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Abstract

This report documents the ASC/ATDM Kokkos deliverable “Production Portable Dy-
namic Task DAG Capability.” This capability enables applications to create and execute
a dynamic task DAG; a collection of heterogeneous computational tasks with a directed
acyclic graph (DAG) of “execute after” dependencies where tasks and their dependencies are
dynamically created and destroyed as tasks execute. The Kokkos task scheduler executes
the dynamic task DAG on the target execution resource; e.g. a multicore CPU, a manycore
CPU such as Intel’s Knights Landing (KNL), or an NVIDIA GPU. Several major technical
challenges had to be addressed during development of Kokkos’ Task DAG capability: (1)
portability to a GPU with it’s simplified hardware and micro-runtime, (2) thread-scalable
memory allocation and deallocation from a bounded pool of memory, (3) thread-scalable
scheduler for dynamic task DAG, (4) usability by applications.
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Chapter 1

Introduction

Kokkos [1] refers to a performance portable, shared memory parallel programming model
and its C++ library implementation. Initially Kokkos supported data parallel execution
where a function can be called in parallel over a simple one-dimensional [0..N) range. To
this we added hierarchical thread-team data parallel execution where a function can be
called in parallel over an NxM league of teams of threads One-dimensional and thread-team
data parallelism addressed a large fraction of parallel algorithms’ needs. However, a small
fraction of performance critical algorithms could not be effectively implemented with just
data parallelism.

Two directed acyclic graph of tasks (Task DAG) capabilities was recently added to
Kokkos. Research and prototyping for these capabilities was performed within a three year
laboratory directed research and development (LDRD) effort [2]. This prototype was sub-
sequently matured into a production-quality capability within an Advanced Simulation and
Computing (ASC) / Advanced Technology Development and Mitigation (ATDM) project.

Kokkos’ Task DAG capabilities are the first time generalized support for Task DAG par-
allelism has been available on a GPU. This achievement required conquering major research
and development challenges during both the LDRD and ASC/ATDM efforts. These chal-
lenges are a consequence of both the “leanness” and quantity of GPU cores. For example,
a function executing on a GPU core cannot be efficiently context-switched to execute a
different function - which is a common capability on “heavy” CPU cores.

Two Kokkos Task DAG capabilities have been deployed and are documented in this
report. (1) A dynamic dag of heterogeneous tasks which provides the maximum set of Task
DAG features. (2) A static dag using a single work function which provides the minimal
set of Task DAG features with significantly less performance and complexity overhead. We
name these Kokkos capabilities the task-dag and work-dag.

This report documents Kokkos’ Task DAG capabilities in two parts. Chapter 2 gives
the programming model abstractions, research challenges, and algorithmic design for these
capabilities. Chapter 3 provides the application programmer interface (API) specifications
for the memory pool, dynamic heterogeneous task DAG, and static homogeneous work DAG.
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Chapter 2

Concepts and Design

Kokkos’ previous programming model abstractions were limited to performance portable
data parallelism with multidimensional array data structures. We enhanced this program-
ming model with abstractions for parallel directed acyclic graph of tasks (task-dag). Kokkos’
task DAG abstractions had to deviate from traditional task DAG programming models in
order to be performance portable across diverse manycore architectures, especially GPUs.

We first introduce abstractions and our terminology for Kokkos’ task DAG capabilities.
Using this terminology we describe the research challenges that had to be accommodated
by Kokkos’ task DAG abstractions and design. Finally we give the conceptual design for
the three major software components of Kokkos’ task DAG capabilities: heterogeneous and
dynamic task-dag, homogeneous and static work-dag, and finite memory pool with variable
size allocations.

2.1 Conceptual Components and Terminology

Execution and Memory Spaces: An execution space identifies where and by what
mechanism Kokkos executes parallel computations. For example, executing a computation
on a subset of CPU cores using OpenMP [3] or executing on a GPU using CUDA [4]. A
memory space identifies where and by what mechanism Kokkos manages data for parallel
computations. For example, traditional CPU “main” memory, CPU high bandwidth mem-
ory, GPU memory, or GPU unified virtual memory (UVM). We refer to the implementation
of execution and memory spaces as Kokkos’ back-ends.

C++ Closure: A C++ closure is an application-defined C++ class and operator()
member function for that class. A closure may be automatically generated by the C++
compiler from an application-defined C++11 lambda expression. An application calls a
Kokkos parallel execution dispatch function, such as parallel for, with a closure that
Kokkos will execute in parallel.

Thread Team: A closure may concurrently execute on a team of hardware threads
within an execution space. Such concurrent execution often uses data parallel operations
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(parallel for, parallel reduce, and parallel scan) that execute across that
thread team. Thread teams typically share critical hardware resources such as registers
and L1 cache. For example, the four hyperthreads sharing a core in the Intel Xeon Phi ar-
chitecture and the warp lanes of an NVIDIA GPU architecture define a tightly bound group
of hardware threads. When these tightly bound hardware threads execute different functions
computing on different data they will compete for shared resources, which typically results
in degraded performance compared to one of the hardware threads executing the same tasks
sequentially.

Task: A task is implemented by closure whose function is scheduled for subsequent
execution.

Task Dependence: A task may have an execute-after dependence on another task. For
example, task B may only begin executing after task A has completed executing. We denote
the directional “B execute-after A” dependence as mboxB ← A or equivalently A→ B.
Note that we use the term dependence and its plural dependences as opposed to the term
dependency and its plural dependencies.

Task DAG: A collection of tasks and task dependences define a graph where tasks are
graph-vertices and execute-after dependences are directed graph-edges. The graph cannot
contain cycles of dependences, otherwise tasks within cycles could never be executed. Thus
the collection tasks and dependences define a directed acyclic graph (DAG) of tasks; i.e., a
Task DAG.

Task-dag: We use the term task-dag to refer to a dynamic and heterogeneous collection
of tasks and dependences: (1) tasks and dependences may be dynamically created and
destroyed and (2) each task may be implemented by a different C++ closure.

Work-dag: We use the term work-dag to refer to a static and homogeneous collection
of tasks and dependences: (1) all tasks are implemented by a single C++ closure, (2) the
closure accepts an integer work index calling argument to identify the “task” to be executed,
(3) all task dependences are declared before any task executes, and (4) each task dependence
is expressed by “j execute-after i” work indices, j ← i.

Task Scheduler: A task scheduler is responsible for managing a task-dag or work-dag
and executing tasks as constrained by dependences. A task scheduler executes a task by
calling it’s function on a single hardware thread or team of hardware threads.
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Spawn: Spawning is the process of creating a new task within a task scheduler for future
execution.

Future: When a task is spawned a handle to the created task is generated. For con-
formance with the C++ standard’s vernacular we refer to this handle as the task’s future.
However, a Kokkos future has shared ownership semantics versus the C++ standard future’s
unique ownershipsemantics; details are given in Section 3.2.1. A task’s future is used to to
express execute-after dependences and obtain return values from tasks. To resolve a design
challenge we also define a when-all future that bundles multiple execute-after dependences;
details are given in Section 2.2.2.

Complete or Respawn: When a task’s function returns from execution the task is either
(1) complete and any execute-after dependences referring to that task are satisfied or (2) the
task is respawned to execute again and all execute-after dependences referring to that task
are not satisfied. During its execution a task may request to be respawned upon returning
from its function. Task respawning is a major paradigm deviation from traditional task
programming models that addresses a significant performance portability research challenge
described in Section 2.2.1.

Ready Task: A task is ready for execution by the task scheduler when (1) the task that
has no execute-after dependences or (2) all of its execute-after dependences are complete.

