep
and system directories which are automatically defined by the Makefile
Package.

ADDITIONAL_INCLUDE_DIRS = -I/usr/local/gnu/include -I/usr/gnu/include

[Variable]ADDITIONAL_LIB_DIRS
ADDITIONAL_LIB_DIRS is the list of additional directories that the linker
will search when it is looking for library files. The directories should be
specified as ‘-L’ flags to the linker. The additional library directories will
be placed before the GNUstep and system library directories so that they
will be searched first by the linker. The following example illustrates
two additional library directories; /usr/local/gnu/lib will be searched
first, then /usr/gnu/lib, and finally the GNUstep and system directories
which are automatically defined by the Makefile Package.

ADDITIONAL_LIB_DIRS = -L/usr/local/gnu/lib -L/usr/gnu/lib

[Variable]ADDITIONAL_OBJC_LIBS
ADDITIONAL_OBJC_LIBS is the list of additional libraries that the linker
will use when linking command line tools, applications, and Objective-C

14 GNUstep Makefile Package

programs, see Section 1.4.16 [tool.make], page 11, Section 1.4.2 [applica-
tion.make], page 3, and Section 1.4.11 [objc.make], page 9. For Objective-
C programs, ADDITIONAL_OBJC_LIBS is placed before all of the Objective-
C Runtime and system libraries so that they will be searched first when
linking. For command line tools and applications, ADDITIONAL_OBJC_
LIBS is placed before all of the Objective-C Runtime and system libraries
but after the Foundation and GUI libraries. Libraries specified with
ADDITIONAL_OBJC_LIBS should only depend upon the Objective-C Run-
time and/or system functions, not Foundation or GUI classes; Foundation
dependent libraries should be specified with ADDITIONAL_TOOL_LIBS and
GUI dependent libraries should be specified with ADDITONAL_GUI_LIBS.
The additional libraries should be specified as ‘-l’ flags to the linker as
the following example illustrates.

ADDITIONAL_OBJC_LIBS = -lSwarm

[Variable]ADDITIONAL_TOOL_LIBS
ADDITIONAL_TOOL_LIBS is the list of additional libraries that the
linker will use when linking command line tools and applications, see
Section 1.4.16 [tool.make], page 11, and Section 1.4.2 [application.make],
page 3. For command line tools, ADDITIONAL_TOOL_LIBS is placed before
all of the GNUstep and system libraries so that they will be searched
first when linking. For applications, ADDITIONAL_TOOL_LIBS is placed
before the Foundation and system libraries but after the GUI libraries.
Libraries specified with ADDITIONAL_TOOL_LIBS should only depend
upon the Foundation classes and/or system functions, not GUI classes;
GUI dependent libraries should be specified with ADDITIONAL_GUI_LIBS.
The additional libraries should be specified as ‘-l’ flags to the linker as
the following example illustrates.

ADDITIONAL_TOOL_LIBS = -lone -lsimple

[Variable]ADDITIONAL_GUI_LIBS
ADDITIONAL_GUI_LIBS is the list of additional libraries that the linker will
use when linking applications, see Section 1.4.2 [application.make], page 3.
ADDITIONAL_GUI_LIBS is placed before all of the GUI, Foundation, and
system libraries so that they will be searched first when linking. The
additional libraries should be specified as ‘-l’ flags to the linker as the
following example illustrates.

ADDITIONAL_GUI_LIBS = -lMiscGui

[Variable]ADDITIONAL_INSTALL_DIRS
ADDITIONAL_INSTALL_DIRS is the list of additional directories that should
be created when the Makefile Package installs the file for the project.
These directories are only one that the project needs to be created but
that the Makefile Package does not automatically create. The direc-
tories should be absolute paths but use the GNUSTEP_LIBRARY variable
and other Makefile Package define variables, see Section 1.7.1 [Directory

15

Paths], page 16, so that the directories get created in the appropriate
place relative to the other file installed for the project. The following
example illustrates how two additional directories can be created during
installation.

