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Abstract
We introduce GATK gCNV, a novel algorithm and tool
for the discovery of rare and common copy-number vari-
ants (CNVs) from next-generation sequencing (NGS)
read-depth data. In GATK gCNV, sequencing biases are
modeled via negative-binomial factor analysis, and copy-
number states and genomic regions of low and high CNV
activity are modeled using a hierarchical hidden Markov
model (HHMM). We use automatic differentiation varia-
tional inference (ADVI) and variational message passing
to infer continuous and discrete latent variables in a
principled framework. We further use a deterministic
annealing protocol to deal with the non-convexity of the
variational objective function. Inference is implemented
using the PyMC3 probabilistic programming language
(PPL) and Theano. We demonstrate that GATK gCNV
outperforms existing tools for CNV detection.

1 Introduction
Copy-number variation (CNV) is a class of genomic
structural variation where the integer copy-number state
of a large genomic region (typically >1000 base pairs,
spanning several consecutive exons or genes) is altered
with respect to a reference genome. Inferring these copy-
number states is an important problem in computational
genomics, both for research applications and clinical
practice [11]. Inferring integer CNV states from NGS
read-depth data begins with aligning short reads (se-
quences of ∼100 base pairs from a sample genome) to
the reference genome and counting the number of reads
that align to each region. Calling CNV events from these
counts is a challenging problem due to strong system-
atic biases, which can arise from batch effects in sample
preparation and sequencing library preparation proto-
cols, variation in sequencing efficiency across genomic
regions, and numerous other hidden processes.

Many previous methods for CNV detection from read-
depth data attempt to remove systematic biases via PCA
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denoising [1] or regression [3, 4], or try to obviate the is-
sue by pre-clustering samples and genomic regions [2, 8].
CNVs are subsequently detected using hidden Markov
models (HMM) or non-parametric change-point detec-
tion algorithms [7]. Crucially, these methods suffer from
a lack of self-consistency between data normalization
and event detection, which results in inadvertent removal
of signal in the former and decreased sensitivity in the
latter (as discussed in, e.g., [3]).

Here, we present GATK gCNV, a principled Bayesian
approach for learning global and sample-specific biases of
read-depth data from large cohorts while simultaneously
inferring copy-number states. Our model combines a
negative-binomial factor analysis module for learning
batch effects with a hierarchical HMM (HHMM) for
detecting both sample-specific CNV events and global
regions of high and low CNV activity. Self-consistency
between bias modeling and CNV calling greatly improves
the performance of our algorithm with respect to existing
methods.

2 Summary of Methods
Modeling read-depth — We seek to model the
data nst, the integer count of aligned reads for sam-
ple s = 1, 2, . . . , S in genomic region t = 1, 2, . . . , T . We
model nst with a negative-binomial distribution; taking
λst as the Poisson parameter and αst as the Gamma
distribution parameter, we may write

nst ∼ NegativeBinomal(λst, αst),

λst = ds (cst µst + εM ),

log(µst) = mt +

D∑
ν=1

Wtνzνs +

K∑
ν=1

W tνzνs,

log[αst/(1 + αst)] = Ψs +Ψt,

(1)

where ds ∼ LogNormal(µd, σd) is the mean read-depth
per copy, εM is a small alignment error rate, cst ∈ N0

is the integer copy-number matrix, and µst > 0 is
the multiplicative bias matrix. We model µst in the
logarithmic space using a generalized linear model:
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Figure 1. The read-depth model of GATK gCNV.
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Figure 2. (top) Copy-number priors for silent and active
region classes. (bottom) The hierarchical HMM of region
class states and sample-specific copy-number states.

a global region-specific mean bias mt ∼ N(0, σm), a
low-rank matrix factorization term with stochastic
global bias factors Wtν ∼ N(0, a−1

ν ) and sample-specific
loadings zνs ∼ N(0, 1), and a contribution from
deterministic bias factors W tν (arising from known
biological features of each genomic region) and their
respective loadings zνs ∼ N(0, σz). Here, aν denotes the
automatic relevance determination (ARD) coefficients
which are optimized over to select the number of bias
factors in a data-driven manner. Finally, we account for
the unmodeled overdispersion log[αst/(1 + αst)] as a
sum of sample-specific Ψs ∼ Exp(σS) and region-specific
Ψt ∼ Exp(σT ) components. The graphical model for this
module is shown in Fig. 1.

Modeling genomic regions and copy-numbers —
Certain genomic regions are biologically more prone
to CNV events. We introduce a per-region two-state
categorical random variable τt ∈ {silent, active} to model
such global regional differences. The correlation between

genomically close region classes is modeled with an HMM
with exponentially decaying transition probabilities:

p(τt → τt+1) = exp(−∆t,t+1/dτ ) δ(τt, τt+1)

+ [1− exp(−∆t,t+1/dτ )] p(τt+1), (2)

where p(τt) the prior region class probability, ∆t,t+1 is
the genomic distance between the midpoints of region
t and t + 1, and dτ is the typical size of regions with
similar CNV activity rates.
Sample-specific copy-numbers are modeled similarly,

with one Markov chain per sample; however, priors
and transition probabilities are conditioned on the
region class τt. We set a baseline copy-number state
matrix for each sample κst in a preliminary modeling
step that estimates chromosome-level copy numbers.
That is, κst denotes the copy-number state in the
absence of any CNV event. We use a prior copy-number
probability that strongly prefers the baseline state κst

in regions where τt = silent and we use a flat prior
where τt = active. The copy-number transition matrix is
an exponentially decaying process as before, but with a
different decay length dCNV and per-region priors. The
dependency relations of the resulting hierarchical HMM
are shown graphically in Fig. 2.