Task Priority: A task scheduler chooses tasks to execute from among ready tasks. An
application’s algorithm may assign tasks relative priorities such that the task scheduler will
choose a higher priority ready task over a lower priority ready task for execution.

Memory Pool: Dynamic task creation and destruction must allocate and deallocate
memory for the task’s closure. These allocations are made from a memory pool which
manages dynamic allocations of small blocks of memory from within a large pre-allocated
chunk of memory.

2.2 Research Challenges

2.2.1 Respawn, Because GPUs Cannot Wait

Traditional task programming capabilities (e.g., C++11 [5], OpenMP [3], Silk and Silk
Plus [6], Qthreads [7], TBB [8], X10 [9], Chapel [10], and Habanero [11]) allow an executing
task to spawn another task and then wait for that spawned task to complete. Such a wait
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operation defines an implicit dependence – the waiting task stops executing (blocks) and
resumes executing after the spawned task completes. In order to guarantee that execution
of a collection of tasks will make progress, a blocked task’s function must relinquish or yield
its execution resource (hardware thread) so that other tasks can execute on that resource.

For task A to yield an execution resource to task B the complete execution state of task
A must be stored, the complete execution state of task B loaded (if previously stored), and
then task B executes. When the task that A is waiting on completes then A’s execution state
must be reloaded and then A can resume executing. A task’s execution state includes its
registers, stack memory, and instruction pointer. Storing and loading this state introduces
both runtime overhead and complexity for mechanisms required to determine and store/load
this state.

Given a GPU’s lean core and runtime it is impractical (likely impossible) to store/load
a task’s execution state. Even on a CPU the task state store/load overhead is undesirable
(likely unacceptable) with respect to the “micro” tasks that Kokkos’ task-dag and work-
dag capability is targeting. Thus the traditional task programming model’s spawn-and-wait
paradigm was excluded from Kokkos.

Kokkos replaces the traditional wait pattern with the respawn pattern. In Kokkos’ task
programming model a task’s function may spawn one or more other tasks, request that its
own task be respawned with new task dependences, and then return to be called again. A
task’s function is called only after the task’s previous task dependences are complete. As
such the function can process inputs from those execute-after tasks and is then free to declare
new task dependences as part of the respawn request.

The respawn request is processed by the task scheduler after the task’s function returns.
At this point the task no longer has an execution state – it is not consuming registers, stack
memory, or instruction pointer. As such the need to store/load an execution state is entirely
eliminated. The task scheduler need only insert the task in the appropriate queue, as it does
when a task is initially spawned.

Without automatic store/load of registers, stack memory, and instruction pointer a
respawning task must maintain its own state within the task’s closure. This state may
be as simple as an integer variable indicating whether this is the first or a subsequent call to
the task’s function. The content of the task’s state is entirely within the task’s purview.

2.2.2 Futures, Dynamic Dependencies, and When-all

When a dynamic task is spawned the spawning function returns a future referencing the
spawned task. When another task B is spawned, or requests to be respawned, the spawn
and respawn functions may be passed a future referencing task A to declare that task B
executes-after task A completes. However, a task may have more than one execute-after
dependence when spawned or respawned.
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Respawning with multiple execute-after dependences poses a design challenge for ef-
ficiently managing an unpredictable and potentially changing number of dynamic depen-
dences. Our design solution is to (1) allow each task to have one dependence and (2) provide
a when-all future in addition to the task future. A when-all future references multiple tasks
and is complete when all of the referenced tasks are complete. Thus when a task is spawned
or respawned with an execute-after dependence on a when-all future it will only execute after
all referenced tasks are complete.

2.2.3 Thread Teams for Performance

A thread team is typically defined by a set of hardware threads that share critical hardware
resources such as registers and L1 cache. On contemporary NVIDIA GPU architectures
threads within a warp even share an instruction pointer. If different tasks’ functions are called
by threads that share such resources they will compete for those resources and subsequently
impede each other’s execution progress. Net performance is often improved by giving each
task exclusive access to shared resources while its function is executing. In this scenario
either the function is called on a single thread and all other threads within the team are idle,
or the function is called on all threads of the team and those threads use shared resources
cooperatively.

Kokkos’ data parallel patterns have the capability to execute a function on an NxM
league of teams of threads, a.k.a. the thread team execution policy. When a function is
called by team #i ∈ [0..N) the function is called on M (team size) concurrently executing
threads. The function is expected to use this thread team through a a sequence of data
parallel operations that insures the thread team’s memory accesses and control flow are fully
cooperative. Note that on an NVIDIA GPU architecture M is at least the number of threads
in a warp, on an Intel Xeon Phi or similar architecture M is the number hyperthreads per
core or tile, and on convential “heavy” CPU architectures M is often one.

Kokkos’ thread team abstraction is also used for task execution. Each task executes on a
team of M concurrently executing threads, or on a single thread within that team while all
other threads of the team remain idle. In contrast to data parallel thread teams, task parallel
thread teams are independent so the league size N is one and the league rank #i ∈ [0..1) is
zero.

2.2.4 Heterogeneous Architecture

A task-dag scheduler maintains a dynamic DAG of closures where each closure is a “blob”
of data and a function pointer. The function pointer references instructions that execute on
a particular execution architecture; e.g., CPU or GPU. The closure and its function may
be compiled to more than one architecture with different architecture-specific instructions.
Thus a task’s function may have more than one implementation and a task-dag scheduler
must chose the correct function for execution on the specified architecture.
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When compiled to more than one architecture each compiler has the option of generating
a different layout for the members of the closure; i.e., the explicitly written or implicitly gen-
erated C++ class. This permissible flexibility results in interoperability concerns when con-
structing and executing a task on different architectures: does the constructing-architecture
of the closure layout the closure’s members as expected by the executing-architecture? Since
Kokkos’ inception, the layout of explicitly written C++ classes has been identical between
NVIDIA’s GPU compiler (nvcc) and the CPU compiler with which it interoperates. Inter-
operability relies upon the C++ standard layout type property: (1) non-static data members
have the same access control, (2) no virtual functions or virtual bases classes, (3) no non-
static data members of reference type, (4) all non-static data members and base classes are
themselves standard layout types, and (5) other subtle constraints with respect to multiple
inheritance. Interoperability of implicitly generated C++ lambda is problematic because the
generating compiler has complete freedom when declaring class members. For the current
implementation a task that is constructed on the CPU architecture for execution on the
GPU architecture is required to explicitly write the task as a standard layout C++ class.

When constructing a closure on a CPU for execution on a GPU the closure’s data blob
and function pointer must be accessible to both the CPU and GPU. This requirement could
be met by constructing the closure on the CPU and copying it to the GPU, or placing the
closure in GPU unified virtual memory (UVM). A challenge for the non-UVM approach
is managing updates to the ready queues and dependence queues as the CPU constructs
multiple tasks with dependences. This complexity is avoided by using UVM. However, the
UVM strategy introduces the constraint that while the task scheduler is executing a GPU
task-dag the CPU is not permitted to modify or query the GPU task-dag.

2.2.5 Finite Memory Constraint

A dynamic and heterogeneous task-dag creates and destroys tasks’ closures of varying sizes
as the task-dag executes. Efficient execution requires efficient memory allocation and deal-
location for those closures. Furthermore, memory resources are often limited such as GPU
memory or CPU high bandwidth memory (HBM). Finally, the GPU’s lightweight runtime
does not have the rich memory management facilities of a heavyweight CPU runtime.