ADDITIONAL_INSTALL_DIRS = $(GNUSTEP_RESOURCES)/MyProject

[Variable]LIBRARIES_DEPEND_UPON
LIBRARIES_DEPEND_UPON is the set of libraries that the shared library
depends upon, see Section 1.4.8 [library.make], page 4, for more infor-
mation about building shared libraries; this variable is only relevant for
library project types. On some platforms when a shared library is built,
any libraries which the object code in the shared library depends upon
must be linked in the generation of the shared library. This is similar
to the process of linking an executable file like a command line tool or
Objective-C program except that the result is a shared library. Libraries
specified with LIBRARIES_DEPEND_UPON should be listed as ‘-l’ flags to
the linker; when possible use variables defined by the Makefile Package to
specify GUI, Foundation, or system libraries; like GUI_LIBS, FND_LIBS,
OBJC_LIBS, or SYSTEM_LIBS. LIBRARIES_DEPEND_UPON is independent
of ADDITIONAL_OBJC_LIBS, ADDITIONAL_TOOL_LIBS, and ADDITIONAL_
GUI_LIBS, so any libraries specified there may need to be specified with
LIBRARIES_DEPEND_UPON. The following example illustrates the use of
LIBRARIES_DEPEND_UPON for a shared library that is depend upon the
Foundation, ObjC, system libraries and an additional user library.

LIBRARIES_DEPEND_UPON = -lsimple $(FND_LIBS) $(OBJC_LIBS) $(SYSTEM_LIBS)

1.6 Global Rules (GNUmakefile.postamble)
The GNUmakefile.postamble file is an optional file you may include in your
package to define additional rules that should be executed when making
and/or installing the project. There is a template GNUmakefile.postamble
file in the Makefile package that you can use as an example. Most of the
rules are self explanatory. The ‘before-’ rules define things that should hap-
pen before a process is executed (e.g. ‘before-all’ for before compilation,
‘before-install’ for before installation). The ‘after-’ rules define things
that should happen after a process is complete.

You can even define additional rules such as ones that a particular to
your specific package or that are to be used by developers only.

1.7 Common Variables (common.make)
Any of these variables that are defined by common.make can and should be
used by the user’s makefile fragments to reference directories and/or perform
any tasks which are not done automatically by the Makefile Package. Most
variables refer to directory paths, both absolute and relative, where files will
be installed, but other variables are defined based upon the target platform

16 GNUstep Makefile Package

that the person is compiling for. Do not change the values of any of these
automatically defined variables as the resultant behaviour of the Makefile
Package is undefined.

1.7.1 Directory Paths

[Variable]GNUSTEP_MAKEFILES
GNUSTEP_MAKEFILES is the absolute path to the directory where the Make-
file Package files are located. Use GNUSTEP_MAKEFILES to refer to a make-
file fragment or script file from the Makefile Package within a makefile;
the GNUSTEP_MAKEFILES variable should be only be used within makefiles
and not referenced within C or Objective-C programs.

[Variable]GNUSTEP_APPS
GNUSTEP_APPS is the absolute path to the directory where GUI appli-
cations are installed. This variable is dependent upon the GNUSTEP_
INSTALLATION_DOMAIN variable, so the path will change accordingly if
the user specifies a different installation domain.

[Variable]GNUSTEP_ADMIN_APPS
GNUSTEP_ADMIN_APPS is the absolute path to the directory where GUI
applications for the system Administrator are installed. This variable
is dependent upon the GNUSTEP_INSTALLATION_DOMAIN variable, so the
path will change accordingly if the user specifies a different installation
domain.

[Variable]GNUSTEP_WEB_APPS
GNUSTEP_WEB_APPS is the absolute path to the directory where web appli-
cations (for web development frameworks such as GSWeb or SOPE) are
installed. This variable is dependent upon the GNUSTEP_INSTALLATION_
DOMAIN variable, so the path will change accordingly if the user specifies
a different installation domain.

[Variable]GNUSTEP_TOOLS
GNUSTEP_TOOLS is the absolute path for the root directory where
command line tools are installed. Only command line tools which
are target platform independent should be installed in GNUSTEP_
TOOLS; target platform dependent command line tools should be
placed in the appropriate subdirectory of GNUSTEP_TOOLS, see
Section 1.7.1 [GNUSTEP TARGET DIR], page 16, and Section 1.7.1
[TOOL INSTALLATION DIR], page 16. This variable is dependent
upon the GNUSTEP_INSTALLATION_DOMAIN variable, so the path will
change accordingly if the user specifies a different installation domain.