Hybrid ADVI framework — The GATK gCNV
model contains both continuous and discrete latent
random variables (RVs). In order to leverage PPLs
and automatic variational inference, we assume a
factorized posterior of the form p(C,D|nst) ≈ q(C) q(D),
where C = {mt,Wtµ, . . .} and D = {cst, τt} de-
note the set of continuous and discrete latent
RVs, respectively. Subsequently, the full evidence
lower bound (ELBO) admits a natural partitioning
ELBO = EC∼q(C)[ELBO|C] + ED∼q(D)[ELBO|D]. Given
q(D) and a variational ansatz for q(C), the ELBO can
be increased by performing gradient descent steps on
the parameters of q(C). Likewise, given q(C), one can
gather sufficient statistics via posterior sampling to
apply Bayesian updates on q(D); see below. We refer to
this scheme as Hybrid ADVI.

Continuous sector: ADVI — We implement infer-
ence for the continuous RVs using the PyMC3 PPL [9].
We assume a fully factorized Gaussian variational
posterior for q(C), which is updated using ADVI [5].
Once partial convergence is achieved, we move on to the
discrete sector. It can be shown that a sufficient statistic
for a Bayesian update of q(D) is the q(C)-averaged log
emission probability, EC∼q(C)[log p(nst|cst,C)], which we
obtain via sampling.
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Discrete sector: variational message passing —
Performing an exact Bayesian update of q(D) is feasible
via message passing; however, this has an exponential
complexity in the number of per-sample Markov chains
(S). Assuming S ≫ 1, we expect the posterior q(τt) to
become sharp, resulting in an effective decoupling of
τt (parent chain) and cst (child chains). Therefore, we

assume an ansatz q(D) ≈ q(τt)
∏S

s=1 qs(cst), neglecting
correlations between τt and cst and between different
child chains, but retaining genomic correlations along
each chain. This allows us to update q(τt) and qs(cst) us-
ing the standard forward-backward algorithm, although
we must use mean-field effective prior and transition
probabilities that need to be self-consistently determined.
For brevity, we omit the derivation of the iterative
scheme, but note that self-consistency is achieved
quickly after 2-3 rounds of forward-backward updates
with relaxation. The complexity of our variational
treatment of this HHMM is O(STC2), where C is the
number of allowed integer copy-number states; crucially,
this is linear in S.

Marginalized warm-up and deterministic anneal-
ing — The complete inference scheme involves inter-
leaving updates of q(C) and q(D). In practice, we found
that the non-convexity of ELBO yielded spurious local
minima with poor initialization. To alleviate this issue,
we utilize two techniques: (1) We initialize q(C) and q(D)
by approximately marginalizing all discrete RVs, and
obtain the first estimate of q(C) from the marginalized
model. (2) In the spirit of the deterministic annealing
expectation-maximization (DA-EM) algorithm [10], we
apply entropic regularization to both the continuous
and the discrete RVs. In brief, we initially encourage
high-entropy variational posteriors by replacing the stan-
dard ELBO with ELBO(β) = Ez∼q(z)[log p(x, z)−βq(z)],
where β ≥ 1 is the inverse temperature and is slowly
annealed during learning. A similar recipe applies to
the variational message passing, where all prior, transi-
tion, and emission probabilities are scaled by β−1 in log
space and renormalized. Our PyMC3 implementation of
DA-ADVI is provided with GATK [6].

3 Benchmarking
Finally, we benchmark GATK gCNV using a cohort of
whole-exome sequencing (WES) blood-normal samples.
We use a manually validated and FDR-controlled callset
obtained from matched whole-genome sequencing (WGS)
samples using Genome STRiP [2] as the truth callset.
To compare, we also include the CNV calls obtained
using two popular CNV calling tools, XHMM [1] and
CODEX [3], in the benchmark. The results are shown
in Fig. 3. We find that GATK gCNV yields nearly 20%
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GATK gCNV in action — benchmarks and success stories
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Monkol Lek, MacArthur/Rehm (CMG)
"In MYO-SEQ, we detected a 7 exon deletion in CAPN3 
in 5 individuals. We preformed PCR validation across 
breakpoints. This heterozygous deletion is only detected 
by gCNV, is likely pathogenic, and has solved 4 
previously unsolved patients."

"In the CMG cohort, a homozygous one exon deletion 
was detected in a known disease gene (PLCE1) in the 
affected child and heterozygous in the parents."

Collaboration w/ Wu Lab @DFCI

Figure 3. The performance of GATK gCNV, XHMM
[1], and CODEX [3] in detecting CNV events from WES
data against a matched WGS callset obtained using
Genome STRiP [2]. Performance metrics are reported
per WES target. All curves are parameterized by call
quality and the dashed red isoclines (right) indicate
constant F1 score.

higher sensitivity and 50% higher specificity over all
CNV events compared to the other methods. Although
not presented here, benchmarks that stratify by truth
variant frequency also show that GATK gCNV performs
favorably on common CNV events. More extensive bench-
marking results demonstrate even further improvement,
primarily resulting from GATK gCNV hyperparmeter
optimization using additional WGS truth callsets, and
will be presented elsewhere.
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