To manage these time-performance, space-performance, and lightweight runtime chal-
lenges we developed a new thread scalable and (essentially) lock free memory pool. This
memory pool uses efficient atomic operations to support allocation and deallocation of blocks
of memory from a preallocated, large, contiguous chunk of memory. The memory space and
size of this preallocated chunk of memory under the application’s control so that the appli-
cation may effectively manage finite memory resources.
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2.3 Task-dag: Dynamic and Heterogeneous

2.3.1 Dynamic Task Life-Cycle

Within a dynamic and heterogeneous task-dag individual tasks are created, executed, and
destroyed according to the life-cycle illustrated in Figure 2.1.

constructing

waiting

executing

completerespawn

spawn allocation

deallocation

Figure 2.1: The life-cycle of a dynamic task consists of multiple states and state transitions
between its allocation and deallocation. The spawn operation allocates memory for the task’s
closure, calls the closure’s constructor, and enqueues the task in the task scheduler. When a
task executes the closure’s function is called. When that function returns the task is either
complete or respawns back into the task scheduler’s queue. When the closure of complete
task is no longer needed the closure’s allocated memory is deallocated.

The spawn operation (1) allocates memory for the task’s closure from the memory pool,
(2) calls the closure’s constructor on that memory, (3) enqueues the task into the task sched-
uler, and (4) returns a future that references the spawned task. These steps are immediately
executed by the thread that called the spawn operation; either on the CPU or on the GPU.
The spawn operation fails if the memory pool cannot fulfill the memory allocation request
and the task scheduler returns a null future.

Once enqueued the task is waiting to be executed. A task may be waiting for its execute-
after dependences to be satisfied, or may be ready and simply waiting for the task-scheduler
to select it for execution.

A task is executed when a thread or thread team call the closure’s function. Execution
may occur on the same thread A in which the task was spawned; however, the more threads
available to the task-scheduler the more likely the task will execute on a different thread B.
It is even possible that the task will execute on thread B before the spawn operation returns
a future referencing that task on thread A.

While executing a task may request that itself be respawned and then re-enqueued in
the task-scheduler. The respawn request may introduce new execute-after dependences –
replacing the previous execute-after dependences that were guaranteed to be fulfilled when
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the task started executing. When the task’s function returns, the respawn operation re-
enqueues the task and it is waiting again.

A task may respawn itself any number of times; for example it may respawn itself such
that its function is called N times. The task itself is responsible for tracking respawn /
re-execution. For example, a task that respawns and re-executes N times is responsible
for incrementing a counter i ∈ [0..N) so that whenever i < N the task requests respawning.
The type and meaning of this tracking data is at the discretion of the task, and may be
maintained and updated as a member parameter of the task’s closure.

A task that does not request to be respawned is complete and all execute-after depen-
dences that reference the task are fulfilled. The complete task is retained as long as there
is a future that references the task. This allows the task’s result to be queried through the
future. When the last future referencing the task is destroyed the task is deallocated and its
memory returned to the memory pool.

2.3.2 Thread Teams

A task executes on either a single thread or team of threads, as illustrated in Figure 2.2.
Tasks executing on a thread team will have internal data parallel operations that are spread
across the thread team. When executing on a thread team the task’s function must control
whether a code block is executed just by one thread, by all threads, and when synchronization
of the thread team is necessary.

construc(ng	  

wai(ng	  

execu(ng	  

data	  parallel	  task	  
on	  a	  thread	  team	  

serial	  task	  
on	  a	  single	  thread	  

complete	  

Figure 2.2: Tasks execute serial or data parallel. A task scheduler selects a task that is ready
to execute from the waiting collection and executes the task on a single thread or thread
team.

When a task executes on a single thread the task’s function may spawn new tasks, request
respawning, and modify parameters within its closure. When a task executes on a thread
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team the task’s function should use only one thread of that team to (1) spawn a particular
new task or (2) request that the task be respawned.

2.3.3 Scheduler

When a dynamic task is spawned or respawned it is assigned a priority and possibly an
execute-after dependence. The task-dag scheduler maintains queues of ready-to-execute
tasks, tasks waiting on an incomplete task or when-all entity, and when-all entities waiting
on incomplete tasks. When a dynamic task is spawned or respawn the scheduler inserts the
task into the appropriate ready or waiting queue.

A queue is last-in-first-out (LIFO) implemented with a simple linked list. Each member of
the linked list is a task or a when-all entity. Push and pop operations use atomic operations to
add or remove members to the head of the linked list. Thus these operations are thread-safe
and thread-scalable.

The scheduler’s set of queues consists of one head of a linked list for each priority (high,
regular, and low). Each task or when-all entity holds a head of a waiting linked list. The re-
lationship between ready queues, waiting queues, and members (tasks and when-all entities)
is illustrated in Figure 2.3.

nextnextready
queue

end

wait
queue

nextnext end

end end

end endend

A B C

D E F

Figure 2.3: Each ready queue is defined by the head of a linked list of tasks. Each task or
when-all entity is a member of exactly one linked list and holds the head of a wait queue.
Since a task or when-all entity is a member of a linked list it also holds a next reference.

In Figure 2.3 task A, B, and C are members of ready queue. Task A is the head of this
queue and references task B as the next member. In turn task B references task C, which is
the end of the ready queue. Task D, E, and F are members of the waiting queue for task A.
Note that a task or when-all entity is a member of at most one queue so the “next” reference
is unambiguous.

When a task is spawned, respawned, or its execute-after dependence completes the sched-
uler pushes the task onto the appropriate queue. The spawn or respawn operation on task B
interrogates whether it has a dependence on an incomplete task or when-all entity A. If so
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then B is pushed onto A’s waiting queue. Otherwise task B is pushed onto the ready queue
of B’s assigned priority.

When a when-all entity is created its referenced tasks are interrogated to find an incom-
plete task. If when-all entity B has an incomplete task A then B is pushed onto A’s waiting
queue. Otherwise B is complete and it is not pushed onto a queue.

When a task completes the scheduler processes its queue of waiting tasks and when-
all entities. Similarly when a when-all entity is determined to be complete the scheduler
processes its queue of waiting tasks. Each formerly waiting task is pushed to a ready queue.
If a when-all entity B references an incomplete task A then B is pushed onto A’s waiting
queue. Otherwise the when-all entity B is determined to be complete and the scheduler
processes its queue of waiting tasks.

The scheduler is implemented with a set of collaborative, concurrent workers executing on
hardware threads. All workers are equal partners in the scheduler; i.e., there is no “master”
or “foreman” among the workers. Concurrent workers are organized into thread teams; on
“heavy” CPUs the team is a single thread, on “light” CPUs such as Intel Xeon Phi a team
consists of all hyperthreads on a core, and on GPUs the team consists of a GPU warp of
threads. One worker from each team iterates an array of ready queues from high to low
priority and attempts to pop a task. If successful the task is broadcast to the thread team
and the thread team executes the task. If all ready queues are empty and there are no
executing tasks, which could spawn new tasks, then entire task-dag is complete.

The scheduler is thread-safe and thread-scalable through the use of atomic operations
at all points of inter-worker collaboration. Tasks and when-all entities are allocated and
deallocated with a memory pool using atomic operations. Members are pushed and popped
on queues with atomic operations.

2.4 Work-dag: Static and Homogeneous

Kokkos’ task-dag provides applications with a maximum amount of flexibility, a dynamic
number of arbitrary tasks and dependences. An application pays for this flexibility with
the runtime overhead of managing an arbitrary set of functions, dynamic memory allocation
/ deallocation, and queues with dynamic size. If an application’s task DAG has a single
work function for all of its tasks and all execute-after dependences are expressed prior to
executing the task DAG then the runtime overhead can be significantly reduced by using
Kokkos’ static and homogeneous work-dag.