[Variable]GNUSTEP_ADMIN_TOOLS
GNUSTEP_ADMIN_TOOLS is the absolute path for the root directory where
command line tools for the system administrator are installed. Only

17

command line tools which are target platform independent should be in-
stalled in GNUSTEP_ADMIN_TOOLS; target platform dependent command
line tools should be placed in the appropriate subdirectory of GNUSTEP_
ADMIN)TOOLS, see Section 1.7.1 [GNUSTEP TARGET DIR], page 16,
and Section 1.7.1 [TOOL INSTALLATION DIR], page 16. This variable
is dependent upon the GNUSTEP_INSTALLATION_DOMAIN variable, so the
path will change accordingly if the user specifies a different installation
domain.

[Variable]GNUSTEP_HEADERS
GNUSTEP_HEADERS is the absolute path for the root directory where header
files are installed. Normally header files are not installed in the GNUSTEP_
HEADERS directory, but in a subdirectory as specified by the project which
owns the files, see Section 1.4.8 [library.make], page 4, for more informa-
tion. GNUSTEP_HEADERS should contain platform independent header files
because the files are shared by all platforms. Any target platform de-
pendent header files should be placed in the appropriate subdirectory as
specified by GNUSTEP_TARGET_DIR. This variable is dependent upon the
GNUSTEP_INSTALLATION_DOMAIN variable, so the path will change accord-
ingly if the user specifies a different installation domain.

[Variable]GNUSTEP_LIBRARY
GNUSTEP_LIBRARY is the absolute path for the ’Library’ directory
where all sorts of resources are installed. This directory can be
expected to have (at least) some standard subdirectories with fixed
names, which are ApplicationSupport, Bundles, Frameworks,
ApplicationSupport/Palettes, Services, Libraries/Resources
and Libraries/Java. You can access them in your GNUmakefile as
GNUSTEP_LIBRARY/ApplicationSupport, GNUSTEP_LIBRARY/Bundles,
etc. This variable is dependent upon the GNUSTEP_INSTALLATION_
DOMAIN variable, so the path will change accordingly if the user specifies
a different installation domain.

[Variable]GNUSTEP_LIBRARIES
GNUSTEP_LIBRARIES is the absolute path for the directory where libraries
are installed taking the target platform and library combination into
account. This directory is generally where library project types, see
Section 1.4.8 [library.make], page 4, will install the library file. This vari-
able is dependent upon the GNUSTEP_INSTALLATION_DOMAIN variable, so
the path will change accordingly if the user specifies a different installa-
tion domain.

[Variable]GNUSTEP_RESOURCES
GNUSTEP_RESOURCES is the absolute path for the directory where resource
files for libraries are installed; example resources are fonts, printer type in-
formation, model files for system panels, and system images. The resource
files are generally associated with libraries, because resources for applica-
tions or bundles are included within the application or bundle directory

18 GNUstep Makefile Package

wrapper. GNUSTEP_RESOURCES is the Libraries/Resources subdirectory
of GNUSTEP_LIBRARY; it is dependent upon the GNUSTEP_INSTALLATION_
DOMAIN variable, so the path will change accordingly if the user specifies
a different installation domain.

[Variable]GNUSTEP_DOC
GNUSTEP_DOC is the absolute path for the directory where documentation
is installed (with the exception of man pages and info documentation,
which need to be installed into GNUSTEP_DOC_MAN and GNUSTEP_DOC_
INFO). This variable is dependent upon the GNUSTEP_INSTALLATION_
DOMAIN variable, so the path will change accordingly if the user specifies
a different installation domain.

[Variable]GNUSTEP_DOC_MAN
GNUSTEP_DOC_MAN is the absolute path for the directory where man pages
are to be installed. This variable is dependent upon the GNUSTEP_
INSTALLATION_DOMAIN variable, so the path will change accordingly if
the user specifies a different installation domain.

[Variable]GNUSTEP_DOC_INFO
GNUSTEP_DOC_INFO is the absolute path for the directory where info doc-
umentation is installed. This variable is dependent upon the GNUSTEP_
INSTALLATION_DOMAIN variable, so the path will change accordingly if
the user specifies a different installation domain.

[Variable]GNUSTEP_HOST_DIR
GNUSTEP_HOST_DIR is the subdirectory path for the host platform CPU
and operating system. It is a composed from the GNUSTEP_HOST_CPU and
GNUSTEP_HOST_OS variables.

[Variable]GNUSTEP_TARGET_DIR
GNUSTEP_TARGET_DIR is the subdirectory path for the target platform
CPU and operating system. It is composed from the GNUSTEP_TARGET_
CPU and GNUSTEP_TARGET_OS variables. GNUSTEP_TARGET_DIR is gener-
ally used as part of the installation path when platform specific files are
installed.

[Variable]GNUSTEP_OBJ_DIR
GNUSTEP_OBJ_DIR is the subdirectory path where the Makefile Package
places binary files: object files, libraries, executables, produced by the
compiler. The Makefile Package separates binary files for different target
platforms, different library combinations, and different compile options
into different directories; these different directories are subdirectories from
the current directory where the makefile resides. This structure allows
a package to be compiled for different target platforms, different library
combinations, and different compile options in place; i.e. the binary files
are separated from each other so a compile pass from one set of options
do not overwrite or erase binary files from a previous compile pass with

19

different options. Generally the user does not use this variable; however, if
the package needs to manually install some binary files than the makefile
fragment uses this variable to reference the path where the binary file is
located.

1.7.2 Scripts

[Variable]CONFIG_GUESS_SCRIPT
CONFIG_GUESS_SCRIPT is the absolute path to the config.guess script
within the Makefile Package; this script is used to determine host and
target platform information. The Makefile Package executes this script
to determine the values of the host platform variables: GNUSTEP_HOST,
GNUSTEP_HOST_CPU, GNUSTEP_HOST_VENDOR, GNUSTEP_HOST_OS, and
the target platform variables: GNUSTEP_TARGET, GNUSTEP_TARGET_CPU,
GNUSTEP_TARGET_VENDOR, GNUSTEP_TARGET_OS; generally the user does
not need to execute this script because the Makefile Package executes it
automatically.

[Variable]CONFIG_SUB_SCRIPT
CONFIG_SUB_SCRIPT is the absolute path to the config.sub script within
the Makefile Package; this script takes a platform name and canonicalizes
it, i.e. it puts the name in a standard form. The Makefile Package uses
this script when the user specifies a target platform for compilation; the
target platform name is canonicalized so that the Makefile Package can
properly parse the name into its different components. Generally the user
does not execute this script.

[Variable]CONFIG_CPU_SCRIPT
CONFIG_CPU_SCRIPT is the absolute path to the cpu.sh script within the
Makefile Package; this script extracts the CPU name from a canonicalized
platform name. Generally the user does not execute this script; it is used
internally by the Makefile Package.

[Variable]CONFIG_VENDOR_SCRIPT
CONFIG_VENDOR_SCRIPT is the absolute path to the vendor.sh script
within the Makefile Package; this script extracts the vendor name from
a canonicalized platform name. Generally the user does not execute this
script; it is used internally by the Makefile Package.

[Variable]CONFIG_OS_SCRIPT
CONFIG_OS_SCRIPT is the absolute path to the os.sh script within the
Makefile Package; this script extracts the operating system name from a
canonicalized platform name. Generally the user does not execute this
script; it is used internally by the Makefile Package.

[Variable]CLEAN_CPU_SCRIPT
CLEAN_CPU_SCRIPT is the absolute path to the clean_cpu.sh script
within the Makefile Package; this script takes a platform CPU name and

20 GNUstep Makefile Package

cleans it for use by the Makefile Package. The process of cleaning refers
to the situation where numerous equivalent processors, which have differ-
ent names, are mapped to a single name. For example, the Intel line of
processors: i386, i486, Pentium, all have different CPU names, but the
Makefile Package considers them equivalent and cleans those names so
that the single name ix86 is used. Generally the user does not execute
this script; it is used internally by the Makefile Package.

[Variable]CLEAN_VENDOR_SCRIPT
CLEAN_VENDOR_SCRIPT is the absolute path to the clean_vendor.sh
script within the Makefile Package; this script takes a platform vendor
name and cleans it for use by the Makefile Package. The process of clean-
ing refers to the situation where numerous equivalent vendors, which have
different names, are mapped to a single name. Generally the user does
not execute this script; it is used internally by the Makefile Package.

[Variable]CLEAN_OS_SCRIPT
CLEAN_OS_SCRIPT is the absolute path to the clean_os.sh script within
the Makefile Package; this script takes a platform operating system name
and cleans it for use by the Makefile Package. The process of clean-
ing refers to the situation where numerous equivalent operating systems,
which have different names, are mapped to a single name. Generally the
user does not execute this script; it is used internally by the Makefile
Package.

1.7.3 Host and Target Platform Information

[Variable]GNUSTEP_HOST
GNUSTEP_HOST is the canonical host platform name; i.e. the name of the
platform which is performing compilation of programs. For example, a
SPARC machine by Sun Microsystems running the Solaris 2.5.1 operating
system has the name sparc-sun-solaris2.5.1.