The work-dag combines the simplicity of data parallel operation over a range of integers
with the execute-after dependences of a DAG. Instead of a dynamic and heterogeneous
collection of tasks, the work-dag has a single work closure that is called over a predetermined
range of work indices; F (i) where i ∈ [0..N). In contrast to a parallel for operation,
a work-dag is also given a DAG of execute-after dependences defined with “work item j

20



executes after work item i” declarations. The work-dag scheduler guarantees that for every
execute-after dependence the call F (j) will begin only after the call F (i) has returned.

Execution of a work-dag requires only a single work closure and does not require dynamic
allocation / deallocation. Thus the static and homogeneous work-dag is significantly simpler
with significantly lower overhead than the dynamic and heterogeneous task-dag.

2.4.1 Scheduler

The work-dag scheduler uses a set of pre-allocated and pre-initialized queue data structures.
These data structures consist of the following.

• A compressed row storage (CRS) array representing the work item execute-after de-
pendence graph.

• An array for the waiting queue of work items.

• An array and range for the ready queue of work items.

Ready Queue

A thread pops a work item i from a ready queue and calls the work function with that
work index, F (i). A work item j becomes ready to execute when all of its execute-after
dependences are complete. When a work item becomes ready a thread pushes that work
item onto a ready queue.

A ready queue is implemented with an array of work indices Q(N) and range within
that array R = (b, e). The ready work indices reside in the queue as Q(k)∀k ∈ R. A new
work item j pushed into the array at the end of the range Q(e) = j, e = e + 1. A work item
i popped from the array at the beginning of the range, i = Q(b), b = b + 1. Push and pop
operations are implemented with atomic updates so the ready queue is lock-free.

The ready queue’s array is sized to the maximum work count N so that (1) the queue
cannot overflow even if all N work indices are ready to execute and (2) push and pop
operations need not be concerned with managing the reuse of array locations (e.g., a smaller
circular queue) and thus have simple and time-efficient implementations.

Dependence Graph

The DAG of execute-after dependences (work item j executes after work item i) is stored in
a CRS array. Given CRS row-offset and column-index arrays R and C, these dependences
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are stored as

j = C (k)∀k ∈ [R(i)..R(i + 1)) .

This storage scheme enables efficient updates to the waiting queue when the call to F (i)
completes.

It is often simpler for an algorithm to generate execute-after dependences as a set of
“after” work item j paired with all of their “before” work items i. If this information is
stored in a CRS array it is the transpose of the CRS array required by the scheduler,

i = CT (k)∀k ∈
[
RT (j)..RT (j + 1)

)
.

Such an CRS array must be transposed before it is usable by the work-dag scheduler.

Waiting Queue

The waiting queue is implemented with an array of counts W (N) denoting the number of
incomplete execute-after dependences for each work item. When the call to F (i) returns all
counts for work items waiting on i are atomically decremented.

W (C(k)) = W (C(k))− 1 ;∀k ∈ [R(i)..R(i + 1))

When a W (j) count becomes zero the work item is ready to execute and is pushed onto the
ready queue.

2.4.2 Potential Improvements

Priority

As noted in the dynamic heterogeneous task-dag an algorithm may have different priorities
for different tasks. However, the work-dag scheduler currently maintains a single first-in-
first-out (FIFO) queue of ready work items. A potential improvement is to allow algorithms
to supply relative priorities for work times (e.g., high, regular, and low) and the scheduler
maintain on FIFO ready queue per priority. Work item priorities would also be static so an
upper bound for each priority queue Np would be pre-computed. Thus each priority can be
given a range Rp = [ip..jp) within the ready array. Then given priority values p ∈ [0..P ) each
range is initialized as

ip =
p−1∑
k=0

Nk ; jp = ip + Np
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2.5 Memory Pool: Finite and Variable Size

The dynamic and heterogeneous task-dag uses a memory pool to allocate / deallocate tasks
and when-all entities of varying sizes. When these allocations occur in GPU memory, or
other limited memory spaces, the application typically needs to control its total memory
consumption. To meet requirements of finite memory, thread scalability, and portability to
CPU and GPU architectures we developed a new memory pool. This memory pool leveraged
ideas from existing GPU compatible allocators such as ScatterAlloc [12, 13], Halloc [14], and
Xmalloc [15].

Our design addresses the following constraints and performance goals.

• Use only an application specified finite amount of memory.

• Maximize thread scalability.

• Minimize time to find, acquire, and release memory.

• Minimize “lost” memory, the difference between the actual allocation size and requested
allocation size.

• Minimize overhead memory, memory which is used to track allocations and not avail-
able to be allocated.

2.5.1 Superblock and Block Partitioning

Our memory pool manages allocatable blocks of memory within a contiguous span of mem-
ory; as illustrated in Figure 2.4. These blocks are organized in a hierarchy where the span
memory is partitioned into superblocks of a uniform size and each superblock is partitioned
into allocatable blocks. These blocks are also of a uniform size within a particular superblock,
but each superblock may hold blocks of a different size.

Memory is allocated by blocks. When a memory allocation is requested for a particular
size an unallocated block that is equal to or greater than the requested size is located, claimed
as allocated, and returned to fulfill the request. When a prior allocation is deallocated the
allocation marking for that block must be located and released.

The size of the blocks within a superblock is assigned to the superblock as allocation
requests are processed. For simplicity and execution performance, block sizes and superblock
size are chosen as a power of two. Thus each superblock is assigned to N , where blocks
within the superblock are size 2N . This insures that a superblock contains a power of two
number of blocks; given block size 2N and superblock size 2M then there are 2(M−N) blocks
in a superblock. This also allows expensive integer division and modulo instructions to be
replaced with inexpensive bit shift and mask instructions.
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Figure 2.4: A memory pool’s contiguous span of memory is partitioned into superblocks,
which are partitioned into individually allocatable blocks.

2.5.2 Superblock State

The set of superblock states is maintained within a contiguous span of memory within a
memory pool, as illustrated in Figure 2.4. A superblock’s state is the size of blocks that it
contains (2N) and an array of flags indicating which of those blocks have been claimed for
an allocation. The state changes in three ways: (1) an unused block is claimed (allocated),
(2) a claimed block is released (deallocated), and (3) the block size 2N is reassigned. A
superblock is full if all of its blocks are claimed, partially full if some but not all of its blocks
are claimed, and empty if none of its bocks are claimed. Only an empty superblock may be
reassigned to a different block size.

A superblock contains 2M−N blocks, where 2N is the block size and where 2M is the
superblock size. The array of “claimed block” flags is implemented as an array of bits in
order to minimize the memory consumed by these flags. Because a superblock may be
reassigned to any block size the array must be sized to the smallest block size; i.e., the
largest number of blocks that the superblock could contain.