[Variable]GNUSTEP_HOST_CPU
GNUSTEP_HOST_CPU is the CPU name for the canonical host platform
name; i.e. the name of the CPU platform which is performing compi-
lation of programs. The Makefile Package cleans this CPU name with
the CLEAN_CPU_SCRIPT script before using it internally. For example, the
canonical host platform name of i586-pc-linux-gnu has a CPU name
of ix86.

[Variable]GNUSTEP_HOST_VENDOR
GNUSTEP_HOST_VENDOR is the vendor name for the canonical host plat-
form; i.e. the name of the vendor platform which is performing compila-
tion of programs. The Makefile Package cleans this vendor name with the
CLEAN_VENDOR_SCRIPT script before using it internally. For example, the
canonical host platform name of sparc-sun-solaris2.5.1 has a vendor
name of sun.

21

[Variable]GNUSTEP_HOST_OS
GNUSTEP_HOST_OS is the operating system name for the canonical host
platform; i.e. the name of the operating system platform which is per-
forming compilation of programs. The Makefile Package cleans this op-
erating system name with the CLEAN_OS_SCRIPT script before using it
internally. For example, the canonical host platform name of i586-pc-
linux-gnu has an operating system name of linux-gnu.

[Variable]GNUSTEP_TARGET
GNUSTEP_TARGET is the canonical target platform name; i.e. compilation
of programs generate object code for this platform. By default the target
platform is the same as the host platform unless the user specifies a
different target when running make, see Cross Compiling.

[Variable]GNUSTEP_TARGET_CPU
GNUSTEP_TARGET_CPU is the CPU name for the canonical target platform;
i.e. compilation of programs generate object code for this CPU platform.
The Makefile Package cleans this operating system name with the CLEAN_
CPU_SCRIPT script before using it internally. By default the target CPU
platform is the same as the host CPU platform, GNUSTEP_HOST_CPU, un-
less the user specifies a different target platform when running make, see
Cross Compiling.

[Variable]GNUSTEP_TARGET_VENDOR
GNUSTEP_TARGET_VENDOR is the vendor name for the canonical target plat-
form; i.e. compilation of programs generate object code for this vendor
platform. The Makefile Package cleans this vendor name with the CLEAN_
VENDOR_SCRIPT script before using it internally. By default the target
vendor platform is the same as the host vendor platform, GNUSTEP_HOST_
VENDOR, unless the user specifies a different target platform when running
make, see Cross Compiling.

[Variable]GNUSTEP_TARGET_OS
GNUSTEP_TARGET_OS is the operating system name for the canonical tar-
get platform; i.e. compilation of programs generate object code for this
operating system platform. The Makefile Package cleans this operating
system name with the CLEAN_OS_SCRIPT script before using it internally.
By default the target operating system platform is the same as the host
operating system platform, GNUSTEP_HOST_OS, unless the user specifies a
different target platform, see Cross Compiling.

1.7.4 Library Combination

[Variable]OBJC_RUNTIME_LIB
OBJC_RUNTIME_LIB is assigned the code that indicates the Objective-C
Runtime library which compiled Objective-C programs will use; the four
possible values are: ‘ng’ for the GNUstep Runtime with latest language
features turned on at acompile time, ‘gnu’ for the GNU Runtime (or the

22 GNUstep Makefile Package

GNUstep runtime with traditional language features compiled), ‘nx’ for
the NeXT Runtime, and ‘sun’ for the Sun Microsystems Runtime. The
Objective-C Runtime library can be changed to use a library other than
the default with the ‘library_combo’ make parameter, see Section 1.3
[Running Make], page 1, for more details. Read Section 1.7.4 [Library
Combination], page 21, for more information on how the Makefile Package
handles different library combinations. If a makefile must perform specific
operations dependent upon the Objective-C Runtime library then this
variable is the one to check.

[Variable]RUNTIME_VERSION
RUNTIME_VERSION is set to and allows you to override the Objective-C
runtime ABI in use by the clang compiler. Generally, gnustep-make will
provide a sane default for you.Please be aware that mixing different ABIs
in the same binary is not generally supported. Possible values:

‘gcc’ This is the classic ABI also implemented by GCC which does
not support advanced features such as ARC or non-fragile
instance variables.