2.5.3 Block Allocation and Deallocation

Allocation

Memory allocation is requested for a block of at least Size bytes. The preferred block
allocation size is 2N , where 2N−1 < Size ≤ 2N . The preferred superblock is one that is
assigned to N (blocks of size 2N) and is partially full. If a preferred superblock is not
available the next best option is to find an empty superblock and reassign it to N . If an
empty superblock is not available then the last option is to find a partially full superblock
assigned to larger block size. The last option wastes memory by claiming a block that is
larger than necessary; however, wasting memory is preferred to failing the allocation request.
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The memory pool allocation algorithm that satisfies these preferences is summarized
in Figure 2.5. The algorithm is designed to be performant even with a large number of
concurrent threads (thread scalable) and a small number of superblocks (potentially high
contention). All superblock state updates are performed through atomic operations and are
lock-free.

function allocate( Size bytes )
N ← such that 2(N−1) < Size ≤ 2N

while trying to allocate do
if SB is undefined then SB ← SBHint(N)
if success claiming block from SB then return block
for all SB ← each superblock, begin at SBStart(N) do

if SB assigned to N and not full then
search succeeds, exit for loop

else if SB empty superblock then
if first then SBEmpty ← SB

else if SB assigned to > N and not full then
if first then
SBLarger ← SB

end if
end for
if search failed then

SB ← undefined
if found SBEmpty then

if success reassigning SBEmpty to N then
SB ← SBEmpty

end if
else if found SBLarger then

SB ← SBLarger
end if

end if
if SB assigned to N and not full then

SBHint(N) ← SB
end if

end whilereturn failed allocation
end function

Figure 2.5: The block allocation algorithm must find a superblock that is (1) assigned to a
block size suitable for the allocation request and (2) has an unclaimed block. A superblock
may be reassigned to the required block size in order to fulfill the request.

A memory pool may have a large number of superblocks to search for the preferred or
necessary superblock. We attempt to minimize the number of superblocks searched during
an allocation in two ways. First, we maintain a preferred superblock hint for each block size
assignment N (recall Figure 2.4). Second, we designate a “starting superblock” within the
set of superblocks for each block size.
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The superblock hint is intended to reference a preferred superblock, assigned to N and
partially full. A superblock hint becomes invalid whenever the superblock is full or the
superblock is reassigned to a different block size. Thus (1) a hint cannot be trusted to be
correct and (2) a hint should be updated when it is invalid.

To claim a block from a superblock the array of bits is searched for an unset bit, indicating
an unclaimed block. This bit is set with an atomic operation. If the atomic operation
succeeds the block is claimed and the allocation succeeds.

When a block cannot be claimed from the hinted superblock the superblocks are lin-
early searched. This starting point for this search is a function of the requested block size,
SBStart(N) in Figure 2.5. These starting points are spread out among the set of superblocks
so that searches for different sizes are likely to start at different superblocks.

Each iteration of the search queries for the three usable states of a superblock: preferred,
empty, and larger than necessary. If a preferred superblock (assigned to N and partially
full) is found then the search is successful and ends. If the superblock is empty and is the
first empty superblock encountered then this superblock is remembered. If the superblock
is larger than necessary, is partially full, and is the first such superblock encountered then
this superblock is remembered. If the search iteration completes without finding a suitable
superblock then the current search fails. Because allocations and deallocations may occur
concurrently another thread may have deallocated a block that could satisfy the allocation
request. Thus the algorithm may try again any number of times, as directed by the allocation
request.

If the search succeeds in finding a preferred superblock then the hint is updated with
an atomic operation to help accelerate subsequent allocation requests. If instead the search
finds an empty superblock then an attempt is made to reassign, with an atomic operation,
the empty superblock to the desired block size. If this reassignment succeeds the hint is
updated.

Deallocation

Deallocation is a straightforward constant-time operation. First the superblock containing
the to-be-deallocated memory is computed from the memory’s location. Second the block
within that superblock is computed from the memory’s location. Finally the block is released
by unsetting its corresponding bit with an atomic operation.

2.5.4 Performance Parameters

A memory pool’s span of memory (Figure 2.5) is allocated from a memory space and the
superblock states are initialized according to a set of construction parameters. These pa-
rameters are used to “tune” the memory pool’s performance.
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Minimum total allocation size Stot is the minimum amount of memory within the
span that is reserved for superblocks. The actual allocation will be rounded up so that each
superblock is 2M bytes. This is the total memory available for individual allocations from
the memory pool.

Minimum block allocation size Smin defines the minimum size of an allocation request.
The default for this parameter is (currently) 64 bytes. The allocation algorithm does not
enforce this lower bound during allocation. This parameter establishes the size of the smallest
block that will be allocated as 2N such that 2N−1 < Smin ≤ 2N . Each allocations smaller than
2N will consume an entire minimum-size block and thus waste memory. This parameter also
establishes the maximum number of blocks in a superblock 2M−N , which is used to size the
array of bit-flags in the superblock state.

Maximum block allocation size Smax defines the maximum size of an allocation re-
quest. The default for this parameter is (currently) 4096 bytes. This upper bound is enforced
by the allocation algorithm. This parameter is used determine the superblock size, if a su-
perblock size is not specified. A large upper bound allows larger allocations but reduces the
number of superblocks and thus reducing the ability of the memory pool to efficiently sup-
port a wide range of allocation sizes. This parameter is also establishes number of superblock
hints needed, Nmax −Nmin, and thus memory consumed by the hints values.

Minimum superblock size Ssup defines the minimum superblock size where the actual
size is 2M such that 2M−1 < Ssup ≤ 2M . The default for this parameter is the maximum
block allocation size.

These performance parameters are constrained as follows.

0 < Smin ≤ Smax ≤ Ssup ≤ Stot

The memory pool is designed to support variable block-size allocations. However, it can
be tuned for single block-size allocations by (1) setting the minimum and maximum block
size to the same value and (2) setting the total allocation size and superblock size to the
same value. These settings will establish a single superblock state with a single array of bits
for the block allocations. The superblock search will occur only if the one superblock is full
and the search will terminate after a single iteration.
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Chapter 3

Specification

The application programmer interface (API) specifications for Kokkos’ dynamic heteroge-
neous task-dag, static homogeneous work-dag, and memory pool are given here. The on-line
Kokkos documentation (github.com/kokkos/kokkos/wiki) should also be consulted as these
APIs may evolve.

3.1 Finite and Variable Size Memory Pool

1 namespace Kokkos {
2 template < typename Space >
3 class MemoryPool {
4 public:
5 void * allocate( size_t alloc_size , int attempt_limit = 1 ) const ;
6 void deallocate( void * ptr , size_t alloc_size ) const ;
7 size_t allocate_block_size( size_t alloc_size ) const ;
8
9 MemoryPool( const typename Space::memory_space &

10 , size_t min_total_alloc_size
11 , size_t min_block_alloc_size = 0
12 , size_t max_block_alloc_size = 0
13 , size_t min_superblock_size = 0 );
14
15 MemoryPool();
16 MemoryPool( MemoryPool && );
17 MemoryPool( const MemoryPool & );
18 MemoryPool & operator = ( MemoryPool && );
19 MemoryPool & operator = ( const MemoryPool & );
20
21 size_t capacity() const ;
22 size_t min_block_size() const ;
23 size_t max_block_size() const ;
24
25 using usage_statistics = /* ... */ ;
26
27 void get_usage_statistics( usage_statistics & ) const ;
28 };
29 }

Figure 3.1: The MemoryPool provides variable size allocations from a fixed size span of
memory.
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void * MemoryPool::allocate( size_t alloc_size
, int attempt_limit = 1 );

• Effects: Makes attempt_limit attempts to obtain a memory block that is at least
alloc_size bytes, when alloc_size ¿ 0. If successful returns a pointer to that
block of memory. Otherwise returns NULL.

size_t MemoryPool::allocate_block_size( size_t alloc_size )

• Effects: For alloc_size bytes return the anticipated memory block size that would
be allocated.

void MemoryPool::deallocate( void * ptr , size_t alloc_size )

• Requires: ptr was obtained from a prior call ptr = allocate( alloc_size );.
Effects: Releases the previously allocated memory block referenced by ptr.