‘gnustep-1.8’
This is the first iteration of the GNUstep Objective-C ABI,
which supports the advanced features while remaining com-
patible with the GCC ABI. Requires the GNUstep Objective-
C runtime (libobjc2) 1.8 or later.

‘gnustep-2.0’
This version breaks compatibility with the older runtime
ABIs in order to provide better introspection metadata, re-
duced memory usage and smaller binaries. Requires the
GNUstep Objective-C runtime (libobjc2) 2.0 or later.

[Variable]RUNTIME_DEFINE
RUNTIME_DEFINE is assigned a preprocessor flag that can be passed
to the compiler which defines a macro based upon the Objective-C
Runtime library that compiled Objective-C programs will use. This
macro is useful if the compiled program must execute different code
based upon the Objective-C Runtime being used. See Section 1.5
[GNUmakefile.preamble], page 12, for an example on how to pass
this preprocessor flag when compiling. The four possible values are:
‘-DGNUSTEP_RUNTIME=1’ for the GNUstep ObjectiveC-2 Runtime,
‘-DGNU_RUNTIME=1’ for the GNU Runtime, ‘-DNeXT_RUNTIME=1’ for
the NeXT Runtime, and ‘-DSun_RUNTIME=1’ for the Sun Microsystems
Runtime.

[Variable]FOUNDATION_LIB
FOUNDATION_LIB is assigned the code that indicates the Foundation
Kit library, as specified by the OpenStep specification, which compiled
Objective-C programs will use; the four possible values are: ‘gnu’ for

23

the GNUstep Base Library, ‘nx’ for the NeXT Foundation Kit Library,
‘sun’ for the Sun Microsystems Foundation Kit Library, and ‘fd’ for the
libFoundation Library. The Foundation Kit library can be changed to
use a library other than the default with the ‘library_combo’ make pa-
rameter, see Section 1.3 [Running Make], page 1, for more details. Read
Section 1.7.4 [Library Combination], page 21, for more information on
how the Makefile Package handles different library combinations. If a
makefile must perform specific operations dependent upon the Founda-
tion Kit library then this variable is the one to check.

[Variable]FND_DEFINE
FND_DEFINE is assigned a preprocessor flag that can be passed to the
compiler which defines a macro based upon the Foundation Kit library,
as specified by the OpenStep specification, which compiled Objective-C
programs will use. This macro is useful if the compiled program must
execute different code based upon the Foundation Kit library being used.
See Section 1.5 [GNUmakefile.preamble], page 12, for an example on how
to pass this preprocessor flag when compiling. The four possible val-
ues are: ‘-DGNUSTEP_BASE_LIBRARY=1’ for the GNUstep Base Library,
‘-DNeXT_Foundation_LIBRARY=1’ for the NeXT Foundation Kit Library,
‘-DSun_Foundation_LIBRARY=1’ for the Sun Microsystems Foundation
Kit Library, and ‘-DLIB_FOUNDATION_LIBRARY=1’ for the libFoundation
Library.

[Variable]GUI_LIB
GUI_LIB is assigned the code that indicates the Application Kit library,
as specified by the OpenStep specification, which compiled Objective-C
programs will use; the two possible values are: ‘gnu’ for the GNUstep
GUI Library and ‘nx’ for the NeXT Application Kit Library. The Ap-
plication Kit library can be changed to use a library other than the de-
fault with the ‘library_combo’ make parameter, see Section 1.3 [Running
Make], page 1, for more details. Read Section 1.7.4 [Library Combina-
tion], page 21, for more information on how the Makefile Package handles
different library combinations. If a makefile must perform specific oper-
ations dependent upon the Application Kit library then this variable is
the one to check.

[Variable]GUI_DEFINE
GUI_DEFINE is assigned a preprocessor flag that can be passed to the
compiler which defines a macro based upon the Application Kit library,
as specified by the OpenStep specification, which compiled Objective-C
programs will use. This macro is useful if the compiled program must
execute different code based upon the Application Kit library being used.
See Section 1.5 [GNUmakefile.preamble], page 12, for an example on
how to pass this preprocessor flag when compiling. The two possible
values are: ‘-DGNUSTEP_GUI_LIBRARY=1’ for the GNUstep GUI Library

24 GNUstep Makefile Package

and ‘-DNeXT_Application_LIBRARY=1’ for the NeXT Application Kit Li-
brary.