MemoryPool::MemoryPool( const typename Space::memory_space &
, size_t min_total_alloc_size
, size_t min_block_alloc_size = 0
, size_t max_block_alloc_size = 0
, size_t min_superblock_size = 0 );

• Requires: 0 < min_block_alloc_size
min_block_alloc_size ≤ max_block_alloc_size
max_block_alloc_size ≤ min_superblock_size
min_superblock_size ≤ min_total_alloc_size

• Effects: Allocates a span of memory from the memory space to provide at least
min_total_alloc_size bytes of allocatable memory. Initializes the superblock
partitions and states as guided by the remaining input parameters.

MemoryPool::MemoryPool();
MemoryPool::MemoryPool( MemoryPool && );
MemoryPool::MemoryPool( const MemoryPool & );
MemoryPool & MemoryPool::operator = ( MemoryPool && );
MemoryPool & MemoryPool::operator = ( const MemoryPool & );

• Effects: The MemoryPool class follows Kokkos’ shared ownership semantics for the
copy constructors and assignment operators.
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size_t MemoryPool::capacity() const ;

• Effects: Returns the amount of allocatable memory where min_total_alloc_size
≤ capacity().

size_t MemoryPool::min_block_size() const ;

• Effects: Returns the minimum allocation block size where min_block_alloc_size
≤ min_block_size().

size_t MemoryPool::max_block_size() const ;

• Effects: Returns the maximum allocation block size where max_block_alloc_size
≤ max_block_size().

void MemoryPool::get_usage_statistics( usage_statistics & ) const ;

• Effects: Outputs usage statistics such as memory allocated and number of memory
blocks allocated. See the Kokkos memory pool header file for current statistics output.
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3.2 Dynamic and Heterogeneous Task-DAG

Kokkos’ dynamic heterogeneous task-dag has two major classes: a Future which is a ref-
erence to a task and a TaskScheduler which manages the queue of waiting tasks and
execution of ready tasks.

3.2.1 Kokkos::Future

1 namespace Kokkos {
2 template< typename Arg1 = void , typename Arg2 = void >
3 class Future {
4 public:
5 using execution_space = /* ... */ ;
6 using value_type = /* ... */ ;
7
8 Future(); /* null future */
9

10 template< typename A1 , typename A2 >
11 Future( const Future<A1,A2> & ); /* copy future */
12
13 template< typename A1 , typename A2 >
14 Future & operator = ( const Future<A1,A2> & ); /* assign future */
15
16 ˜Future(); /* destroy future */
17
18 bool is_null() const ; /* is null future */
19 const value_type & get() const ; /* get value of completed task */
20 };
21 }

Figure 3.2: The Future provides a reference counted handle to a spawned task.

template< typename Arg1 = void , typename Arg2 = void > class Future ;
Future::execution_space
Future::value_type

A Future references a task that executes in the Future::execution_space and
has a result of the Future::value_type. The execution space and value type are spec-
ified through the future’s template parameters. If the value type parameter is omitted the
value_type is void and the referenced task has no result value. If the execution space
parameter is omitted the execution_space is Kokkos’ default execution space.

Future::Future();
template< typename A1 , typename A2 >
Future::Future( const Future<A1,A2> & );
template< typename A1 , typename A2 >
Future & Future::operator = ( const Future<A1,A2> & );
Future::˜Future();
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The Future class follows Kokkos’ shared ownership semantics for the copy constructors
and assignment operators. A futures may be assigned from another future with a compatible
execution space and values type. For example, a future with value_type of void may be
assigned from a future with a non-void value_type.

bool Future::is_null() const ;

• Effects: Returns whether the future references a task.

const value_type & Future::get() const ;

• Requires: The future references a completed task.

• Effects: Returns the result of the referenced task.
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3.2.2 Kokkos::TaskScheduler

1 namespace Kokkos {
2 template< typename ExecutionSpace >
3 class TaskScheduler {
4 public:
5 using execution_space = ExecutionSpace ;
6 using memory_space = /* ... */ ;
7 using memory_pool = /* ... */ ;
8 using member_type = /* ... */ ;
9

10 TaskScheduler();
11 TaskScheduler( TaskScheduler && );
12 TaskScheduler( const TaskScheduler & );
13 TaskScheduler & operator = ( TaskScheduler && );
14 TaskScheduler & operator = ( const TaskScheduler & );
15 TaskScheduler( const memory_pool & );
16
17 memory_pool const * memory() const ;
18
19 template< typename A1 , typename A2 >
20 static Future< execution_space >
21 when_all( Future<A1,A2> const dependence[] , int number_dependence );
22
23 template< typename DependenceGenerator >
24 Future< execution_space >
25 when_all( int number_dependence , DependenceGenerator && );
26
27 template< typename FunctorType >
28 static void respawn( FunctorType * self
29 , TaskScheduler const & scheduler
30 , TaskPriority const & priority );
31
32 template< typename FunctorType , typename A1 , typename A2 >
33 static void respawn( FunctorType * self
34 , Future<A1,A2> const & dependence
35 , TaskPriority const & priority );
36 };
37
38 enum class TaskPriority { High , Regular , Low };
39
40 template< typename Future_Or_Scheduler >
41 Impl::TaskPolicyData<...>
42 TaskTeam( Future_Or_Scheduler const & , TaskPriority = TaskPriority::Regular );
43
44 template< typename Future_Or_Scheduler >
45 Impl::TaskPolicyData<...>
46 TaskSingle( Future_Or_Scheduler const & , TaskPriority = TaskPriority::Regular );
47
48 template<..., typename FunctorType >
49 Future<...> host_spawn( Impl::TaskPolicyData<...> const & , FunctorType && );
50
51 template<..., typename FunctorType >
52 Future<...> task_spawn( Impl::TaskPolicyData<...> const & , FunctorType && );
53
54 template< typename Space >
55 void wait( TaskScheduler< Space > const & );
56 }

Figure 3.3: The TaskScheduler provides an interface for spawning tasks, respawning tasks,
and executing those tasks according to their execute-after dependences.
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TaskScheduler::execution_space
TaskScheduler::memory_space
TaskScheduler::memory_pool
TaskScheduler::member_type

The task scheduler allocates memory for tasks from a memory_pool, which obtains its
large span of memory from a memory_space, and executes tasks in a execution_space.
When tasks execute they are called with a member_type.

TaskScheduler::TaskScheduler();
TaskScheduler::TaskScheduler( TaskScheduler && );
TaskScheduler::TaskScheduler( const TaskScheduler & );
TaskScheduler & TaskScheduler::operator = ( TaskScheduler && );
TaskScheduler & TaskScheduler::operator = ( const TaskScheduler & );

• Effects: The TaskScheduler class follows Kokkos’ shared ownership semantics for
the copy constructors and assignment operators.

TaskScheduler::TaskScheduler( const memory_pool & );

• Effects: Constructs a task scheduler which will use the input memory pool to allocate
tasks.

TaskScheduler::memory_pool const * TaskScheduler::memory() const ;

• Effects: Returns the memory pool object with which the task scheduler was con-
structed. Returns NULL if the memory pool object was default constructed.

template< typename Future_Or_Scheduler >
Impl::TaskPolicyData<...>
TaskTeam( Future_Or_Scheduler const &

, TaskPriority = TaskPriority::Regular );

template< typename Future_Or_Scheduler >
Impl::TaskPolicyData<...>
TaskSingle( Future_Or_Scheduler const &

, TaskPriority = TaskPriority::Regular );

• Requires: The first argument is a non-NULL Future or non-NULL TaskScheduler.
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• Effects: Construct task policy data required to spawn a task with either host_spawn
or task_spawn functions. The policy data returned by TaskTeam specifies that a
spawned task will execute on a thread team. The policy data returned by TaskSingle
specifies that a spawned task will execute on a single thread. The policy references a
TaskScheduler that is either explicitly input or that spawned the task referenced
by the input future.

template<..., typename FunctorType >
Future<...> host_spawn( Impl::TaskPolicyData<...> const & policy

, FunctorType && );

template<..., typename FunctorType >
Future<...> task_spawn( Impl::TaskPolicyData<...> const & policy

, FunctorType && );

• Requires: The policy argument is the output of either the TaskTeam or TaskSingle
function. The FunctorType is copyable or moveable, and conforms to the inter-
face and semantics given in Section 3.2.3. The host_spawn function is called in
host code outside of of any Kokkos data parallel or task parallel execution. The
task_spawn function is called within a task executing in the execution_space.
Two separate task spawning functions are required to obtain a function pointer for the
execution_space. In particular, the mechanisms for obtaining a GPU execution
space function pointer from host code or GPU code are are different and incompatible.