[Variable]GUI_BACKEND_LIB
GUI_BACKEND_LIB is assigned the code that indicates the backend library
which compiled Objective-C programs will use in conjunction with the
GNUstep GUI Library. The three possible values are: ‘xdps’ for the
GNUstep X/DPS GUI Backend Library, ‘nsx’ for the NSKit GUI Backend
Library, and ‘w32’ for the MediaBook WIN32 GUI Backend Library. GUI_
BACKEND_LIB is only relevant when GUI_LIB is set to ‘gnu’; otherwise,
GUI_BACKEND_LIB will be set to ‘nil’ to indicate that there is no backend
library. GUI_BACKEND_LIB can be changed to use a library other than
the default with the ‘library_combo’ make parameter, see Section 1.3
[Running Make], page 1, for more details. Read Section 1.7.4 [Library
Combination], page 21, for more information on how the Makefile Package
handles different library combinations. If a makefile must perform specific
operations dependent upon the backend library then this variable is the
one to check.

[Variable]GUI_BACKEND_DEFINE
GUI_BACKEND_DEFINE is assigned a preprocessor flag that can be passed
to the compiler which defines a macro based upon the backend library
which compiled Objective-C programs will use in conjunction with the
GNUstep GUI Library. This macro is useful if the compiled program
must execute different code based upon the backend library being used.
See Section 1.5 [GNUmakefile.preamble], page 12, for an example on how
to pass this preprocessor flag when compiling. The three possible val-
ues are: ‘-DXDPS_BACKEND_LIBRARY=1’ for the GNUstep X/DPS GUI
Backend Library, ‘-DNSX_BACKEND_LIBRARY=1’ for the NSKit GUI Back-
end Library, and ‘-DW32_BACKEND_LIBRARY=1’ for the MediaBook WIN32
GUI Backend Library. GUI_BACKEND_DEFINE is not defined if there is not
backend library; i.e. GUI_BACKEND_LIB is ‘nil’.

1.7.5 Overridable Flags

[Variable]OBJCFLAGS
OBJCFLAGS are flags that are passed to the compiler when compiling
Objective-C files. The user can override this variable when running make
and specify different flags as the following command illustrates:

make OBJCFLAGS="-Wno-implicit -Wno-protocol"

[Variable]CFLAGS
CFLAGS are flags that are passed to the compiler when compiling C files.
The user can override this variable when running make and specify dif-
ferent flags as the following command illustrates:

make CFLAGS="-Wall"

25

[Variable]OPTFLAG
OPTFLAG is the flag used to indicate the optimization level that the com-
piler should perform when compiling Objective-C and C files; this flag
is set to ‘-O2’ by default, but the user can override this setting when
running make as the following command illustrates:

make OPTFLAG=

This command sets the optimization flag to be empty so that no opti-
mization will be performed by the compiler.

[Variable]GNUSTEP_INSTALLATION_DOMAIN
GNUSTEP_INSTALLATION_DOMAIN is the domain where the package will
install its files; overriding this variable when running make will change
all of the variables within the Makefile Package that depend upon it; the
following command illustrates the use of this variable:

make GNUSTEP_INSTALLATION_DOMAIN=SYSTEM

This command states that the SYSTEM domain should be used as the in-
stallation root directory; in particular applications in the package will be
installed in the $GNUSTEP_SYSTEM_APPS directory, libraries in the package
will be installed under the $GNUSTEP_SYSTEM_LIBRARIES directory, com-
mand line tools will be installed under the $GNUSTEP_SYSTEM_TOOLS direc-
tory, etc. Depending on the filesystem layout, the various directories may be
located anywhere, which is why it’s important to also refer to them by using
variables such as GNUSTEP_APPS, GNUSTEP_LIBRARIES and GNUSTEP_TOOLS,
which automatically point to the right directory on disk for this filesystem
layout and installation domain.

By default the Makefile Package sets GNUSTEP_INSTALLATION_DOMAIN to
LOCAL.

[Variable]messages
messages can be set to ‘yes’ in order to increase the verbosity and see
all the commands the make is executing.

make messages=yes

[Variable]documentation
documentation controls whether the documentation targets in a project
will be executed. If you don’t desire building the documentation (which
might require a working LaTeX installation, etc.) you can set this to ‘no’.
Otherwise the documentation will be built.

make documentation=no

1.8 Other Variables
Since gnustep-make is a system of scripts rather than compiled code, all the
source is always present and available to read, so the main documentation
is intentionally provided as comments within that source.