• Effects: A task scheduler is obtained from the policy. This task schedulure allocates
task memory from the memory pool, copies the input functor into that task, obtains
a function pointer to execute that task in the execution_space, sets task policy
parameters, enqueues the task, and returns a future that references the spawned task.

template< typename A1 , typename A2 >
static
Future< execution_space >
TaskScheduler::when_all( Future<A1,A2> const dependences[]

, int number_dependence );

• Requires: All futures in the array dependences[] are not null and reference tasks
spawned from the same scheduler.

• Effects: Return a future that is complete when all of the futures in the dependences
array are complete.
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template< typename DependenceGenerator >
Future< execution_space >
TaskScheduler::when_all( int number_dependence

, DependenceGenerator && );

• Requires: DependenceGenerator is a closure, preferrably a C++ lambda expres-
sion, with the following interface.

scheduler.when_all( N ,
[&](int i)->Future<execution_space> { ... } );

The closure is called with i ∈ [0..N) and returns a Future. The returned futures must
either be null or reference a task that was spawned by the scheduler.

• Effects: Return a future that is complete when all of the futures returne by the depen-
dence generator closure are complete.

template< typename FunctorType >
static
void TaskScheduler::respawn( FunctorType * self

, TaskScheduler const & scheduler
, TaskPriority const & priority );

template< typename FunctorType , typename A1 , typename A2 >
static
void TaskScheduler::respawn( FunctorType * self

, Future<A1,A2> const & dependence
, TaskPriority const & priority );

• Requires: A respawn function is called at most once from within an executing task
closure with the first argument as this.

• Effects: Requests that this task be respawned with a new priority and optionally a
new dependence. When the task’s closure returns the task will be rescheduled with
the requested priority and dependence.

template< typename Space >
void wait( TaskScheduler< Space > const & );

• Requires: Called from host code outside of any Kokkos data parallel or task parallel
execution.

• Effects: Blocks the calling host code until all executing and ready tasks in the scheduler
have completed, including tasks that are spawned by running tasks.
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3.2.3 Requirements for Task Functor

A task’s FunctorType must provide an execution function conforming to one of the two
following interfaces.

void FunctorType::operator()( TaskScheduler::member_type & );
void FunctorType::operator()( TaskScheduler::member_type &

, value_type & );

A functor with the first interface does not have a result and a referencing future has a
void Future::value_type. A functor with the second interface has a result and the
referencing future has Future::value_type matching the value_type argument.

Task State and Respawning

A task that respawns should maintain state data to differentiate between the first and sub-
sequent calls to the task. This state data may reside in global memory, or may reside within
the task’s closure. A task’s operator() function is non-const so that member variables of
the closure may be modified.

Tasks executing on teams

The TaskScheduler::member_type has the same functionality and interface as Kokkos’
data parallel TeamPolicy::member_type. Thus a task spawned with a TaskTeam
policy has access to all of the same nested data parallelism capabilities. Likewise a task
executing on a thread team must also exercise team-versus-single discipline.

• When thread team task executes only one thread from that team may call the respawn
function.

• Spawning new tasks is typically done by only one thread.

• Any updates to the task’s closure must be carefully coordinated among the thread
team to avoid race conditions.

Construction

The closure for a task will be constructed prior to being input to a spawn function. This
closure is copy or move constructed into memory allocated by the task scheduler. When the
spawn function returns the input closure is no longer needed. If this input closure is a local
temporary it will be automatically destroyed.
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3.2.4 Task-dag Example: Naive Fibonacci

We use the naive task-based Fibonacci algorithm for an example use of the task-dag capa-
bility.

Fibonacci: F (n) =

{
n ≤ 1 : n
n > 1 : F (n− 1) + F (n− 2)

In this naive implementation each F (n) computation is performed by its own task and each
recursion (when n > 1) defines a new dependence. The purpose of this example is not the
efficient computation of the Fibonacci function, but to use a trivial computation to illustrate
the construction and execution of tasks and task dependences. This example also serves
as a “stress test” for evaluating performance overhead for task allocation, deallocation, and
scheduling.

The naive Fibonacci implementation using Kokkos’ heterogeneous dynamic task-dag ca-
pability is illustrated in Figure 3.4. The code in this illustration has been simplified from
the corresponding unit test case in the Kokkos repository. Simplification-omissions include
checking whether memory pool allocation failed due to insufficient memory and macros re-
quired for portable compilation to GPUs.

In this implementation Fibonacci functor has two states: (1) the initial call where the
F (n− 1) and F (n− 2) recursive tasks have not been spawned and (2) the second call where
the recursive tasks are complete. This state is determined by whether the future handles to
the recursive tasks (fib[2]) are null. If in the initial call n > 1 then the F (n − 1) and
F (n− 2) recursive tasks are spawned, a when_all task is created for the completion of the
two tasks, and the F (n) task is respawned with a dependence on the when_all task. The
second call merely queries the result of the recursive tasks and sets the result of the F (n)
tasks accordingly.

The F (n − 2) recursion will spawn fewer tasks than the F (n − 1) recursion. Thus the
F (n − 2) recursion could complete sooner and deallocate the associated tasks – if it has
the opportunity to execute before the F (n − 1) recursion. It is due to this algorithmic
observation that the F (n − 2) task is assigned a high priority and the F (n − 1) branch
is assigned the default regular priority. This strategy reduces the “high water mark” for
memory consumption by the naive Fibonacci implementation.
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1 template< typename Space >
2 struct Fibonacci {
3 using namespace Kokkos ;
4 using value_type = long ;
5 using future_t = Future< value_type , Space > ;
6 using sched_t = TaskScheduler< Space > ;
7 using member_t = typename sched_t::member_type ;
8
9 sched_t sched ;

10 future_t fib[2] ;
11 value_type n ;
12
13 Fibonacci( sched_t const & arg_sched ,
14 , value_type const & arg_n )
15 : sched( arg_sched ), fib{}, n( arg_n ) {}
16
17 void operator()( member_t & , value_type & result )
18 {
19 if ( n <= 1 ) { result = n ; }
20 else if ( ! fib[0].is_null() ) {
21 result = fib[0].get() + fib[1].get();
22 }
23 else {
24 fib[0] = task_spawn( TaskSingle(sched,TaskPriority::High), Fibonacci(n-2) );
25 fib[1] = task_spawn( TaskSingle(sched), Fibonacci(n-1) );
26 respawn( this , when_all( fib , 2 ) , TaskPriority::High );
27 }
28 }
29
30 static void test( int n )
31 {
32 using memory_t = typename sched_t::memory_pool ;
33 memory_t mempool( 16000 , 64 , 1024 );
34 sched_t scheduler( mempool );
35 future_t f = host_spawn( TaskSingle(scheduler), Fibonacci(n) );
36 wait( scheduler );
37 std::cout << "Fibonacci(" << n << ") = " << f.get() << std::endl ;
38 }
39 };