26 GNUstep Makefile Package

In particular, gnustep-make variables are documented at the
head of the project-type files in which they are used. eg
$GNUSTEP MAKEFILES/Instance/library.make for the variables
used to build a library.

However, there are some variables which, while not in provided in
common.make are of more general use, and therefore may reasonably be doc-
umented here:

[Variable]GS_WITH_ARC
GS_WITH_ARC may be set to 1 to turns on ARC for the current build if
using the Next Generation runtime setting. This variable may be defined
as an environment variable, or on the make command line, or (usually)
in the GNUmakefile. The library-combo needs to specify the next gener-
ation runtime (eg ng-gnu-gnu) for this variable to take effect. When the
ng runtme is used, setting this variable causes the the flags specified in
ARC OBJCFLAGS to be used when compiling any Objective-C source
files). If no value is defined for ARC_OBJCFLAGS it is assumed to be ’-
fobjc-arc -fobjc-arc-exceptions’ so that code is built with ARC enabled
and with support for exceptions (objects are not leaked when an excep-
tion occurs). Alternatively, to switch on ARC for individual files, you can
have a makefile fragment like this:

ifeq ($(OBJC_RUNTIME_LIB), ng)

file1.m_FILE_FLAGS += -DGS_WITH_ARC=1 -fobjc-arc -fobjc-arc-exceptions

file2.m_FILE_FLAGS += -DGS_WITH_ARC=1 -fobjc-arc -fobjc-arc-exceptions

file9.m_FILE_FLAGS += -DGS_WITH_ARC=1 -fobjc-arc -fobjc-arc-exceptions

endif

[Variable]ARC_CPPFLAGS
ARC_CPPFLAGS sets the flags to defien preprocessor values be used when
building code for ARC. This variable is used only if ng runtime is used
and the GS_WITH_ARC variable is set to say that ARC is used.

[Variable]ARC_OBJCFLAGS
ARC_OBJCFLAGS sets the compiler/linker flags to be used when building
code for ARC. This variable is used only if ng runtime is used and the
’GS WITH ARC’ variable is set to say that ARC is used. The -fobjc-arc
flag enables ARC, but by default ARC OBJCFLAGS is assumed to be
-fobjc-arc -fobjc-arc-exceptions, which adds support for exceptions (re-
ducing performance, but preventing leaked memory when an exception
occurs).

[Variable]xxx_FILE_FILTER_OUT_FLAGS
xxx_FILE_FILTER_OUT_FLAGS (where xxx is the file name, such as
mframe.m) is a filter-out make pattern of flags to be filtered out from
the compilation flags when compiling xxx. In exceptional conditions, you
might need to want to use different compiler flags for a file (for example,
if a file doesn’t compile with optimization turned on, you might want to
compile that single file with optimizations turned off).

27

file.m_FILE_FILTER_OUT_FLAGS = -O% -fomit-frame-pointer

This says that when compiling file.m we should disable optimization flags,
and also remove frame pointer information.

[Variable]xxx_FILE_FLAGS
xxx_FILE_FLAGS (where xxx is the file name, such as main.m) add special
compilation flags to be used when compiling xxx. In exceptional condi-
tions, you might need to want to use different compiler flags for a file (for
example, if ou want to turn on automated reference counting for that file)

file.m_FILE_FLAGS = -fobjc-arc

This says that when compiling file.m we should turn on ARC.

	Introduction
	Structure of a Makefile
	Running Make
	Debug Information
	Profile Information
	Static, Shared, and Dynamic Link Libraries

	Project Types
	Aggregate (aggregate.make)
	Graphical Applications (application.make)
	Bundles (bundle.make)
	Command Line C Tools (ctool.make)
	Documentation (documentation.make)
	Frameworks (framework.make)
	Java (java.make)
	Project Variables

	Libraries (library.make)
	Project Variables
	Example Makefile

	Native Library (native-library.make)
	NSIS Installer (nsis.make)
	Objective-C Programs (objc.make)
	Project Variables
	Example Makefile

	Palettes (palette.make)
	RPMs (rpm.make)
	Services (service.make)
	Subprojects (subproject.make)
	Command Line Tools (tool.make)

	Global Variables (GNUmakefile.preamble)
	Global Rules (GNUmakefile.postamble)
	Common Variables (common.make)
	Directory Paths
	Scripts
	Host and Target Platform Information
	Library Combination
	Overridable Flags

	Other Variables