Figure 3.4: Example use of Kokkos Task-dag capability for implementation of naive task-
based Fibonacci algorithm.
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3.3 Static and Homogeneous Work DAG

3.3.1 Kokkos::WorkGraphPolicy

1 namespace Kokkos {
2
3 template< typename ... Properties >
4 class WorkGraphPolicy ;
5
6 template< typename IndexType , typename Space >
7 class Crs ;
8
9 template< typename ... Properties , typename FunctorType >

10 parallel_for( WorkGraphPolicy<Properties...> const &
11 , FunctorType const & );
12
13 template< typename ... Traits >
14 class WorkGraphPolicy {
15 public:
16 using index_type = /* */ ;
17 using execution_space = /* */ ;
18 using graph_type = Crs< /* */ > ;
19
20 WorkGraphPolicy( graph_type const & dependences );
21 };
22
23 template< typename ... >
24 class Crs {
25 public:
26 using index_type = /* */ ;
27 using size_type = /* */ ;
28 using row_map_type = View<size_type*,Space> ;
29 using entries_type = View<index_type*,Space> ;
30
31 size_type numRows() const ;
32 row_map_type row_map ;
33 entries_type entries ;
34 };
35
36 template< typename ... Properties >
37 void transpose_crs( Crs< Properties... > & out
38 , Crs< Properties... > const & in );
39 }

Figure 3.5: Specification for Kokkos TaskScheduler which provides an interface for executing
a work function on a range of work indices according to predefined execute-after dependences.
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For a Crs (compressed sparse row) object to represent a DAG it must satisfy the following
requirements.

• Let:

– dag be a Crs object,

– N = dag.numRows(),

– NZ = dag.entries.size(),

– R(i) = dag.row_map(i), and

– C(k) = dag.entries(k).

• Requires:

– R(0) = 0 and R(N) = NZ.

– R(i) ≤ R(i + 1) , ∀i ∈ [0..N).

– C(k) < N , ∀k ∈ [0..NZ).

– j = C(k) for some k ∈ [R(i)..R(i + 1)) denotes a directed edge j ← i.

– There are no cycles in the directed edges.

WorkGraphPolicy::WorkGraphPolicy(
WorkGraphPolicy::graph_type const & dependences );

• Requires: dependences is a Crs object representing a DAG. An edge in the DAG
denotes an execute-after dependence; j = C(k) for some k ∈ [R(i)..R(i + 1)) denotes
work index j must execute-after work index i.

• Effects: Allocates and initializes a queue required to execute the dependences DAG
of execute-after dependences. Retains a shared-ownership copy of the dependences
input.

template< typename ... Properties >
void transpose_crs( Crs< Properties... > & out

, Crs< Properties... > const & in );

• Requires: in representes a DAG.

• Effects: Allocates and populates the out DAG as the transpose of in DAG.

• Note: It is often more straightforward for an application to construct a Crs object that
is the transpose of the dependences DAG required to construct a WorkGraphPolicy;
j = C(k) for some k ∈ [R(i)..R(i + 1)) denotes a that work index i must execute-after
work index j. The transpose of such a graph must input to construct a WorkGraphPolicy.
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template< typename ... Properties , typename FunctorType >
parallel_for( WorkGraphPolicy<Properties...> const & work_dag

, FunctorType const & closure );

• Requires: Has FunctorType::operator()(int i) const;.

• Effects: Calls closure(j) for each work index j in the work_dag and according
to the work_dag execute-after dependences; j = C(k) for some k ∈ [R(i)..R(i + 1))
denotes work index j must execute-after work index i.
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3.3.2 Work-dag Example: Naive Fibonacci

The naive Fibonacci algorithm implementation using Kokkos’ homogeneous static work-dag
capability is illustrated in Figure 3.6. The code in this illustration has been simplified from
the corresponding unit test case in the Kokkos repository.

1 template< class ExecSpace >
2 struct TestWorkGraph {
3 using MemorySpace = typename ExecSpace::memory_space;
4 using Policy = Kokkos::WorkGraphPolicy<int, ExecSpace>;
5 using Graph = typename Policy::graph_type;
6 using RowMap = typename Graph::row_map_type;
7 using Entries = typename Graph::entries_type;
8 using Values = Kokkos::View<long*, MemorySpace>;
9

10 Graph m_graph;
11 Graph m_depend;
12 Values m_values;
13
14 void operator()(int i) const {
15 const int k = m_depend.row_map(i);
16 if ( k < m_depend.row_map(i+1) ) {
17 m_values(i) += m_values( m_depend.entries(k) ) +
18 m_values( m_depend.entries(k+1) );
19 }
20 }
21 void run_test( long n ) {
22 Kokkos::parallel_for(Policy(m_graph), *this);
23 std::cout << "Fibonacci (" << n << ") = " << m_values(0) << std::endl;
24 }
25 TestWorkGraph( long arg_n ) {
26 form_graph(arg_n);
27 transpose_crs(m_depend, m_graph);
28 run_test(arg_n);
29 }
30 struct HostEntry { long input; int parent; };
31 void form_graph( long n ) {
32 std::vector<HostEntry> hg;
33 hg.push_back({ n , -1 });
34 for (int i = 0; i < int(hg.size()); ++i) {
35 auto e = hg.at(std::size_t(i));
36 if (e.input < 2) continue;
37 hg.push_back({ e.input - 1, i });
38 hg.push_back({ e.input - 2, i });
39 }
40 m_graph.row_map = RowMap("row_map", hg.size() + 1);
41 m_graph.entries = Entries("entries", hg.size() - 1);
42 m_values = Values("values", hg.size());
43 m_graph.row_map(0) = 0;
44 for (int i = 0; i < int(hg.size()); ++i) {
45 auto& e = hg.at(std::size_t(i));
46 m_graph.row_map(i + 1) = i;
47 if (e.input < 2) {
48 m_values(i) = e.input;
49 }
50 if (e.parent == -1) continue;
51 m_graph.entries(i - 1) = e.parent;
52 }
53 }
54 };

Figure 3.6: Example use of Kokkos Work-dag capability for implementation of naive task-
based Fibonacci algorithm.
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The parallel_for with the WorkGraphPolicy calls the functor’s operator()(i)
to compute F (n). Before this call the two predecessor work items are guaranteed to have been
called and the input values F (n− 1) and F (n− 2) have been computed. These predecessor
work items (if they exist) are identified through the m_depend dependence graph in this
example. The operator() work function queries m_depend to determine if there are
predecessor tasks; i.e., if the computation is for n > 1. If so then the the values from these
tasks are queried, summed, and output.

In this example, the predecessor graph m_depend is the transpose of the m_graph
execute-after graph used to construct the work-dag policy. Thus both forms of the depen-
dence graph are required. For this naive Fibonacci algorithm we form m_graph and generate
m_depend as its transpose because it is simpler than the reverse.

Each execute-after entry in m_graph is unique because, for this naive Fibonacci algo-
rithm, each work item i computes one of the two inputs for exactly one work item j. The
form_graph function pushes each of these j executes-after i dependences and the corre-
sponding ni predecessor values (if ni > 1) into the temporary vector hg.

hg[i] = { n_j - 1 , j }
hg[i+1] = { n_j - 2 , j }

The temporary hg vector is then converted to m_graph where the j executes-after i (i
provides-input-to j) dependences are represented in compressed-row-storage object.

j = m_graph.entries[ m_graph.row_map[i] ]

Note (again) that this form_graph construction algorithm is based upon each work index
i being a predecessor to a single work index j.
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